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Abstract

A realistic dynamic positron-emission tomography (PET) thoracic study was generated, using the 4D NURBS-based (non-uniform

rational B-splines) cardiac-torso (NCAT) phantom and a sophisticated model of the PET imaging process, simulating two solitary

pulmonary nodules. Three data reduction and blind source separation methods were applied to the simulated data: principal component

analysis, independent component analysis and similarity mapping. All methods reduced the initial amount of image data to a smaller,

comprehensive and easily managed set of parametric images, where structures were separated based on their different kinetic

characteristics and the lesions were readily identified. The results indicate that the above-mentioned methods can provide an accurate

tool for the support of both visual inspection and subsequent detailed kinetic analysis of the dynamic series via compartmental or non-

compartmental models.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Simulation techniques have become an important and
indispensable complement to theoretical derivations, ex-
perimental methods and clinical studies in medical imaging
research. An important aspect of simulations is the
possibility to use realistic computerized phantoms of the
human anatomy, to evaluate models of the imaging process
and validate image reconstruction and analysis methods.
This way the exact anatomy and physiological functions
are known, thus providing a gold standard upon which the
evaluation and improvement of medical imaging devices
and techniques could be based.

The 4D NURBS-based (non-uniform rational B-splines)
cardiac-torso (NCAT) phantom [1,2] has been developed
e front matter r 2006 Elsevier B.V. All rights reserved.
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to provide a realistic and flexible model of the human
anatomy and physiology. The Geant4 Application for
Tomographic Emission (GATE) software package [3,4] is
becoming quite popular for positron-emission tomography
(PET) simulation and is well validated for a wide range of
g-cameras. Here, we have used these tools to generate a
realistic dynamic F-18-fluorodeoxyglucose PET (FDG-
PET) thoracic study simulating two solitary pulmonary
nodules (SPNs), thus overcoming, among others, ethical
and practical problems related to clinical studies.
SPNs are defined as circumscribed parenchymal lung

lesions less than 4 cm in size and completely surrounded by
normal lung. Although, PET is increasingly being used to
detect and characterize SPNs, false negative findings have
been reported mainly due to small size, particularly for
lesions in the lung bases where respiratory motion may
further degrade resolution, and low-grade well-differen-
tiated malignancies such as carcinoids [5,6].
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To facilitate the visual analysis of dynamic FDG PET
sequences and the calculation of clinically useful para-
metric information of tracer kinetic models, data reduction
and blind source separation (BSS) methods can be applied,
which at the same time maintain important information
and allow basic feature characterization. Three such
methods have been investigated, namely principal compo-
nent analysis (PCA) [7–9], similarity mapping (SM) [10–12]
and independent component analysis (ICA) [13,14].

2. Methods

2.1. Data generation

GATE has been used for the Monte Carlo simulation
(MCS) of the emission and acquisition processes and the
open source STIR platform [15] has been used for the
reconstruction of the data obtained from the simulations.

The desired time–activity curves (TACs) for each organ
have been defined using the NCAT tool (myocardium,
blood-pool and two lung lesions of 8 and 12mm) as shown
in Fig. 1. By specifying these curves and other parameters
related to the scanner configuration, realistic 3D attenua-
tion and activity distribution maps have been obtained
simulating 16 dynamic PET frames at 30 s (frames 1–6),
60 s (frames 7–8), 120 s (frames 9–13) and 300 s (frames
14–16).

These activity maps were used as input to GATE, as
voxelized sources, by considering each voxel as a source
with an activity level proportional to the voxel’s value. The
only drawback of using a voxelized source in GATE is the
speed of the simulations, as the need for tracking the
particles through each individual voxel in the image
increases significantly the simulation time. For lessening
the computational load only one slice from the NCAT
phantom has been simulated with slice thickness of
2.42mm. The g-ray emission direction has been restricted
to y values in the [851, 951] range and a maximum ring
difference of 2 has been set. The scanner geometry of the
ECAT EXACT HR+ scanner (Siemens, Knoxville, TN,
USA) has been employed.

The FBP algorithm, as implemented in STIR, was used
for the image reconstruction, taking into account that the
Fig. 1. The last frame of the simulated dynamic PET stud
image quality highly depends on the duration of the each
frame. Reconstruction was carried out over a 261� 261
image grid, with pixel size of 2.25mm.

2.2. Principal component analysis

PCA explains the variance–covariance of a set of
variables through a few linear combinations of these
(principal components (PC)), in order to achieve data
reduction and to facilitate their interpretation. For
dynamic PET, these few PCs constitute a reduced set of
principal component images (PCI) that can be considered
as representing a ‘‘summary’’ of the kinetic information
that is contained in original study frames and can therefore
be used to extract basic information for an initial
evaluation of the dynamic study [7–9]. In order to improve
the PCA performance we apply data preprocessing
methods [16], namely PCD (data divided column-wise by
the column standard deviation) and PCS (data divided
column-wise by the column sum) were used during the
presented study.

