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Abstract— Recent studies show that pulmonary vascular
diseases may specifically affect arteries or veins through
different physiologic mechanisms. To detect changes in
the two vascular trees, physicians manually analyze the
chest computed tomography (CT) image of the patients in
search of abnormalities. This process is time consuming,
difficult to standardize, and thus not feasible for large clini-
cal studies or useful in real-world clinical decision making.
Therefore, automatic separation of arteries and veins in
CT images is becoming of great interest, as it may help
physicians to accurately diagnose pathological conditions.
In this paper, we present a novel, fully automatic approach
to classify vessels from chest CT images into arteries and
veins. The algorithm follows three main steps: first, a scale-
space particles segmentation to isolate vessels; then a
3-D convolutional neural network (CNN) to obtain a first
classification of vessels; finally, graph-cuts’ optimization
to refine the results. To justify the usage of the proposed
CNN architecture, we compared different 2-D and 3-D CNNs
that may use local information from bronchus- and vessel-
enhanced images provided to the network with different
strategies. We also compared the proposed CNN approach
with arandom forests (RFs) classifier. The methodology was
trained and evaluated on the superior and inferior lobes of
the right lung of 18 clinical cases with noncontrast chest
CT scans, in comparison with manual classification. The
proposed algorithm achieves an overall accuracy of 94%,
which is higher than the accuracy obtained using other CNN
architectures and RF. Our method was also validated with
contrast-enhanced CT scans of patients with chronic throm-
boembolic pulmonary hypertension to demonstrate that our
model generalizes well to contrast-enhanced modalities.
The proposed method outperforms state-of-the-art meth-
ods, paving the way for future use of 3-D CNN for artery/vein
classification in CT images.

Index Terms— Artery-vein separation, pulmonar vascu-
lar disease, automatic classification, pulmonary vessels,
machine learning, lung.
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|. INTRODUCTION

N THE last decades, computed tomography (CT) has

become the most common imaging modality for diagnosis
and assessment of lung disease [1], [2]. Modern CT scanners
combined with modern imaging techniques allow for the use
of low radiation doses to (semi-)automatically identify and
extract pulmonary structures, such as vessels and bronchi with
relatively high accuracy. However, despite the recent progress
in segmentation techniques for CT images, many tasks remain
unresolved. Among them, recognition and discrimination of
pulmonary arteries and veins represent one of the most
challenging problems.

Classification of lung vessels into artery/vein (A/V) may
be of great help for physicians to accurately diagnose pul-
monary diseases that may affect either the arterial or the
venous trees in specific ways. As an example, recent studies
show that A/V classification allows for better assessment
of pulmonary emboli [3], whereas changes in the arterial
tree have been associated with the development of chronic
thromboembolic pulmonary hypertension (CTEPH) [4].
Also, changes in intra-parenchymal pulmonary arteries
have been associated with evidence of right ventricular
dysfunction [5], [6].

A basic approach to separate the two vascular trees consists
in the manual inspection of individual CT slices to trace
the vessels back to their origin in search of features that
specifically characterize arteries and veins. However, intrinsic
issues of CT images, like a large number of slices, scan
resolution, and partial volume effect, along with the extreme
complexity and density of the vessel tree, make this manual
separation a long and tedious job, which may be prone to mis-
takes. For this reason, having a method to (semi-)automatically
segment vascular structures on CT images may be crucial
to improve the physician’s ability to assess pathological
conditions.

Throughout the years, several methods have been proposed
to either enhance or segment vessels from lung CT images [7].
Although these methods are not able to separate arteries and
veins, they are often used as a starting point for most of the
A/V segmentation algorithms available in [8]-[12]. Moreover,
most methods try to utilize A/V local information, like seed
points automatically defined in the lung region [13], [14] or the
proximity of arteries to bronchi [12], to separate the two
vascular trees.

The idea of exploiting the proximity of airways to arteries
to classify vessels was used in several other methods available
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in the literature. In [8] a method which searched for airways
in the neighborhood of vessel segments (defined as the portion
of a vessel between two branching points) to define an
arterialness measure was proposed. The arterialness is assigned
a higher value when the vessel segment and the near bronchus
run parallel to each other. However, the risk of mislabeling
vessels using this method increases with decreasing vessel
radius, as on CT images small vessels are better visible than
bronchi of similar size. In [9], A/V separation is performed
integrating the assumption of proximity of arteries and bronchi
with the idea that veins run close to the inter-lobar fissures
(estimated by a Voronoi diagram). However, this work lacks
a method for accurate extraction of vessel regions and a
proper comparison set, as it has been tested only on 3 CT
images. Saha er al. [10] and Gao er al. [11] designed an
algorithm that utilizes a morphological multiscale opening
operator with differently sized kernels to separate attached
arteries and veins at various scales and locations, starting from
two sets of manually picked seed points. Although a specific
GUI was introduced in [11] to pick the points, this manual
operation requires high expertise and may be tedious. The
method in [14] consists in the construction of a minimum-
spanning-tree and an edge cutting step to separate vessel
branches. The main drawback of this method is represented
by the final crucial step that involves manual interaction to
refine the A/V separation. In [15], a novel fully-automatic
algorithm is proposed. This method exploits the energy min-
imization of higher-order potentials, where the higher-order
cliques are chosen according to the data and on the prior
knowledge about the desired shape, to encourage sets of
voxels to belong to arteries or veins entirely. The method was
evaluated on ten chest CT Angiography images, considering
only vessels with CT values more than 200 HU in the
lungs.

Recently, two works have been published with the aim of
improving available A/V segmentation approaches [12], [16].
In [16], the vessel tree is represented as a graph and local
information is used to extract a set of small sub-trees. The
sub-trees are linked to each other by analyzing the peripheral
vessels under the assumption that since arteries and veins
only meet at alveolar sacks, which are far below the CT
resolution, they merely approach each other in the vessel
segmentation. Classification is then done by simply consid-
ering the difference in the vessel sub-tree volumes. Although
this method does not need information about airways, dis-
crimination based only on the volume of the trees may not
be ideal, especially in patients with specific diseases that
may differentially affect arterial and venous volumes, or that
may have different effects on different regions of the lung.
In [12], a fully automatic A/V separation algorithm based
on [8] is proposed. Vessels are classified by combining both
local and global properties using two integer programs. First,
vessel sub-trees are extracted based on vessel geometry. Then,
a second integer program is performed to use two anatomical
properties of the vessels: the uniform distribution of arteries
and veins, computed using a Voronoi diagram, and the close
proximity of arteries and bronchi, measured by means of
a specific arterialness measure. The method was tested on

25 non-contrast CT images and is reported to outperform [14].
However, the method is highly sensitive to parameters, with
those used for calculation of arterialness being the most
effective.

In this work, we present a fully automatic algo-
rithm that combines a convolutional neural network (CNN)
approach [17] with a graph-cuts (GC) strategy [18], [19] to
classify vessels into arteries and veins on chest CT images.
Small 3D patches are extracted from the CT image around
the vessel candidates, defined using the scale-space particles
approach described in [20] and [21], and used to train the
neural network.

