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Abstract—Three-dimensional transesophageal echocardiog-
raphy (TEE) is an excellent modality for real-time visualization 
of the heart and monitoring of interventions. To improve the 
usability of 3-D TEE for intervention monitoring and catheter 
guidance, automated segmentation is desired. However, 3-D 
TEE segmentation is still a challenging task due to the com-
plex anatomy with multiple cavities, the limited TEE field of 
view, and typical ultrasound artifacts. We propose to segment 
all cavities within the TEE view with a multi-cavity active 
shape model (ASM) in conjunction with a tissue/blood clas-
sification based on a gamma mixture model (GMM). 3-D TEE 
image data of twenty patients were acquired with a Philips 
X7–2t matrix TEE probe. Tissue probability maps were esti-
mated by a two-class (blood/tissue) GMM. A statistical shape 
model containing the left ventricle, right ventricle, left atrium, 
right atrium, and aorta was derived from computed tomogra-
phy angiography (CTA) segmentations by principal component 
analysis. ASMs of the whole heart and individual cavities were 
generated and consecutively fitted to tissue probability maps. 
First, an average whole-heart model was aligned with the 3-D 
TEE based on three manually indicated anatomical landmarks. 
Second, pose and shape of the whole-heart ASM were fitted by 
a weighted update scheme excluding parts outside of the im-
age sector. Third, pose and shape of ASM for individual heart 
cavities were initialized by the previous whole heart ASM and 
updated in a regularized manner to fit the tissue probability 
maps. The ASM segmentations were validated against manual 
outlines by two observers and CTA derived segmentations. 

Dice coefficients and point-to-surface distances were used to 
determine segmentation accuracy. ASM segmentations were 
successful in 19 of 20 cases. The median Dice coefficient for all 
successful segmentations versus the average observer ranged 
from 90% to 71% compared with an inter-observer range of 
95% to 84%. The agreement against the CTA segmentations 
was slightly lower with a median Dice coefficient between 85% 
and 57%. In this work, we successfully showed the accura-
cy and robustness of the proposed multi-cavity segmentation 
scheme. This is a promising development for intraoperative 
procedure guidance, e.g., in cardiac electrophysiology. 

I. Introduction

Three-dimensional ultrasound is becoming more and 
more important for monitoring minimally invasive in-

terventions. Currently, 3-D ultrasound is the only feasible 
modality which would allow real-time 3-D monitoring of 
interventions [1]. Compared with transthoracic echocar-
diography, transesophageal echocardiography (TEE) is 
especially attractive for cardiac interventions because of 
its superior image quality and stable, nonobstructive, ex-
ternally controllable position of the transducer within the 
esophagus. In particular, 3-D TEE allows direct real-time 
visualization of the complex 3-D anatomy of the different 
heart cavities, valves, and the relative position of cath-
eters and closure devices, etc. The transducer is close to 
the heart, showing important structures such as valves 
with high resolution, without image deterioration by the 
chest wall, ribs, and lungs. However, because the trans-
ducer is so close, the TEE field of view (FoV) is limited, 
allows only a partial image of several heart cavities, and 
is highly dependent on probe manipulation. TEE imag-
ing of the whole heart is mostly impossible. Therefore, 
image interpretation requires expertise and automated 
segmentation of 3-D TEE data, which is still challenging 
[2]. For procedure guidance, the 3-D TEE image should 
ideally be placed within a model of the heart, allowing 
navigational help at a multitude of intervention sites. To 
this end, we propose a cardiac 3-D multi-cavity model 
automatically fitted within the TEE FoV. This forms the 
basis for an automatic relative positioning of the image, 
as well as an automated segmentation of the cavities. This 
can be used in support of cardiac electrophysiology inter-
ventions, e.g., to allow accurate navigation of catheters. 
Cardiac electrophysiology (EP) concerns the treatment 
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of conduction and rhythm disorders of the heart. It is a 
field of rapidly increasing importance within cardiology 
[3], [4]. During EP interventions, the source of the conduc-
tion abnormality is located and treated by tissue ablation. 
First, position-sensing catheters are used to create a 3-D 
electro-anatomical map (EAM) of the surface of a heart 
cavity, e.g., the left atrium (LA). By positioning the tip at 
a large number of locations on the cavity wall and record-
ing the local ECG signal and 3-D position, a 3-D map of 
the cavity with its conduction pattern is created. This is 
a lengthy process with imprecise results. The EAM is ren-
dered in an EP guidance system (e.g., Carto 3 (Biosense 
Webster, Diamond Bar, CA, USA) or Ensite Velocity (St. 
Jude Medical, St. Paul, MN, USA), with the positions 
of all tracked catheters, to guide the intervention. Next, 
an ablation catheter is navigated to the erroneous con-
duction sites and tissue is ablated to restore a normal 
conduction pattern. This requires a precise visualization 
of the anatomical structures. However, the EAM is impre-
cise and not detailed. Several approaches have been intro-
duced to improve this guidance. Preoperative CT and MR 
data have been used, from which several heart cavities 
are segmented and the surfaces imported into the guid-
ance system [5]. However, such preoperative images often 
fail to improve the EAM because the CT/MR images are 
generally taken weeks in advance, which may lead to con-
siderable changes in the anatomy or physiological state. 
Moreover, the CT/MR images are in different coordinate 
frames, which makes a registration necessary. Ideally, the 
3-D TEE ultrasound data should be segmented and ana-
tomical structures and catheters identified for represen-
tation in the interventional guidance system. This could 
both be done on preoperatively acquired 3-D TEE (for 
creating a preoperative anatomical map without the need 
for CT or MR) or on live intraoperative 3-D TEE, to allow 
live guidance of the catheter positions with respect to true 
anatomy and EAM. Our proposed approach is the founda-
tion of such applications.