2.3. Independent component analysis

ICA is a statistical technique that can be used as a
method for BSS. The observed data are assumed to be
unknown linear mixtures of unobserved, non-Gaussian
and mutually independent source signals (independent
components, IC), which can be recovered with no prior
information using ICA. The intuitive notion of maximum
non-Gaussianity or more classical notions like maximum
likelihood estimation-minimization of mutual information
can be used to derive objective functions whose optimiza-
tion enables ICA model estimation [14]. The FastICA
algorithm [14] uses approximations of negentropy as a
measure of non-Gaussianity, together with a fixed-point
iteration scheme, to directly estimate ICs of any non-
Gaussian distribution using any nonlinear function g(u).
Using the infomax approach [11] spatial (sICA),

temporal (tICA) or spatiotemporal (stICA) ICA of 2D
images can be estimated. sICA seeks a set of mutually
independent source images, tICA seeks a set of indepen-
dent source time courses, while stICA decomposes an
y and the TACs used for the generation of the data.
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image sequence into a set of spatial images and a
corresponding set of time courses such that signals in both
sets are maximally independent. These approaches are
based on the assumption that the probability density
function (PDF) of the independent sources is highly
kyrtotic and symmetric. Since this assumption is not
warranted for dynamic PET, we proposed to apply skew-
ICA. Skew-ICA embodies the assumption that images are
characterized by the skewness (rather than the kurtosis) of
their PDF’s; an assumption consistent with spatially
localized regions of activity [17]. Dynamic PET images
are assumed to be the sum of components representing
different structures. Each component consists of a time
course and a parametric image showing the spatial
distribution of the corresponding structure in the target
tissue.
2.4. Similarity mapping

SM creates a temporal match of the intensity values of
the pixels in the image sequence with those of a selected
reference region of interest (rROI) [10,11]. The similarity
measures have been applied on dynamic MRI based on the
calculation of the correlation (COR) and normalized
correlation (NCOR) coefficients [18]. We have recently
introduced additional measures more appropriate for low
contrast PET: squared sum (SQS) and cubed sum (CS)
coefficients [12]. Applying SM to dynamic PET results in
one map per slice, where each voxel represents the degree
of temporal similarity of the corresponding region to a
reference region. Both COR and NCOR measures are
normalized for proportional differences, while only NCOR
is normalized for additive differences. SQS provides a
similarity measure normalized for additive differences and
Fig. 2. Principal component images generated using raw data: PCI1 (a
perfect negatives, whereas CS is normalized for additive
differences.
3. Results

3.1. Application of PCA

Applying PCA on the synthetic data results in 3 PCIs
(Fig. 2). PCI1 resembles the last frame of the dynamic
study. In PCI2 the right ventricle, the left atrium and the
aorta are depicted with the same color while in PCI3 they
are assigned different colors (red vs. blue).
PCD and PCS data transformations do not change the

third PCI. However, in PCD_PCI1 the ventricle and
atrium cannot be clearly separated from the myocardium
and image noise is slightly higher with respect to PCI1. In
PCD_PCI2 all structures including the lung lesions and the
aorta can be readily identified. PCS_PCI1 resembles PCI2,
while in PCS_PCI2 each structure is assigned a different
color according to its kinetic characteristics. Comparing
the detectability of SNPs, even the 8mm lesion is clearly
distinguished in the raw and PCD-transformed PCIs, while
in PCS-transformed data it is hardly delineated.
3.2. Application of ICA

In the 2nd independent component image (ICI) by skew-
stICA, heart structures are better separated than in ICI1
and lesions are visible (Fig. 3). In skew-sICA images are
similar to those by skew-stICA. However, increased noise
level complicates lesion detection. In skew-tICI1, heart
structures are well delineated and lesions are identified
easier than in skew-stICI2. Although data transforming
prior to skew-ICA does not improve SPNs detection, in
), PCI2 (b) and transformed data: PCD_PCI2 (c), PCS_PCI2 (d).
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Fig. 3. ICIs created using spatiotemporal (a) and temporal (b) skew-ICA

on raw data, and temporal skew-ICA on PCD (c) and PCS (d)

transformed data.

Fig. 4. ICIs calculated using Fast-ICA with ‘gauss’ nonlinearity and raw

data (a), PCD-transformed data (b), PCS-transformed data (c).

Fig. 5. SM calculated using a reference ROI placed over normal tissue

(a–d) and left atrium (e, f) on raw (a, c, d) and PCD-transformed (b, d, f)

data. Similarity measures used are NCOR (a, b), SQS (c) and CS (d–f).
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PCD-preprocessed skew-tICI2 all structures are colored
according to their kinetic characteristics, indicating that
lesions with different TACs can be better identified.