A preliminary version of this paper was proposed in [22].
In the present paper, a new CNN architecture that uses 3D
convolutions is proposed and compared to five alternative
architectures that are provided different patches as input. The
goal is to demonstrate that 3D convolutions are more effec-
tive in separating arteries from veins than 2D convolutions,
where only workarounds can be used to provide connectivity
information to the network. To prove this hypothesis, a full
evaluation and analysis of results are performed. Moreover,
the proposed method is compared to the method in [16], and
the ability of the algorithm to perform AV segmentation both
on non-contrast and contrast CT images and to generalize
results to whole lungs, despite being trained on only two lobes,
is demonstrated.

To justify the use of the proposed CNN architecture,
we compared different CNN strategies for both 2.5D and 3D
patches. First, we followed the idea proposed in [12] to exploit
the proximity of bronchi to arteries and combined the origi-
nal CT patches with bronchus-enhanced patches and vessel-
enhanced images. Then, for a better comparison between 2D
and 3D approaches, 2.5D patches were constructed taking into
account connectivity information of the single particles, based
on their location and strength.

Eighteen non-contrast thoracic CT scans from the
COPDGene study [23] were used to perform a quantitative
evaluation by assessing agreement between human observers
and the proposed method. Comparison between CNN and
Random Forests (RF) [24], a different machine learning
approach, was also performed. To get a proper compari-
son with competing methods, we also evaluated the pro-
posed method on the annotated CT images provided by
Charbonnier et al. [16].

We then set up two tests in an attempt to explain the
obtained results. First, an analysis of the results sub-divided
into three groups based on vessel size (defined by the
particles scale) was performed to assess the sensitivity of
A/V classification to vessel size. Then, we computed the
receiver operating characteristic (ROC) curve to evaluate
sensitivity and specificity of the different machine learning
classifications.

Finally, to further validate the algorithm and demonstrate its
reliability across different cohorts and modalities, we tested the
proposed method on a group of 33 contrast CT images from
patients with and without chronic thromboembolic pulmonary
hypertension (CTEPH) using the model trained with non-
contrast CT cases.
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Fig. 1. Overview of the proposed method for A/V classification. After

lung and vessel segmentation, a 3D CNN algorithm is implemented
in combination with GC optimization to classify vessel candidates into
arteries and veins.

Il. METHODS

The outline of the proposed method is shown in Fig. 1. Our
A/V classification follows three main steps. First, we extract
the lung region from the chest CT image and segment ves-
sels using a scale-space particles algorithm to define vessel
candidates (Section II-A). Then, we train a CNN architecture
using 3D patches extracted from the CT image around the
computed particles. To justify the use of this architecture,
we compared it to five different CNNs that use 2D and
3D patches extracted around the CT image with or without
additional local information (Sections II-B and II-C).

Since each patch is extracted around a single particle, A/V
classification with CNN is carried out independently on each
point. This may cause spatial inconsistency in the vessel
segments. Therefore, the last step consists in a classification
refinement achieved using a graph-cuts optimization [18], [19]
that combines both connectivity and pre-classification knowl-
edge to obtain the final A/V segmentation (Section II-D).

A. Pre-Processing Operations

The first step of the proposed method consists in extracting
the vascular tree from the CT image to define the vessel
candidates for A/V classification. To this end, we first segment
the lung region using the method described in [25]. Then,
a vessel enhancement is applied in the lung area using a Frangi
filter [26] with parameters a = 0.53 and f = 0.61 (obtained
by implementing a grid search that used a Dice coefficient
score to compare the output of the particles algorithm to
manual segmentation) followed by a thresholding and a binary
skeletonization to define initial candidate locations.

In addition to location, the patch extraction method here
implemented also requires vessel orientation. For this reason,
the skeletonized vessel mask is used as input to the scale-
space particles sampling method described in [20] and [21].
This approach starts from a vessel mask and exploits the
second-order local information of the image (Hessian matrix)
to identify and represent the vascular tree as a collection of
particles, a set of points containing information about vessel
scale, orientation (through Hessian eigenvectors and eigenval-
ues), and intensity of the considered vessel. This approach
capitalizes on the multi-scale self-similarity of the vasculature,
making it more robust to noise in the smaller vessels than
typical approaches. An example of lung vessel extraction
through scale-space particles is given in Fig. 2. Particles

Fig. 2. Example of vessel segmentation from a clinical chest CT image
through the scale-space particles method.

provide a convenient representation of a tree geometry as the
particles know the local orientation of the vessel axis based
on the corresponding Hessian eigenvector as a by-product of
the optimization. Nevertheless, our method is general to other
vascular segmentation approaches for which a skeleton can be
easily extracted, and the vessel orientation can be resolved by
standard scale-space analysis or by means of local connectivity
of skeleton points.

B. Proposed Method

Once the vessel candidates are extracted, an initial A/V clas-
sification is performed for each particle using CNN. We com-
pared the proposed CNN with five different architectures,
based on the patch dimensionality (2- or 3-D) and whether
vessel strength and arterialness are considered.

In the following sections, we first describe the proposed
approach, both regarding patch extraction and CNN architec-
ture, and then we detail the alternative architectures used for
comparison.

1) Patch Extraction: The proposed CNN utilizes only 3D
patches extracted from the CT image around the vessel of
interest. A central patch covering a neighborhood of 32 x 32
pixels is extracted on the reformatted plane along the particle’s
main axis, given by the first eigenvector of the Hessian
matrix and obtained using an isotropic spacing of 0.625 mm,
achieved by resampling the original image by means of cubic
interpolation. The 3D patch is then obtained considering the
patch of the given central particle and the patches around
4 particles (two above and two below) belonging to the same
vessel along its reformatted direction. Therefore, every patch
represents a small vessel segment of 32 x 32 x 5 voxels on the
reformatted plane along the vessel of the considered point.

2) CNN Architecture: Fig. 3 shows the architecture of the
proposed CNN. The network consists of three convolutional
layers separated by a single max pooling and two dropout
layers and followed by three fully-connected layers.

C. Alternative CNNs

We hypothesize that a 3D approach performs better than
2D CNNs for AV segmentation, as connectivity information
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Fig. 3. The proposed 3D CNN classifier for A/V segmentation. 3D

patches are extracted from the CT image around vessel candidates
defined by a scale-space particle algorithm. The CNN learns A/V char-
acteristics on these patches through three 3D convolutional layers, one
max pooling and three fully connected layers.

TABLE |
SUMMARY OF THE PATCH SIZES FOR ALL THE DIFFERENT CNNs
UTILIZED IN THIS WORK. CH. STANDS FOR CHANNELS,
MI FOR MULTI-INPUTS (INDICATING THAT CT AND
ENHANCED IMAGES ARE USED AS SEPARATE
INPUTS TO THE NETWORK), AND # IS
USED FOR NUMBER

Enhanced # of # patches x
# Ch. images (Y/N) patches (x,y, depth, ch.)