Segmentation of ultrasound images in general is a chal-
lenging task [6]. The characteristic speckle structure of 
an ultrasound image precludes simple separation of differ-
ent tissues. The images are anisotropic, inhomogeneous in 
gray level amplitude, and very dependent on probe posi-
tioning. Furthermore, ultrasound suffers quite often from 
artifacts such as echo dropouts and shadowing due to poor 
probe contact, air bubbles, and calcifications.

Many models have been described for the speckle sta-
tistics of the backscattered ultrasound RF-data (gray level 
amplitude) [7], [8]. Most of the theoretical work has been 
focused on modeling raw RF data, neglecting all the pro-
prietary postprocessing steps of commercial ultrasound 
scanners. However, empirical fitting of different distribu-
tions to log-compressed [9] and uncompressed [10] gray 
level data revealed that the Gamma distribution fits such 
data quite well.

In cardiac ultrasound, segmentation is even more chal-
lenging because multiple (incomplete) structures are in-
volved, which have a complex and highly time-variable 

shape, and there is a substantial anatomical and patho-
logical variability over the population [6], [11]. Whereas 
many approaches have been presented for automated seg-
mentation of the left ventricle in transthoracic 3-D echo-
cardiograms [11]–[13], especially for the left ventricle, there 
are few approaches for 3-D TEE segmentations [2], [14]. 
The segmentation approach we present meets the follow-
ing requirements: it deals with ultrasound peculiarities, 
partially missing information, anatomical variability, and 
multiple complex structures. We propose a multi-object 
active shape model (ASM) [15] for this. ASMs are based 
on statistical shape models and describe the shape varia-
tion of a population of shapes using principal component 
analysis (PCA). This allows the model to generate any 
shape in the population plus any plausible intermediate or 
extrapolated form. They are also known to handle missing 
data very well [16]. Multiple interrelated objects and mul-
tidimensional shapes are handled in a natural way.

We present and evaluate an active shape model seg-
mentation method for 3-D TEE, which uses a multi-cavity 
shape model in conjunction with a blood/tissue classifier 
based on gamma mixture models (GMM) of gray level 
amplitudes. To our knowledge, this is the first time a 
multi-cavity ASM was used in combination with a GMM 
tissue classifier. For all patients, TEE and computed to-
mography angiography (CTA) images were acquired, and 
manual outlines were created in the TEE images by two 
observers. These were compared with the ASM and TEE 
segmentations. We also automatically segmented the CTA 
images by a well-established atlas-based method [17]. 
We registered the results to the TEE segmentations to 
compare the results within the TEE sector and also to 
investigate extrapolation of the heart chambers outside 
the sector. Furthermore, comparing the registered CTA 
segmentations with the manual outlines may give some 
insight into how well the segmentations from the different 
modalities agree, which is important because the physical 
image formation principle, segmentation method, acquisi-
tion time, and coordinate frame are different. We previ-
ously demonstrated a preliminary version of our method 
on a small data set [18], [19]. In this paper we present 
our method in detail and evaluate it on a data set of 20 
patients.