In the first two ICIs the right ventricle, left atrium or
both structures are depicted in different color depending on
the nonlinearity used to estimate ICs. In ICI3, myocar-
dium, normal tissues and the lung lesions are readily
identified and the heart compartments are well delineated,
no matter which nonlinearity is used (Fig. 4). PCD
preprocessing improves lesion detectability. Applying
ICA to PCS-transformed data, results in images with
increased noise, but enhanced contrast.

3.3. Application of SM

The main goal of this study is to estimate the ability of
SM to detect small lesions in the lung. Therefore, reference
TACs of the left atrium and normal tissues are used for the
calculation of similarity maps (SMaps).

In all cases, SMaps based on COR and NCOR
coefficients are very noisy and lesions are rather guessed
than clearly identified. Preprocessing the data with the
PCD method improves image noise characteristics and
lesion detectability (Fig. 5). On the other hand, when using
the SQS and CS coefficients to calculate SMaps based on
raw data, lesions are readily identified in the resulting
parametric images. Moreover in the CS the aorta is also
visible. SPNs can be distinguished in SMaps calculated on
the transformed data with different levels of contrast and
clarity. In PCD-preprocessed data, lesions are visible with
lower contrast than in the raw-SMaps, whereas in PCS-
SMaps, they are hardly detected. However, PCD prepro-
cessing combined with CS enhances the discrimination of
structures with different TACs.

4. Discussion

Detecting and characterizing SPNs is quite challenging.
Imaging techniques that demonstrate the metabolic proper-
ties of a lesion have attracted increasing interest, since
many lesions remain indeterminate in nature with conven-
tional imaging modalities, such as computed tomography
and magnetic resonance imaging. Additionally, histological
biopsies are often associated with morbidity and high cost.
FDG-PET is increasingly being used to detect and

characterize SPNs. However, accurate detection of small
nodules is unlikely, because of scanner resolution and
nodule motion during acquisition. Moreover, the specifi-
city of SPNs characterization is rather low in many studies,
although several analysis approaches have been used,
including qualification by visual comparison of the
abnormality with normal structures, semiquantification
using standardized uptake ratios (SUR) or lung/back-
ground (L/B) ratios or absolute quantification of glycolysis
[5,6,19].
We have applied three data reduction and BSS methods:

PCA, ICA and SM. These techniques are becoming
increasingly popular as a tool for analyzing biomedical
data [7–14,20,21]. Based on the presented results,
all described methods can generate images where struct-
ures with different kinetic characteristics are readily
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discriminated and small lung lesions can be detected.
Additionally, all techniques are characterized by low
computational cost. Therefore, they could be used to
support visual inspection of large dynamic PET data sets
and facilitate the application of compartmental analysis,
since they provide a tool for a more accurate selection of
the ROIs on lesions and/or vessels, in order to proceed to
further parametric analysis of the dynamic sequences.

Depending on the analysis method and the specific
parameters used, data preprocessing prior to applying a
data reduction technique may improve or hinder lesion
detectability or structure discrimination. Future work in
this area will include detailed studies on simulated data
with different noise levels and lesion sizes and uptake rates,
in order to establish efficient analysis protocols for
different cases.

As far as structure identification is concerned, even
though PCs and ICs do not coincide with physiologically
meaningful TACs and may contain negative values, their
shape rather than their absolute values, agrees with the
kind of TACs expected, according to the highest intensity
regions present in the corresponding images. Therefore,
structures with different kinetic characteristics are assigned
opposite values and can be easily discriminated.

PCA and ICA calculation are completely automatic,
whereas SM requires the placement of a reference ROI and
the calculation of the corresponding TAC. All methods
require that the image frames for the same tomographic
slice are spatially registered.

As a future step, the evaluation of the described methods
on studies simulating several benign and malignant lesions
and on real clinical cases will be performed. Furthermore,
the application of the analysis techniques on blood volume
extraction, blood perfusion and cardiac motion studies will
be considered.
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[16] M. Šámal, et al., Phys. Med. Biol. 44 (1999) 2821.

[17] K. Suzuki, T. Kiryu, T. Nakada, Hum. Brain Mapping 15 (2002) 54.

[18] A.O. Boudraa, et al., Comput. Biol. Med. 31 (2001) 133.

[19] K. Shaffer, Chest 116 (1999) 519S.

[20] J.S. Lee, et al., Nucl. Med. 42 (2001) 938.

[21] M. Naganawa, et al., IEEE Trans. Biomed. Eng. 52 (2005) 201.

http://stir.hammersmithimanet.com/

	Evaluation of data reduction methods for dynamic PET series based on Monte Carlo techniques and the NCAT phantom
	Introduction
	Methods
	Data generation
	Principal component analysis
	Independent component analysis
	Similarity mapping

	Results
	Application of PCA
	Application of ICA
	Application of SM

	Discussion
	Acknowledgments
	References