Proposed
3D CT only 1 N 1 1%(32,32,5,1)
Alternatives
1. 2.5D CT only 1 N 1 1x(32,32,1,3)
2.2.5D 3 Ch. 9 Y 1 1x(32,32,1,9)
3.2.5D MI 3 Y 3 3x(32,32,1,3)
4. 3D 3 Ch. 3 Y 1 1x(32,32,5,3)
5. 3D MI 1 Y 3 3%(32,32,5,1)

plays a very important role in the distinction of the two
trees, which using 2D CNNs can be simulated only by means
of specific workarounds. Moreover, we considered that the
inclusion of more information, such as the one provided by
bronchus- and vessel-enhanced images do not particularly help
the network to better learn characteristics of arteries and veins.
To demonstrate this hypothesis, we defined five alternative
CNN architectures to be compared with the proposed one.
To this end, we extracted 2D and 3D patches around each
particle point with different strategies. A summary of the
data patches provided to the different CNN architectures is
described in Table I.

1) Alternative Patch Extraction: For the extraction of 3D
patches, we used the same approach used for the proposed
method, while for 2D patches we considered only the neigh-
borhood region of 32 x 32 pixels on the reformatted plane
of the particles. However, since connectivity between vessel
points may provide crucial information for A/V classification,
we also combined the 2D patch of the sample of interest with
those of the two closest particles that have the most similar
orientation. The difference with a 3D patch is given by the fact
that the extracted patches are merged to the original patch as
additional channels, in an attempt to simulate a 3D representa-
tion and obtain a better comparison. We define these patches

CT + Enh. Images

Patch Extraction

CT only
1x(32,32,3)

C:7x7@112

C: Convolutional Layer

Combined

1x(32,32,9) DO: Drop Out
or FC: Fully Connected
3x(32,32,3)

Vessel Seg.

Fig. 4. Scheme of the CNN architectures using 2.5D patches around
the vessel particles. The CNN takes as input either patches from only the
CT image (blue) or from the CT combined with the enhanced images,
integrated either as additional channels or as separate inputs. Patch size
is reported as: number of patches x (x, y, channels).

as 2.5D. Therefore, a 2.5D patch extracted around a vessel
candidate consists of 32 x 32 pixels and three channels, defined
by the CT images of the central point and the two points most
proximal to it (2.5D CT only, alternative 1 in Tab. I).

To determine whether CNN may benefit from the inclusion
of structural information (such as bronchi-arteries proximity)
to separate arteries from veins, in four of the five alternative
architectures we included the bronchus- and vessel-enhanced
images. While the inclusion of the vessel-enhanced image
might be redundant, as the whole analysis is based on particles
that come from the vascular structure, we considered that some
additional local information of the vessel might be identified
and analyzed by the CNN on this image. For the enhancement,
we used a Frangi filter [26], with optimal parameters defined
by means of grid search (that compared the result of the
particles algorithm to manual segmentation using a Dice
coefficient score as metric), to enhance vessels and bronchi
from CT images (a« = 0.53, f = 0.61, and C = 245 for
vessel enhancement, o = 0.29, p = 0.77, and C = 105
for enhancement of airways). From these enhanced images,
we then extracted 2D and 3D patches around the candidate
points, and we integrated these patches to those of the CT
using two different strategies. In the first case, we integrated
them as new channels of the patch (2.5D 3 Ch. or 3D 3 Ch,,
alternatives 2 and 4 in Tab. I). In a second approach, we let the
network learn from the three patches independently, and we
concatenate them at the fully connected level (2.5D 3 MI or 3D
3 MI, alternatives 3 and 5 in Tab I). As an example, a 2.5D
patch with enhanced images integrated as additional channels
consists of 32 x 32 pixels around the particle point and
9 channels, given by the CT, the bronchus-enhanced, and the
vessel-enhanced images of the central point and the two most
proximal ones. On the other hand, if the enhanced images are
used as independent inputs of the 2D network, three patches
of 32 x 32 pixels and three channels (central point and two
closest ones) are used.

2) 2D Architecture (Alternative Networks 1 to 3): Fig. 4 shows
the architecture of the CNN when using 2.5D patches with
either the only CT image or with the inclusion of enhanced
images as additional channels or as separate inputs. As shown,
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images, integrated either as additional channels (blue) or as separate
inputs (red). Patch size is reported as: number of patches x (x, y, depth,
channels).
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Fig. 6. An example of spatial inconsistency obtained after CNN
classification.

the basic CNN architecture is the same in all three cases. Five
2D convolutional layers separated and followed by two max
pooling and two dropout layers, respectively, and three fully-
connected layers define the network structure.

Although the architecture remains the same, when providing
arterialness and vessel strength as separate inputs on top of the
local information provided by the CT, the convolutions and
max-pooling operations are executed in parallel on the three
inputs to let the network learn new features from each patch
independently. Therefore, the obtained weights and biases are
concatenated just before the fully connected operations begin.
The hyper parameters of each network have been empirically
chosen to optimize results for the specific problem at hand.

3) 3D Architecture (Alternative Networks 4 and 5): The CNN
architectures for the 3D patches when using the enhanced
images either as additional channels or as external inputs are
presented in Fig. 5. For both cases, the structure is the same as
the one used for the proposed CNN, with the only difference
that the same operations are run in parallel in case arterialness
and vesselness are provided as external patches, and, as for
the 2D CNNs, with the hyper parameters empirically chosen
to optimize results for each network.

D. Final Graph-Cuts Refinement

Despite efforts to provide enough spatial information to
the network to ensure spatial consistency, inconsistencies may
still occur during A/V classification (see Fig. 6), mainly
due to the presence of touching and intertwined areas in
the two vascular trees and because classification is done
on each particle independently without explicitly modeling
the smoothness at the tree level. For this reason, once the

initial classification with CNN is concluded, we employ an
automatic graph-cuts (GC) strategy to refine the classification.
To this end, we use the approach described in [27], which
combines graph theory [28], that aggregates a set of sub-
trees into a graph, with methods for energy minimization to
find the minimum-cuts in the graph that defines the optimal
solution. In particular, a graph consists of a set of vertexes
YV ={v; | i = 1...Npodes} and a set of edges connecting
different nodes € = {(vi,v;) | i,j = 1...Nnodes}. The set
of vertexes include two terminal (or virtual) nodes, source,
s and sink, 7, s. t. V; = {s} U {¢t}, and a group of real
non-terminal nodes, V,;. Similarly, ¢ contains two types of
edges; edges connecting pairs of non-terminal nodes (known
as Myinks), €n-t = {(0i,0j) | vi,0; € Vuy}, and edges that
connect one terminal node with a non-terminal node (#;;,s),
e = {(s,0;)U (i, t) | v; € Vs and s, t € V;}. The search for
the minimum cut is an energy minimization problem, where
the energy is defined as:

&= @(‘abound + greg (1)

where &poung is the boundary term that designate the coher-
ence between neighborhood nodes (connectivity information)
and it is given by the weights of the njuis, while &,
represents the regional term that describes the likelihood of
each class (artery-vein similarity score), given by the weights
of the #inxs. Therefore, the minimal cut gives the classification
that globally minimizes the combination of both energies.