II. Methodology

A. Gamma Mixture Model

Segmentation in echocardiograms is generally compli-
cated by speckle noise. Ultrasound images naturally ex-
hibit local gray level variations (speckle) due to sound 
scattering by randomly distributed sub-resolution scatter-
ers. This leads to the typical noisy speckle images that 
may have a locally poor definition of edges. Using only 
the local gray level information to find the borders of the 
different heart chambers usually renders inaccurate seg-
mentations.
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The ultrasound speckle statistics depend on many pa-
rameters of the medium (scatterer size/density, attenu-
ation, heterogeneity, etc.) and parameters of the ultra-
sound system (resolution cell dimension, frequency and 
bandwidth, interpolation, compression, etc.). Classical ap-
proaches make use of the assumption of a high number of 
scatterers per resolution cell which will lead to Rayleigh 
and Rice distributions. However, modeling the speckle 
distribution after all processing steps in commercial scan-
ners is difficult because there are many nonlinear process-
ing steps such as adaptive filtering and log-compression. 
Vendors usually do not disclose the parameters of their 
processing pipeline. Some researchers have empirically 
compared the fit of different types of distributions to log-
compressed gray level data [9] and to linearly processed 
RF envelope data [10]. They have shown that the Gam-
ma distribution fits both types of data well. Previously, 
Vegas-Sánchez-Ferrero et al. [20], [21] showed that GMM 
models the gray level distribution of ultrasound images 
after beam-forming, postprocessing, and interpolation in 
an accurate and effective way. Therefore, we decided to 
use a GMM to describe the speckle distribution of our log-
compressed gray level data. [9], [10], [21].

For estimating the likelihood of a region being blood 
or tissue, a two-class mixture model is used. We consider 
the voxel gray levels of an image region as an identically 
distributed random variable:

 X = , 1 ,{ }X i Ni ≤ ≤  (1)

where N denotes the number of voxels in the region con-
sidered. The probability density function1 p of such a mix-
ture model is given by

 p x f x
j

j X j j( ) ( )| = | , ,
=1

2

Θ ∑π α β  (2)

where the vector Θ holds the parameters for both classes 
j = [1, 2] of the model (π1, π2, α1, β1, α2, β2) and fX de-
notes the gamma density function [20] with parameters α 
and β. The weighting terms πj stand for the prior proba-
bilities of each class πj = P(class = j), and thus, the condi-
tion 

j j=1

2∑ π  = 1 holds. The parameters in Θ can easily be 

estimated with the expectation-maximization algorithm 
[22].

An example histogram of the gray levels and the fitted 
GMM with the blood and tissue class are shown in Fig. 
1. Please note that the GMM models the empirical dis-
tribution quite well. On all patient histograms and fitted 
GMMs, we computed a Kolmogorov-Smirnov metric of 
0.013 ± 0.004 (mean ± standard deviation). Furthermore, 
we computed the Kullback-Leibler divergence [20], [23] for 
all data sets, which was on average 0.03 ± 0.01 (mean ± 
standard deviation). Both metrics support our assump-

tion that the log-compressed gray level distributions can 
be modeled adequately with the GMM.

Finally, probability maps of voxels belonging to blood 
or tissue (k = 1, 2, respectively) are computed using 
Bayes’ theorem:

 p x
f x

f x
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An example 3-D ultrasound volume and the computed tis-
sue probability map are shown in Fig. 2.

B. Active Shape Model

An active shape model [24] represents any shape, s, in 
a population as the average shape s plus a linear combina-
tion of the principal modes of variation, which are de-
scribed by the eigenvector matrix Φ and the correspond-
ing coefficients b,

 s s b= ,+ Φ  (4)

where s contains the n 3-D vertices of the shape s = (x1, 
y1, z1, ..., xn, yn, zn)T. Usually, the smaller modes of shape 
variation are removed from the model to suppress noise 
and to reduce the dimensionality of the model. The ASM 
used in this work was derived from 151 CTA segmenta-
tions [17], [25] containing the left and right ventricle (LV 
and RV), left and right atria (LA and RA), and the aorta 
(Ao). The CTA scans were made from a mixed population 
of patients presenting a large variability in anatomy and 
pathology [25]. The mean shape of the ASM is shown in 

Fig. 1. The GMM (blue solid line) fitted to the log-compressed gray 
level histogram (black solid line). Grey levels smaller than 5 were dis-
carded to remove areas outside the imaging cone. A k-means (k = 2) 
classifier was used to initialize the GMM. The blood (red dashed line), 
and tissue (green dashed line) classes are shown in the plot as well. We 
computed for this example a Kullback-Leibler divergence of 0.025 and a 
Kolmogorov-Smirnov metric of 0.015, which both support the suitability 
of using the GMM to model the log-compressed gray level distributions 
[20], [23].

1 Please note that we use lowercase p for indicating probability density 
functions (pdf) and capital P for probabilities.
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Fig. 3 and consists of about 104 3-D vertices. ASM seg-
mentation is achieved by initializing the shape model at a 
certain position in the image and finding new candidate 
points in the neighborhood of the shape. The pose and 
shape of the ASM is then iteratively estimated (by back-
projecting the new shape on the model) until the ASM 
converges. Update points (r′) are found along the surface 
normals by minimizing an objective function as described 
by van Ginneken et al. [26], which gives a robust estimator 
of the blood-tissue transition point. We adopted this ap-
proach because we use a CTA-derived ASM and therefore 
cannot model the TEE gray level or probability map pro-
files along the surface normals. A weighted least square 
scheme is used to estimate the pose (T(ai, θi, ti), with ai 
being the scale, θi being the Euler angles, and ti being the 
translation at the iteration i [27], [28]) and the shape pa-
rameter ( )′bi  for each iteration, similarly to the way it was 
described by Cootes et al. [29], which gives for the new 
shape at iteration i,

 ′ − ′−b s si
T T

iW W= ,1( ) ( )Φ Φ Φ  (5)

where W is a diagonal matrix containing the vertex 
weights, w, and si is the current shape [e.g., the trans-
formed update points ′si = T(ai, θi, ti)r′]. The newly found 
pose and the shape parameters are regularized with c (ro-
tation, translation, shape) and ca (scale) to prevent pose 
jumps by erroneous edge responses:

 a c a c ai a i a i= 1 ,1− + −( ) ′  (6)

 θ θ θi i ic c= 1 ,1− + −( ) ′  (7)

 t t ti i ic c= 11− + −( ) ′, and (8)

 b b bi i ic c= 1 ,1− + −( ) ′  (9)

where ′ denotes the estimated unregularized pose and 
shape parameters at the iteration i.

The vertex weighting factor w consists of a GMM-
based edge probability wGMM(r′), a model distance term 

wASM(r′), and a term penalizing points outside or close 
to the border of the pyramidal TEE volume wUS(r′). The 
weighting factor is computed as follows:

 w w w w( ) ( ) ( ) ( )′ ′ ′ ′r r r r= ,ASM US GMM  (10)

where

 wASM( ) exp′ −
− ′( )






r
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=
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The parameter σ defines the range of the model dis-
tance penalty term and || indicates the Euclidian dis-
tance. The term wUS(r′) is derived by convolving the 
binary TEE mask with an isotropic Gaussian kernel 
with a standard deviation of the 20  voxel. The GMM 
term, wGMM(r′), enhances update points being close to 
the blood/tissue transition zone (probability of 0.5) 
and is defined as

 w
p I

GMM( )
( ( ) )′ −
′ −

r
r

= 1
| 0.5
0.5 ,2 Θ

 (12)

where I(r′) is the local gray level in the TEE image at r′ 
and p2(I(r′)|Θ) stands for the tissue pdf.

C. Segmentation Scheme

We use a three-stage segmentation scheme (see Fig. 
4) where the model pose is increasingly regularized from 
stage to stage. The scheme comprises the following stages.

1) First Stage: In the first step, the ASM of the entire 
heart containing all cavities (ASMtotal) is used. The mean 
shape ( )stotal  of this ASM is initially transformed to the 
TEE image by a similarity transform Tinit, which was de-
rived by manually indicating three landmark points in the 
TEE image (center of mitral valve, center of aortic valve, 
and LV apex or a point on the LV long axis). The regular-
ization factors, c and ca, are set to zero.