In the problem proposed here, the artery-vein similarity
score of the regional term, represented by the edges &,
is provided by the probability obtained in the pre-classification
step using CNN. Therefore, the weights of the edges #i,xs are
directly fixed to the probabilistic estimations:

w(s, p;) = Partery(Pi) (2)
w(p,', t) = Pyein (Pi) = l_Partery (pi) (3)

with p; being the i-th particle and P(p;) indicating the
computed probability.

On the other hand, the boundary term, represented by &,
should include information about the connectivity of particles.
Since particles do not provide this information, and due to the
complex topology of arterial and venous trees, a conservative
structural connectivity strategy is used, which initially allows
the creation of links between each particle and all the particles
within a cylinder created along the main direction of the vessel
with radius rpejgp = 3mm (empirically tweaked after several
tests). To avoid issues in areas with high density of edges,
we also empirically fixed the number of possible connections
that a node is allowed to have (N;o;, = 5). In order to define the
weight of the nji,ks, which represents the strength of the con-
nections between particles, three main characteristics are con-
sidered. First, scale consistency, (ws(pl, p2)): two particles
with similar scale have a higher probability of being neigh-
bors. Second, particle proximity wg;s;(p1, p2): the closer the
particles are in terms of Euclidean distance, the higher the
probability of belonging to the same tree. Finally, direction
consistency (w|(p1l, p2)): defined by the parallelism between
the connectivity vector between two particles and the local
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direction of the considered particles. Therefore, based on these
three characteristics, we can construct different weighting
functions to define the strength of the njjis:

w(p1, p2) = f(wes (pl, p2), wais:(p1, p2), wy(pl, p2)) (4)

In some cases, the restriction introduced to construct the
njinks may create a few isolated sub-trees that may complicate
the classification. For this reason, after a first GC classification,
a final step is executed to connect all edges of the sub-trees
iteratively. In particular, the following steps are repeated until
the whole graph consists of a single connected component:
a) the biggest connected component is selected as principal
one; b) the Euclidean distance between the points belong-
ing to the isolated sub-trees and the principal component is
computed; c) the particles belonging to the isolated sub-trees
with minimum distance are connected by an edge with weight
defined by Eq. (4).

Once the final graph is obtained, the minimum cut, Cp;p
is computed using the min-cut/max-flow conversion proposed
in [18], providing a partition of the graph G into two connected
components G| and G»:

Cmin = argmin(&(G1, G2))

G1,G2

argmin(gbound(Gl, G2) +oa- greg (Gl, G2)) (5)
G1,G2

where a = 8 was found as optimal by means of grid search
to balance the regional and boundary terms:

SEbound (Sa T) = Z
P1 esmvn-t
pZETmVn-t
(p1.p2)€ens

Ereg(S, T =( D wip,)+
P1 esmvn-t
(p1.1)€e;

w(p1, p2) (6)

> wls,p2) (D

pZETmVn-t
(s,p2)€er

[1l. EXPERIMENTAL SETUP
A. Data Description

We trained and evaluated the proposed method on twenty-
one non-contrast CT scans from patients with COPD ran-
domly extracted from the COPDGene study [23]. The scans
were acquired using multi-detector CT scanners with at least
16 detector channels. COPDGene centers were approved
by their Institutional Review Boards and all subjects pro-
vided written informed consent. For the COPDGene study,
CT scans are acquired using multi-detector CT scanners
(at least 16 detector channels).

For this study, we used only CT images acquired on full
inspiration (200 mAs) that have been reconstructed with sub-
millimeter slice thickness and a smooth reconstruction kernel,
and with voxel size varying from 0.6 to 0.75 mm. More infor-
mation on the acquisition protocols used for the COPDGene
study can be found in [23]. For each subject, only the right
lung, which was segmented and separated into its three lobes
using the method described in [25], was considered. In this
study, only upper and lower lobes were utilized. This gives us

a total of 42 independent lobes for AV classification, as the
two lobes present specific and unique characteristics.

To create a reference standard for evaluation, manual label-
ing of arteries and veins was performed by a pulmonary
expert for each of the two lobes. To this end, the Kruskal’s
minimum spanning tree algorithm [29] was used to connect
vessel particles. A relative angle of greater than 20 degrees or a
gap of greater than Smm between adjacent particles served as
break points in the tree, creating a set of vessel segments.
Segments with 4 or fewer particles were discarded. A 3D
rendering of the vasculature superimposed on the initial CT
scan allowing for scrolling in all three planes was used to
trace the origins of the proximal vessels to the main pulmonary
artery and the pulmonary veins. Once proximal segments were
labeled, distal segments were then similarly traced back to
the proximal segments that were already marked by tracing
the vasculature to make sure that the segments were indeed
connected. This was repeated until all distal segments were
marked [30]. As a final result, a total of 693,287 particles
(384,710 arteries, 308,577 veins) have been labeled.

For the training of the convolutional neural networks, we use
both lobes of three subjects, corresponding to a total of six
lobes that include 56,667 particles for arteries, and 39,914 par-
ticles for veins. The remaining 36 lobes from eighteen subjects
(596,706 particles with 328,043 arteries and 268,663 veins
points) were used for evaluation. Both lobes of two subjects
(69,895 particles) were used for validation during training.

We also validated the proposed network trained on non-
contrast CT scans on the full lung (considering all lobes)
of thirty-three patients with computed tomography pulmonary
angiograms (CTPA) retrospectively acquired for present-
ing potential clinical evidence of CTEPH [6]. 18 subjects
were diagnosed with CTEPH by a panel of experts based
on their hemodynamics and imaging characteristics, while
15 were assigned to a control group as no evidence of
pulmonary or heart disease was found. These subjects all had
CT angiograms of the lungs within one year of invasive testing.
The reference standard of arteries and veins was created
by a pulmonary expert that manually labeled each particle
following the same approach used for the COPDGene cohort.
A total of 976,417 arteries and 786,674 veins were labeled
corresponding to the 33 subjects.

B. Training Details

Before starting the network training, the intensity values of
the single patches were standardized by subtracting the patch
mean and dividing by the patch’s standard deviation, in an
attempt to make A/V classification independent from image
characteristics and contrast.

All CNN architectures were trained for a total of 200 epochs
using a Nesterov-momentum update using a cross-entropy loss
function and with a softmax function as output nonlinearity,
which is a typical choice in classification tasks, with a learn-
ing rate of 0.01, and batch size of 128. A rectified linear
unit (ReLU) was used as activation for both convolutional
and fully connected layers, while a Glorot uniform was
selected to initialize the weights of the convolutional kernels.
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Zero-padding was used for the convolutional inputs so that
the output has the same length as the original input. Finally,
early stopping (with a latency of 30 epochs, monitoring the
validation loss with a delta of 0.1) was implemented and data
was augmented during training by generating random rotation
of the patches to avoid overfitting.

All CNN operations were computed on an NVIDIA Titan X
GPU machine, using the deep learning framework Keras [31]
on top of TensorFlow [32], [33].