2) Second Stage: After the initial pose estimation, the 
pose and shape of ASMtotal are iteratively updated with 
intermediate regularization. A shape model covering 90% 
of the shape variation is used. New shape parameters, b, 
are computed from the update points (r′), and b is limited 

Fig. 3. Mean shape of the multi-cavity statistical shape model [25].

Fig. 2. Three orthogonal cross sections through a TEE volume (top) and 
the corresponding tissue probability map (bottom). Note the reduction 
in speckle of the tissue probability map compared with the gray level 
map.
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to a hyper-ellipsoid (blim) by computing the χ2 distribu-
tions and taking the 98% percentiles as the limit [24].

3) Third Stage: In the last stage of the segmentation, 
for each cavity, a separate shape model covering 98% of 
the shape variation is used. The pose and shape updates 
of each ASM are more strongly regularized by setting c 
to 0.6. The shape updates are again limited to a hyper-
ellipsoid, corresponding to the 99.7% percentile.

For all stages, we limit the scale (alim), the rotation 
angles (θlim), and the translation (tlim). All limits for the 
different stages and all other parameters are shown in 
Table I.

The parameters for the ASM segmentation scheme 
were empirically chosen based on segmentations of previ-
ous data sets.

III. Experiments

A. Data

The segmentation method was validated in 3-D TEE 
data sets obtained from 20 patients (13 male, 7 female; 
mean age ± standard deviation: 80 ± 7) undergoing a 
transcatheter aortic valve implantation (TAVI) in accor-

dance with the hospital ethical regulations. The patients 
all had severe aortic valve stenosis with different severity of 
valve regurgitation. This caused for many patients severe 
pathologies with considerable left ventricular and atrial 
enlargement and hypertrophy. All TAVI patients had 3-D 
TEE data acquired with a matrix TEE probe (X7–2t, 
Philips Healthcare, The Netherlands) during the prepara-
tion of the intervention. The patients were anesthetized 
and in supine position. Conventional log-compressed gray 
level data were used in the study. The sonographer used a 
preset but was free to adapt the machine parameters im-
age depth (10 ± 2 cm), focus, gain (47 ± 5 dB), compres-
sion (49 ± 1%), and time-gain curve to yield the best and 
most homogeneous image quality for the specific patient. 
One heart cycle was acquired in live 3-D mode (no stitch-
ing of sub-volumes acquired over several cardiac cycles), 
yielding a frame rate of about 4 ± 1 volumes/s. The power 
settings were fixed yielding an MI of 0.5 and a TI of 0.1. 
All patients also underwent a gated CTA for preopera-
tive planning. Usually, 19 time frames were acquired and 
the ED time frame was selected. The CTA volumes were 
cropped so that only the heart was in the image volume.

B. Gold Standard and Evaluation of Ground Truth

To provide a segmentation ground truth, 2-D contours 
of all visible cavities in multiple short and long axis views 
were manually annotated by two independent observers in 
all end-diastolic (ED) TEE images. The ED time-frame 
was manually selected by visual inspection of the mitral 
valve (closed) and the largest volume (LV). To speed up 
the manual outline we used the roughly aligned mean 
shape ( )stotal  as a starting point for the observer outlines. 
First, one observer indicated four landmark points on the 
mitral valve (MV) annulus, one on the aortic valve (AV) 
and one at the apex of the left ventricle. The center of the 
four MV points, AV, and apex point was then used to 
compute an initial similarity transform for the mean shape 
of the total heart model ( ).stotal  The mean shape was over-
laid on the TEE image, and small adjustments could be 

Fig. 4. Three-stage segmentation scheme which adjusts the pose and shape of the model from stage to stage. In the first stage, the mean shape of 
the entire heart model ( )stotal  is aligned to the TEE volume and the found pose is passed to stage 2. Second, the pose and shape of the complete 
heart (ASMtotal) are updated. In the third stage, individual ASMs for each cavity are fitted to the TEE volume.

TABLE I. Segmentation Parameters.

Parameter Stage 1 (S1) Stage 2 (S2) Stage 3 (S3)

c 0.0 0.2 0.6
ca 0.0 0.2 0.3
σ (voxel) 44 20 20
alim (%) ±30 of ainit ±18 of aS1 ±15 of aS2
θlim (°) ±30 of θinit ±20 of θS1 ±5 of θS2
tlim (mm) ±30 of tinit ±20 of tS1 ±5 of tS2
blim (%) 0.0 98.0 99.7

σ defines the range of wASM; c regularizes θ, t, and b; and ca 
regularizes a at each iteration.
Upper and lower limits for the pose and shape parameters have the 
subscript lim.
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made to the landmark points to obtain an optimal initial 
pose of the model. Using this transformation as a starting 
point, the manual outlining was performed independently 
by two observers, in eleven 2-D short-axis views and 4 col-
linear long-axis views, obtained by slicing the TEE image 
and the mean shape model. The 2-D contours of stotal were 
interpolated by B-splines, and the control points were in-
teractively manipulated by the observers to adapt the con-
tours to the correct borders of the different cavities. Cross-
ing points of contours from the different short- and 
long-axis planes were displayed in the respective perpen-
dicular planes to ensure 3-D consistency in the manual 
outlines. Please note that outlines outside the FoV are 
leftovers from the initialization with the mean model and 
are not used in any way. Papillary muscles and trabecula-
tions were included in the cavities (excluded from myocar-
dium) as recommended in the ASE guidelines [30]. An 
example TEE volume with the outlines of one observer is 
shown in Fig. 5. From the two manual segmentations, an 
“average observer” segmentation was constructed as the 
ground truth segmentation. The average observer contour 
was created by computing for each plane the signed dis-
tance map for both observer contours and adding these 
maps. This produces a map where the average contour is 
represented by the zero pixel values. The resulting map 
was thresholded, and the average observer contour points 
were detected by a fast marching squares scheme [31]. Ad-
ditionally, CTA images were obtained from the same 20 
patients and were segmented in 3-D using the multi-atlas-
based approach introduced in [17]. Please note that the 
used ASM did not include any of these CTA segmenta-
tions. For one patient the segmentation failed due to se-
vere pathology. Therefore, we excluded this CTA segmen-
tation from our analyses. The CTA segmentations provide 
an independent ground truth of the cavity outline. In con-
trast to the manual TEE segmentations, these are fully 
3-D and not limited to the TEE sector. The statistical 
shape model was derived earlier from 151 CTAs of other 
patients of mixed pathology [25]. For the evaluation, ASM 

segmentations were compared with the manually defined 
average observer contours and the CTA segmentations. 
Because the CTA is in a different coordinate system from 
the TEE, the two need to be registered first. The obtained 
CTA and TEE segmentations were rigidly registered using 
surface-based iterative closest point (ICP, see [32] for more 
details) alignment, after initial coarse alignment of the 
heart by registration of the center of gravities of the cor-
responding cavities.

C. Evaluation Measures

For comparing the different segmentations, overlap in 
area or volume for each cavity was expressed as a Dice 
coefficient in 2-D or 3-D, as applicable [33]. The distance 
between corresponding segmentations was computed as 
average Euclidean point-to-surface distance. The Dice co-
efficients of segmented TEE and CTA volumes and the 
mean point-to-surface distances (P2Smean) were calculated 
within the pyramidal TEE image sector (cropped) as well 
as for the entire heart volume (complete). Several com-
parisons were made: first, the comparison of both manual 
observers to each other gave a measure of inter-observer 
variability (inter Obs). This served as a baseline for the 
segmentation performance of the ASM. Second, the com-
parison of CTA to the average manual observer (ground 
truth) provided a measure of intermodality differences, 
registration, and segmentation inaccuracies. Third, the 
ASM TEE segmentations can be compared with the man-
ual ground truth and to the CTA segmentations points 
lying within the TEE sector, to evaluate its performance. 
Fourth, by comparing the ASM cavity parts outside the 
sector to CTA, one can evaluate the extrapolation capa-
bilities of the ASM. Fifth, by comparing the final ASM 
segmentation to the initial result, one can evaluate the 
value of the segmentation scheme. The mean Dice coef-
ficients and distances are also summarized in Table II. 
Please note that any evaluation measure using the manual 
outlines was only computed within the FoV.

IV. Results

The inter-observer-variability Dice coefficients and the 
P2Smean for all sets and heart cavities are shown in the 
boxplots of Figs. 6 and 7. The Dice coefficients, and the 
P2Smean of the average observer to sinit, to the final seg-
mentation result, and to registered CTA segmentations 

Fig. 5. Example of manual annotation of the heart cavities in 15 slices 
of a TEE volume.

TABLE II. Mean Dice Coefficients and P2Smean.