C. Evaluation Experiments

To evaluate the performance of the proposed algorithm,
we carried out two main experiments on all cases not used
during the training phase. First, we compared the classification
obtained using the proposed approach to the reference standard
manually created as described in Section III-A. To this end,
we computed a per-particle accuracy measure. The accuracy
is computed for all CNN architectures for both steps of
the algorithm: after CNN, classifying all particles with a
probability higher than a 0.5 threshold as arteries and all
other points as veins, and after applying GC with the refined
graph. Sensitivity and specificity (considering arteries as the
positives) of each method were also computed.

As a second experiment, we compared the accuracy
obtained with the proposed method and the other CNNs
to those obtained using an RF approach [24] as the initial
classifier for GC. The RF implementation is described in
Section III-D. As for the first experiment, we used accuracy
as the main testing measure, and we completed the evaluation
with the analysis of sensitivity and specificity of the different
methods.

As an additional test, we compared the proposed method to
the one proposed in [16], where a dataset of 55 CT scans has
been made publicly available. For these datasets, annotations
were divided into two separate sets. The first set consists
of full annotation of all vessel in a subset of ten randomly
selected scans. The second set consisted of 50 randomly
selected vessels that were annotated for all 55 scans, for a total
of 2,750 vessel segments. These segments were independently
annotated by two observers. The set of observer one was
considered to be the reference standard, while a consensus
set was constructed from annotation for which both observer
1 and 2 agreed. Despite training the network on only the
right upper and lower lobes, we considered all annotations
belonging to the whole lung for this test, to demonstrate the
ability of the algorithm to generalize results on full lungs.
As in [16] the mean and median accuracy is used to compute
results.

In an attempt to analyze the obtained results, we performed
two final tests. First, we evaluated whether the algorithm
classification may be affected by vessel size by sub-dividing
the particle points into three size groups based on their scale
(0.1 to 2.29 mm, 2.30 to 4.14 mm, and 4.15 to 6.0 mm)
and analyzing results for each group both with and with-
out GC. Then, we computed a ROC curve analysis by varying
the threshold on the probabilities provided by the different
machine learning approaches (CNN and RF). For this analysis

TABLE Il
SUMMARY OF THE DIFFERENT EXPERIMENTS COMPUTED AND
NUMBER OF THE TABLE (IF AVAILABLE) CONTAINING
THE CORRESPONDING RESULTS

Experiment | Summary | Corresponding Table
1 Comparison to manual classification Table III
2 Comparison to manual Random Forests Table III
3 Comparison to [16] /
4 Results by vessel scale Tab. IV
5 ROC analysis of results /
6 Validation of results on contrast-CT images Table V

GC was not applied as the goal of the test was to evaluate how
the classification approaches compare to each other.

Lastly, in order to demonstrate the reliability of the proposed
method on a different cohort and CT modality, we evaluated
the performance of the proposed method on the full lung
of 33 contrast CT images from the CTEPH cohort in compari-
son to manual labeling. We considered classification accuracy
results both on the whole cohort and stratified by CTEPH
diagnosis.

D. Random Forest Implementation

To justify the choice of using CNN as the initial classi-
fier, we re-implemented the RF machine learning algorithm
described in [27]. This method defines an arterialness measure
depending on the distance of vessels to bronchi, segmented
using a scale-space particle approach similar to the one we
used for vessel segmentation. This approach gives us the
opportunity to compare our method to one that is based
on the common assumption of arteries-bronchi proximity.
In particular, for each vessel candidate the distance to the
closest airway points, the distance between the closest airway
points, and the similarity in the orientation of vessel and
the closest airway points are computed together with scale,
local intensity histogram, and Hessian eigenvalues to define
the feature space used for training RF. To initialize airway
particles, we used a mask created from the same bronchus-
enhanced image (created with a Frangi filter) used in this work
to provide CNN with additional local information.

IV. RESULTS

The automatic algorithm we propose was able to generate
A/V classification for all considered cases in an average time
of approximately 89 seconds per lobe (around 62 seconds for
CNN classification, around 27 seconds for GC, with an average
time of approximately 3 ms to classify a single 3D patch). The
most complex CNN method (3D patches with 3 independent
inputs) took an average time of approximately 12 minutes
(around 693 seconds for CNN classification), while the
re-implementation of RF took an average time of approx-
imately 42 seconds per lobe, running on the CPU of an
AMD Athlon II X4 630 @ 2.8Ghz with 12GB of RAM. The
computation time for generating the scale-space particles is
around 30 minutes per case, running on the CPU of an Intel
Core 17-6850K @ 3.60GHz with 12GB of RAM.

The different experiments and the corresponding tables
containing the results are summarized in Tab. II.
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TABLE IlI
OVERVIEW OF RESULTS (REPORTED AS THE MEAN ACCURACY (IN %) + STANDARD DEVIATION) OBTAINED IN COMPARISON TO MANUAL
REFERENCE WITH THE PROPOSED METHOD, THE OTHER CNN ARCHITECTURES, AND RF. BOTH INDICATE THAT THE ANALYSIS
INCLUDED BOTH LOBES. CT ONLY MEANS PATCHES FROM THE CT IMAGE ONLY, 3 CHAN. INDICATES ENHANCED IMAGES
AS ADDITIONAL CHANNELS, AND 3 MI STANDS FOR CT AND ENHANCED IMAGES USED AS MULTIPLE INPUTS. THE
ACCURACY HAS BEEN COMPUTED SEPARATELY FOR EACH CASE, AND THE MEAN OF ALL OBTAINED SCORES
IS REPORTED. FOR EACH METRIC, THE TOP-PERFORMING METHOD IS REPORTED IN BOLD

\ CNN | RF

\ 3D | 2.5D | /

| CT Only 3 Chan. 3MI | CT Only 3 Chan. IMI | /
Both Acc. (GC) | 93.6 £49  89.1 £85 914+67 | 816+ 124 875+79 87.4+86 | 732 + 10.1
Both Sens. (GC) | 973 £25 964 +£29 9814+21 | 989 £ 08 918 £89  980+22 | 928 + 2.1
Both Spec. (GC) | 89.5+9.2 820 + 184 840+ 141 | 62.1 £27.8 821+ 149 756 + 194 | 534 + 12,6
Both Acc. No GC) | 798 £ 60 772+68 774 +£58 | 725459 721+64 753+59 | 624+ 8.1
Both Sens. (No GC) | 84.1 £54  83.1+£62 850+52 | 87.5+37 744+£78 842 +40 | 69.5+ 32
Both Spec. (No GC) | 742 £92 702+ 112 685+ 10.1 | 544 + 105 694 +£94 647 + 98 | 522 + 158
RSL Acc. 943 + 41 897 +73 931447 | 847 £108 879+ 7.1 890+ 67 | 743 + 103
RSL Sens. 974 £28 964+33 978+29 | 988+08 925+61 98.1+28 | 931+76
RSL Spec. 90.6 + 65 815+ 157 872+09.1 | 668 +£239 821+ 144 77.6 + 157 | 503 £ 26.8
RIL Acc. 928 + 56 887+£94 89880 | 789+ 138 87.1+£92 858+ 100 | 69.2 + 11.9
RIL Sens. 972+£23 965+26 983 +10 | 989+07 912+ 116 980+ 15 | 946+ 86
RIL Spec. 875 + 113 792 +£205 799 + 17.2 | 554 + 308 822+ 17.1 719 + 221 | 40.0 £ 28.9

A. Comparison to Manual Classification

An overview of the accuracy obtained for all clinical cases
with the different CNN strategies is shown in Table III. The
accuracy has been computed individually for each case, and
the mean (in %) of all score values obtained is reported as
summary statistics. Results from the best scoring method are
presented in bold. Sensitivity (true positive rate, TPR) and
specificity (true negative rate, TNR) are also reported.