LV RV LA RA Ao

Dice inter Obs (%) 91.3 84.2 95.2 83.4 82.7
Dice init ASM (%) 83.3 72.6 67.4 63.4 59.5
Dice final ASM (%) 90.0 79.5 87.4 64.8 70.1
Dice CTA (%) 84.5 74.7 85.3 68.9 61.6
P2Smean inter Obs (mm) 2.56 3.46 1.56 2.76 2.06
P2Smean init ASM (mm) 4.33 6.16 6.85 5.71 4.72
P2Smean ASM (mm) 2.82 5.17 3.10 5.70 3.34
P2Smean CTA (mm) 4.74 6.84 4.62 5.41 5.45
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are also shown in Figs. 6 and 7. Note that for the left heart 
chambers (LV and LA) we obtain the best inter-observer 
variability and also the best segmentation results (final 
ASM). For the right heart chambers (RV and RA) we have 
less agreement between the observers, and the ASM seg-
mentation results agree less with the average observer. A 
qualitative comparison of an ASM segmentation with the 
two manual observers is shown in Fig. 8.

The Dice coefficients and the P2Smean of the registered 
CTA segmentation with the average observer for all sets 
and heart cavities are shown in the boxplots of Figs. 6 
and 7 (CTA). Note that generally the agreement between 
manual outlines and CTA segmentations is less than for 
the ASM segmentations.

The Dice coefficients and the P2Smean of the registered 
CTA segmentation with the ASM segmentations for all 
sets and heart cavities are shown in Figs. 9 and 10.

Note that the agreement of the segmentation for the 
full heart is only slightly decreased compared with the 
agreement confined within the FoV of the TEE image sec-
tor.

V. Discussion

In this paper, we validated our multi-cavity ASM seg-
mentation method for 3-D TEE on an extended data set 
of 20 patients. We successfully showed that the proposed 

Fig. 6. Dice coefficients for all five heart cavities between average observer (avg Obs) and different segmentations, averaged over all patients. From 
left to right: observer one versus observer two (inter Obs), avg Obs versus initial model (init ASM), avg Obs versus final ASM TEE segmentation 
(final ASM), and avg Obs versus the CTA segmentation (CTA). Please note that the Dice coefficient was computed only within the FoV.

Fig. 7. P2Smean for all five heart cavities between average observer (avg Obs) and different segmentations, averaged over all patients. From left to 
right: observer one versus observer two (inter Obs), avg Obs versus initial model (init ASM), avg Obs versus final ASM TEE segmentation (final 
ASM), and avg Obs versus the CTA segmentation (CTA). Please note that the P2Smean was computed only within the FoV.
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segmentation scheme, using a GMM tissue/blood classifier 
in conjunction with a multi-cavity ASM, can handle nar-
row-view data and automatically identify different heart 
chambers in complex TEE images. The run time of the 
nonoptimized segmentation scheme was on the order of 2 
min for one patient data set.

The accuracy of the segmentation for the different cavi-
ties was reasonably close to the inter-observer variability 
of the manual segmentations that served as ground truth. 
As expected, the final segmentation had a much higher 
overlap with the average observer than the initially placed 
average model for all cavities (see Fig. 6) and the Dice 
coefficient improved on average by 6.7, 6.9, 20.0, 1.3, and 
11.0 percentage points for LV, RV, LA, RA, and Ao, re-
spectively. For the LV and RV, we could achieve segmen-
tation accuracy close to the inter-observer variability even 
though mostly large parts of the RV and LV were not vis-
ible in the TEE image. We also achieved a good segmenta-
tion for the LA (the second highest Dice score of all cavi-
ties segmented). However, the inter-observer variability of 
the LA is very low because this part has the best contrast 
in the image with the sharpest borders and mostly simple 
anatomy (not much trabeculation). Although the ASM 
results cannot match this extremely low variability, we 
still consider our segmentation scheme to provide good 

results. The results of the P2Smean support these findings. 
The LA segmentation may remain suboptimal due to the 
small visible portion of the LA in the TEE image (only 
the inferior part is visible) and negative influence of the 
combined model in previous steps. Specific optimizations 
of parameters per cavity (step 3) might help here.

The comparison of the ASM segmentations with au-
tomatically segmented CTA of the same patients showed 
good correspondence, which is supported by the obtained 
Dice coefficients (see Fig. 6). Comparing the correspon-
dence for only the TEE sector with that for the entire 
heart, we see that the Dice coefficients drop by only a 
small amount: 6.3, 12.9, 8.9, 5.0, and 6.2 percentage points, 
which supports that the ASM has good generalization ca-
pabilities and can be used to extrapolate the heart cavities 
to beyond the limited view of the sector with reasonable 
accuracy. The good agreement of the TEE segmentations 
with the real anatomical structure can be qualitatively in-
spected by overlaying the transformed TEE segmentations 
with the CTA image as shown in Fig. 11.

The patients used in our study were quite different from 
the normal population with a rather abnormal anatomy 
(e.g., highly dilated atria) and reduced TEE image qual-
ity. Although this might form a challenge for the ASM’s 
statistical shape model coverage, very acceptable segmen-

Fig. 8. Qualitative example of a final ASM segmentation within the rendered 3-D TEE volume (a). The left ventricle is shown in yellow, the right 
ventricle in red, left atrium in cyan, the right atrium in green, and the aorta in blue. Two cross sections are shown in (b) and (c) with contours of 
the two manual observers (solid and dashed lines) and the final ASM (dotted lines). Note the limited FoV of the TEE probe.

Fig. 9. Dice coefficients of TEE versus CTA segmentations (3-D) consid-
ering only the TEE FoV (cropped) or the entire heart (complete).

Fig. 10. P2Smean of TEE versus CTA segmentations (3-D) considering 
only the TEE FoV (cropped) or the entire heart (complete).
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tations were still achieved. Only in one case the ASM did 
not converge: this case had a limited FoV with poor image 
quality and an indeterminate content. For all other cases, 
which included a wide range of anatomical variation, im-
age orientations and artifacts, segmentation was success-
fully converging.

The remaining P2S errors are on the order of 3 to 4 
mm for the different cavities. Although this is sufficient 
for many applications, and better than accuracies of EAM 
or preoperative imaging in EP, precise interventions may 
require precisions in the order of 1 to 2 mm. An additional 
refinement by an alternative or hybrid edge finding might 
supply this.

Our study has some limitations. The 3-D ASM segmen-
tations were only compared with several 2-D average ob-
server contours, which present a rather coarse sampling of 
the 3-D structures segmented. However, there is currently 
no feasible manual ground truth for studies dealing with 
larger data sets. We tried to overcome this limitation by 
introducing an alternative ground truth provided by the 
CTA segmentations. However, the CTA and ASM segmen-
tation needs to be registered, which may bias our results. 
An image-based registration may overcome this problem, 
but we are not aware of any robust automatic method. 
Furthermore, the contrast in CTA image intensities and 
the detected edges in the GMM (e.g., probability of 0.5) 
are caused by different physical mechanisms and may dif-
fer considerably. Also, there may have been a significant 
amount of remodeling of the heart anatomy or change in 
physiological conditions because there were several weeks 
between the CTA scan and the intervention. In addition, 
the temporal sampling of the TEE volumes was quite low 
and may have resulted in mismatches between ASM and 
CTA segmentations. Furthermore, the starting point of 
the manual outlines and the initialization of the automatic 
segmentation was the same. This may have led to a bias 
during the outlining process. The Dice coefficients and 
P2Smean reveal that the initial model is very different from 
the manual contours and from the final segmentations (see 
Figs. 6 and 7). Therefore, we feel confident that the bias 
is minimal. Another limitation is the limited TEE FoV. 
Even though the segmentation scheme seems to extrapo-
late the cavities outside the FoV relatively well, we would 

like to investigate if image fusion of different TEE views 
will improve the segmentation results.

Several extensions of the current approach are fore-
seen. Further improvement may be reached by optimiz-
ing algorithmic parameters per cavity or adding a final 
contour refinement stage. An iterated local estimation of 
blood/tissue probability based on prior local knowledge of 
blood and tissue from the previous model estimate could 
be a promising approach. The integration of an automat-
ic landmark detection scheme is a promising extension, 
which will render our approach into a fully automatic seg-
mentation scheme. Application in EP patients, including 
models generated from such patients, is a following step.

VI. Conclusion

In this work we successfully showed on 20 patient data 
sets that our segmentation approach is robust and accu-
rate. This whole-heart model segmentation method will 
provide excellent opportunities for multi-view fusion and 
instrument tracking in procedure guidance.
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