As shown, the proposed method yields to an overall mean
accuracy of 93.6% (median: 95.1%, range: 77.2% to 98.3%).
When the patches of bronchus- and vessel-enhanced images
are included in the 3D patches as additional channels, an accu-
racy of 89.1% is obtained (median: 92.2%, range: 64.1% to
98.3%), whereas when the CT and the two enhanced images
are analyzed as independent inputs by the network an overall
mean accuracy of 91.4% (median: 94.3%, range: 70.4% to
98.1%) is achieved.

On the other hand, 2D approaches yield lower accuracy
results. Training the 2D CNN with the CT only, an overall
mean accuracy of 81.6% is obtained (median: 84.3%, range:
53.2% to 98.4%). Mean accuracies of 87.5% and 87.4% are
obtained when using a 2D strategy with bronchus- and vessel-
enhanced images integrated either as additional channels
(median: 88.3%, range: 66.1% to 97.2%) or as independent
inputs (median: 90.2%, range: 59.3% to 98.0%), respectively.

For this study, we have also performed a separate evaluation
of the two lobes (right superior lobe, RSL, and right inferior
lobe, RIL) comparing results with the manual reference.
Results are reported in Table III. In case 3D patches are
used, an accuracy of 94.3% (median: 96.2%, range: 81.4%
to 98.1%) for RSL and 92.8% (median: 95.9%, range: 76.1%
to 98.3%) for RIL were obtained when only the CT image
is considered, whereas the inclusion of the enhanced images
as additional channels gives accuracies of 89.7% (median:
93.3%, range: 73.4% to 97.8%) and 88.7% (median: 92.2%,

range: 64.5% to 97.3%) for RSL and RIL, respectively. Finally,
when the network learns A/V characteristics independently
from the three images, an accuracy of 93.1% (median: 95.3%,
range: 81.4% to 97.9%) is achieved for RSL, and 89.8 %
(median: 94%, range: 70.5% to 97.2%) for RIL.

For the 2D approach with only CT, an accuracy of 84.7%
(median: 87.2%, range: 56.3% to 97.9%) is obtained for RSL
and 78.9% (median: 80.2%, range: 53.3% to 96.1%) for RIL.
When including the enhanced images as additional channels,
an accuracy of 87.9% (median: 88.3%, range: 70.1% to 97.3%)
and 87.1% (median: 90.4%, range: 66.3% to 97.2%) were
obtained for RSL and RIL, respectively, while integrating the
enhanced images as separate inputs yields to an accuracy
of 89.0% (median: 91.2%, range: 75.3% to 98.0%) for RSL
and 85.8% (median: 90.2%, range: 59.4% to 97.1%) for RIL.

B. Comparison to Random Forests

Table III also shows the results obtained with the proposed
approach in comparison with those of the alternative CNNs
and RFE.

As shown in Section IV-A, the proposed algorithm (with
GC) yields to an overall accuracy of 93.6%. On the other
hand, if RF is used as initial classifier combined with GC,
the algorithm achieves an overall accuracy of 73.2% (median:
74.3%, range: 51.5% to 89.2%).

Analyzing the performance of the two machine learning
approaches without applying GC, all CNN methods out-
perform RF, with the proposed architecture yielding to the
best results. In particular, while RF has an overall accuracy
of 62.4% (median: 63.4%, range: 49.1% to 75.2%), the 3D
CNN learning only from the CT gives a mean accuracy
of 79.8% (median: 79.4%, range: 65.6% to 91.2%). An accu-
racy of 77.2% (median: 76.3%, range: 64.4% to 91.3%) is
obtained when the enhanced images are integrated as addi-
tional channels to the 3D patches, while a score of 77.4%
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TABLE IV
RESULTS OBTAINED WITH THE VESSEL PARTICLES SUB-DIVIDED INTO
THREE MAIN GROUPS BASED ON THEIR SCALE. GROUP 1:
SCALE BETWEEN 0.1 AND 2.29 mm; GROUP 2: SCALE
BETWEEN 2.30 AND 4.14 mm; GROUP 3: SCALE
BETWEEN 4.15 AND 6.0 mm. RESULTS ARE
PRESENTED IN MEAN ACCURACY (%) +
STANDARD DEVIATION

Group 1 Group 2 Group 3
(0.1-2.29 mm) (2.3-4.14 mm) (4.15-6.0 mm)
CNN CNN + GC CNN CNN + GC CNN CNN + GC
Mean Accuracy | 75.8 £ 6.1 934 £ 49 83.1 £ 6.1 952 £ 54 73.6 £ 88 885+ 112
Sensitivity 799 +£56 971 £27 | 81.0£109 982 +28 | 846+ 103 975 +£5.1
Specificity 71.0 £ 82 889 £09.1 849 £83 916 £ 105 | 56.8 &20.5 74.0 £ 282

(median: 77.3%, range: 63.3% to 90.2%) is achieved using the
enhanced images as separate inputs. Using 2D CNNs yields
to higher accuracies compared to RF, but for all 2D patches
and 2D architectures the scores are lower than those obtained
using any 3D CNN.

Finally, the proposed method provides the highest
specificity, both with (TNR: 89.5%) and without GC
(TNR: 74.2 %), while the highest sensitivity (even though
differences are small) is obtained using 2D patches extracted
from the CT image only.

C. Comparison to [16]

Considering the 10 fully annotated cases, while in [16] a
mean and median accuracy of 92% (95%-CI [88,95]) and 94%
(95%-CI [84,96]), respectively, are reported, our algorithm
achieved a mean accuracy of 94% (95%-CI [91,96]) and a
median accuracy of 95% (95%-CI [93,97]), which confirms the
results obtained on the COPDGene cases used for evaluation in
this work (see section IV-A). No evaluation of sensitivity and
specificity was performed in [16], while our method achieved
a sensitivity of 97% and a specificity of 89%. The results
were computed for all lobes of both lungs. When evaluating
the algorithm on the reference standard of the 2,750 annotated
segments randomly selected provided in [16], for the reference
set a mean and median accuracy of 90% and 91% (sensitivity:
95%, specificity: 85%), respectively, were obtained, compared
to a mean and median accuracy of 88% and 89%, respectively,
reported in [16]. Finally, the comparison to the consensus set
resulted in a mean accuracy of 91% and a median accuracy
of 93% (sensitivity: 95%, specificity: 86%), compared to the
mean and median accuracy both at 89% of [16].

D. Results by Vessel Scale

Results obtained sub-dividing the vessels into three groups
based on their scale are presented in Tab. IV. As shown, both
before and after applying GC the algorithm worsen results
for group 3, containing large vessels (mean accuracy for
CNN + GC: 88.9%, median: 92.5%, range: 54.2%-99.8%),
while the highest accuracy is obtained for group 2 (mean
accuracy for CNN 4 GC: 95.2%, median: 97.2%, range:
79.3%-99.9%), having medium scales, and it slightly decreases
for the smallest vessels of group 1 (mean accuracy for
CNN + GC: 93.4%, median: 95.1%, range: 75.4%-99.7%).

Proposed CNN (AUC = 0.88]
3D CNN 3MI (AUC = 0.86)

True Positive Rate (Sensitivity)

04 —— 3D CNN 3Ch (AUC = 0.85)
—— 2D CNN 3Ch (AUC = 0.84)
0.2 2D CNN 3MI (AUC = 0.83)
2D CT Only (AUC = 0.81)
—— RF (AUC = 0.65)
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (1-Specificity)

Fig. 7. ROC curve obtained for the different CNN architectures and RF.
AUC stands for area under the curve.

TABLE V
RESULTS (MEAN ACCURACY (IN %) = STANDARD DEVIATION)
OBTAINED ON CONTRAST CT IMAGES FROM 33 PATIENTS
WITH PULMONARY HYPERTENSION

Whole Cohort CTEPH No Disease

Mean Accuracy 89.1 £ 59 869 +£53 91.7+£56
Sensitivity 934 £+ 3.5 924 £32 945 +35
Specificity 83.9 £99 80.2 £92 883497

These results are confirmed by the sensitivity and specificity of
the algorithm for each group. While a similar sensitivity was
obtained for the three groups, the algorithm has the highest
specificity for group 2 and the lowest one for large vessels,
regardless of the use of GC.

E. ROC Analysis of the Classification Step

The ROC curves and the area under the curve (AUC)
obtained for the different CNN architectures and RF are pre-
sented in Fig. 7. All measures were done without applying GC.
As well as being the one that best classifies the positives
as such, the proposed CNN architecture also has the lowest
false positive rate, with an AUC of 0.88. As already shown
in Section III-D, all the CNN architectures outperform RF,
which despite having a high sensitive rate, is highly affected
by a high false positives rate (AUC = 65%).

F. Validation on Contrast-CT Images

Results obtained on the thirty-three contrast CT images from
the CTEPH cohort are presented in Tab. V, both considering
all subjects and separating them into two groups based on the
presence of disease (18 patients with CTEPH, 15 controls).
As shown, on th whole cohort a mean accuracy of 89.1%
(median: 90.2%, range: 75.2% to 97.1%) is obtained. If con-
sidering only CTEPH subjects, the algorithm yields to an
accuracy of 86.9% (median: 88.3%, range: 75.4% to 94.4%),
while for the control group (no disease) an accuracy of 91.7%
(median: 93.2%, range: 78.1% to 97.3%) is obtained.

V. DISCUSSION

The results obtained on the COPDGene cases indicate that
the proposed approach achieves higher mean and median
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Fig. 8. An example of good results obtained from the RSL (a, b) and RIL (c) of three different subjects in comparison to manual segmentation.

Automatic

(b)

Fig. 9. Example of bad AV classification (<80%) obtained from the RIL
of one subject.

overlap with manual reference A/V segmentation than other
2.5D and 3D CNN architectures, and similar results (~94%
against ~93%) are obtained in the mean accuracy achieved
for RSL and RIL. Examples of good results in comparison
to manual segmentation are shown in Fig. 8, where RSL and
RIL from three different subjects are presented in comparison
with the manual reference.

Among the 36 right lung lobes used for evaluation (18 clini-
cal cases), our method provided an accuracy below 80% (accu-
racy = 76.3%) only in the inferior lobe of one subject,
mainly due to a low specificity of the algorithm for this case
(sensitivity = 97.2%, specificity = 58.4%). A/V classification
of the RIL of this subject is presented in Fig. 9. From a
detailed analysis, we noticed that vessels in this lobe have
a larger size and higher density than in the other lobes of the
same lung. This may explain why the network has a higher
classification failure rate. However, since segmentation is done
independently on each particle point, the errors are localized
to this specific lobe, and they do not affect the classification
in the superior lobe of the same subject (accuracy = 91.3%).

From an accurate analysis of the results, we also noticed
that while the algorithm may fail to segment isolated vessel
segments, in some cases, it seems to improve mistakes done
during manual segmentation. An example showing this type
of situations is presented in Fig. 10.

While using 2.5D patches the CNN seems to require
information from both the CT image and the bronchus- and

Manual Automatic

Fig. 10. An example showing of isolated vessels (dotted circle) that are
wrongly segmented by the automatic algorithm (right) in comparison with
manual segmentation (left). The same case presents an example where
the proposed automatic algorithm improves manual segmentation (full
circle).

vessel-enhanced images (accuracy = ~82% when using only
the CT image, accuracy = ~87% when including the enhanced
images), a 3D CNN can learn all the necessary information
from the CT image alone. Although we provided connectivity
information to the 2.5D patches by including the two closest
vessel points, the usage of 3D patches appears to provide the
network with vessel segments that contain more local and
global information for A/V separation. Moreover, the inclu-
sion of images with enhanced vessels and bronchi does not
improve the results for 3D patches. This suggests that the extra
complexity of pre-computing feature enhanced images is not
necessary as the 3D CNN approach can extract the relevant
features.

For completeness, we also conducted an additional exper-
iment to investigate the performance of the proposed 3D
network on patches of 32 x 32 x 32 pixels extracted around the
particle point without reformatting the plane along the vessel
direction. For this particular case, isotropic convolutional
filters of 7 x 7 x 7 pixels were used. Results on both lobes
of the COPDGene cases showed that with this configuration
the performance of our method worsens, both before and after
applying GC. A mean accuracy of 83.6% (median accuracy:
84%, range: 69% to 95%), with a sensitivity and a specificity
of 88.9% and 77.5%, respectively, was obtained after GC,
while the use of the CNN only yields to a mean accuracy
of 74.3% (median: 75%, range: 62% to 86%), with a sensitivity
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of 78.1% and a specificity of 69.9%. This demonstrates that
considering small vessel segments along the vessel direction
provides the network with optimal information for the purpose
of A/V segmentation.

To motivate the choice of using CNN as the initial classifier,
we also compared the performance of CNN against an RF
approach which uses airway segmentation to define proximity
of arteries to bronchi. The results showed that a CNN approach
achieves higher results both in terms of overall classification
(after GC) and as single classifier. Our CNN approach is an
optimal starting point for the specific task of A/V separation
on chest CT images without the need of explicitly segmenting
airways, which might be a complex and error-prone process
in disease cases like advanced emphysema.

To date, the only reliable comparison that can be accom-
plished with other methods available in the literature is with
the approach recently presented in [16], where a publicly
available challenge dataset for evaluating A/V separation algo-
rithms has been proposed. The results on the subset of ten
fully annotated cases, and of the reference and consensus
set obtained on the 2,750 segments randomly selected from
all 55 cases show that our algorithm outperforms the one
in [16]. An important aspect to take into account is that results
were obtained considering the whole lung for all considered
cases. This demonstrates that the CNN well generalizes results
despite being trained on only two lobes.

Moreover, in [16] an additional test on CT images of
patients with COPD was also performed. In particular, a subset
of 25 patients, seven of which were diagnosed with COPD
with the remaining eighteen patients diagnosed as not hav-
ing COPD, were considered. A mean accuracy of 88.57%
was reported for the cases with COPD, while an accuracy
of 88.56% was achieved for the no-COPD group. Although
a direct comparison is not possible, as these cases are not
publicly available, the eighteen cases considered for evalu-
ation in this work (Section IV-A) were extracted from the
COPDGene study and sixteen of them were diagnosed as
having COPD. In these cases our algorithm yields to a
mean accuracy of 93.6%, outperforming [16]. Since the same
mean accuracy was obtained for the ten fully annotated cases
provided by Charbonnier et al. [16], which to the best of
our knowledge were diagnosed as not having COPD, our
algorithm seems to be reliable regardless the presence of
disease in the lung, and it can be considered a good candidate
for the investigation of morphological changes in the arteries
and veins of patients with and without COPD. However,
an important study to accomplish in the future is the evaluation
of the algorithm for varying imaging parameters, such as
slice thickness, reconstruction kernels, and radiation dose,
to demonstrate the reliability of the algorithm under different
imaging conditions.

Although a direct comparison is not possible, the approach
we propose also seems to outperform the method described
in [12], where an overall accuracy of 91.1% is reported. More-
over, while the method in [12] requires a bronchus-enhanced
image to compute an arterialness measure, which is very
sensitive to the quality of the enhancement and the parameters
used, we use the CNN to solve parameter optimization and to

TABLE VI
RESULTS (MEAN ACCURACY (IN %) = STANDARD DEVIATION)
OBTAINED ON THE VALIDATION CASES FROM THE COPDGENE
COHORT WITH SUBJECTS SUB-DIVIDED BASED ON THE
PRESENCE OF COPD AND ON THE PRESENCE
OF EMPHYSEMA. N INDICATES THE NUMBER
OF PATIENTS FOR EACH GROUP

Mild COPD  Mod. COPD  Adv. COPD Emph. No Emph.

(n=4) (n=10) (n=4) (n=12) (n=6)
Mean Acc. | 953 + 23 94.6 + 3.3 915+ 75 926 £55 954 21
Sensitivity | 95.8 £ 3.1 98.2 + 0.9 97.5 £ 1.6 972 +27 977 +21
Specificity | 94.5 £+ 2.2 90.1 6.5 845+ 157 | 87.1 £ 105 92.7 £ 3.0

let the network automatically learn the proximity of arteries
to veins. This highly reduces the complexity of the algorithm
and sensitivity to the chosen parameters.

An additional test we performed to evaluate the results on
the vessels sub-divided into three groups based on their scale
(Section IV-D), shows that the algorithm fails more in the
large vessels, while it is optimal in the particles of medium
size. This may be explained by the fact that for some points
a patch size of 32 x 32 pixels may not be large enough
to include all information necessary to distinguish arteries
from veins. Also, due to the anatomy of the lung vessels,
the training set is richer in medium size vessels than in large
ones. Another important aspect to take into account is that the
analysis of the results obtained before and after implementing
GC indicates that while the CNN can well separate arteries
from veins for central vessels, GC seems to have a key role for
peripheral vessels. This may be due to the gradual vanishing
of relevant information, such as the presence of airways in
the proximity of arteries while moving toward the periphery.
A possible solution to overcome these issues is an independent
classification of the three groups, also applying a volume
down-sampling to the patches of the large vessels to make
the whole process scale-invariant.

To better understand the results on the COPDGene cohort,
we also sub-divided the subjects based on the presence of
COPD (4 cases with mild COPD, 10 cases with moderate
COPD, and 4 cases with advanced COPD) and the presence
of emphysema (12 subjects with the disease, 6 without).
It is important to point out that two of the three cases used
for training presented mild COPD and one had moderate
COPD, while only one subject had emphysema. As shown
in Tab. VI, the proposed method seems to be affected by a
strong presence of COPD, while mild and moderate COPD
and emphysema do not seem to affect much the performance
of the algorithm. Moreover, the presence of disease affects
more the specificity than the sensitivity of the algorithm, which
decreases compared to control cases. This may suggest that
using more cases with the presence of COPD and emphysema
for training the CNN might help better generalize results.

To further validate the proposed method, we lastly com-
pared the classification obtained with the proposed method on
thirty-three CT contrast images from the CTEPH cohort. The
obtained results indicate that the algorithm is reliable across
different scan protocols and it is insensitive to the presence of
contrast in the image. As expected, accuracy is higher in cases
without disease, as CTEPH may distort the lung and vascular
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anatomy that may complicate distinction of arteries from veins.
However, these results are encouraging as they demonstrate the
ability of the algorithm to generalize the A/V classification
regardless of the contrast in the image. Moreover, improved
results may certainly be achieved by including contrast CT
cases into the training set.

The obtained results also showed that the proposed architec-
ture has a higher sensitivity (~97% for the COPDGene cohort,
~93% for the CTEPH cases) than specificity (~89% for
COPDGene, ~84% for CTEPH), with the imbalance mainly
introduced by GC (sensitivity and specificity for CNN on
COPDGene cases before GC: ~84% and ~74%, respectively),
probably based on the connectivity assumptions made to
construct the graph. To avoid this issue and potentially improve
results, a further opportunity for future work is to modify the
last iterative step of the proposed GC to connect isolated sub-
trees with an integer program, similar to [12], to take into
account more local and global structural information, and not
only connected component, to construct the final graph.

Finally, from an analysis of the available data, the vari-
ous datasets we used for evaluating the proposed algorithm
always presented more arteries than veins (mean difference =
3,625.38 & 2,508.53). This is consistent with the difference
that has been shown in physiological studies of the pulmonary
morphology in post-mortem analysis [34]. However, more
investigations are needed to define how lung injury affects
arterial and venous volumes.

VI. CONCLUSIONS

In this work, we have presented a novel fully automatic
algorithm that utilizes a CNN approach combined with graph-
cuts optimization to separate arteries and veins in chest CT
images. We compared different CNN architectures to the one
proposed, training the network with both 2D and 3D patches
that we extracted and integrated using different strategies.
Since the classification is done on independent particles, which
define the vessel candidates but do not provide connectivity
information, we employed a GC approach to refine the seg-
mentation and reduce any spatial inconsistency that may occur.

We showed that a 3D CNN can learn specific A/V character-
istics from small vessel segments directly extracted from non-
contrast CT images, and no further operations (i.e., bronchi
and vessel enhancement, segmentation, etc.), are necessary.
Our method outperforms the most recent algorithms proposed
in [16] and [12], in comparison with the performance of
human observers. Also, compared to [16], our approach yields
higher performance for images of patients diagnosed both with
and without COPD. Moreover, validation on the full lung of
contrast CT images showed that the proposed trained method
could be generalized to other modalities and it is reasonably
insensitive to contrast and acquisition protocol variation.

In general, our results are promising and pave the way to
future use of 3D CNN for A/V classification in CT images.
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