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Including Anatomical and Functional Information in
MC Simulation of PET and SPECT Brain Studies.
Brain-VISET: A Voxel-Based Iterative Method

Berta Marti-Fuster*, Oscar Esteban, Kris Thielemans, Xavier Setoain, Andres Santos, Domenec Ros, and
Javier Pavia

Abstract—Monte Carlo (MC) simulation provides a flexible
and robust framework to efficiently evaluate and optimize image
processing methods in emission tomography. In this work we
present Brain-VISET (Voxel-based Iterative Simulation for Emis-
sion Tomography), a method that aims to simulate realistic
[ Tc]-SPECT and [ F]-PET brain databases by including
anatomical and functional information. To this end, activity and
attenuation maps generated using high-resolution anatomical
images from patients were used as input maps in a MC projector
to simulate SPECT or PET sinograms. The reconstructed images
were compared with the corresponding real SPECT or PET
studies in an iterative process where the activity inputs maps were
being modified at each iteration. Datasets of 30 refractory epileptic
patients were used to assess the new method. Each set consisted of
structural images (MRI and CT) and functional studies (SPECT
and PET), thereby allowing the inclusion of anatomical and func-
tional variability in the simulation input models. SPECT and PET
sinograms were obtained using the SimSET package and were
reconstructed with the same protocols as those employed for the
clinical studies. The convergence of Brain-VISET was evaluated
by studying the behavior throughout iterations of the correlation
coefficient, the quotient image histogram and a ROI analysis
comparing simulated with real studies. The realism of generated
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maps was also evaluated. Our findings show that Brain-VISET is
able to generate realistic SPECT and PET studies and that four
iterations is a suitable number of iterations to guarantee a good
agreement between simulated and real studies.

Index Terms—Anatomical variability, emission tomography,
epilepsy, functional variability, Monte Carlo (MC) simulation.

I. INTRODUCTION

M ONTE CARLO (MC) simulation is a valuable tool in
the assessment and optimization of image processing

methods in emission tomography [1]. Although using real
studies from subjects or phantoms has its benefits, MC simu-
lation provides a flexible environment where the ground truth
is known and where the realism of the input models and the
equipment can be suitably reproduced. Hence, the number of
scientific papers related to MC simulation has seen a consider-
able increase since the early 1990s [2].
In neuroimaging, MC simulation has been applied in several

fields such as the evaluation of reconstruction methods [3], [4],
statistical toolkits [5], [6], quantification methods [7]–[9], regis-
tration algorithms [10]–[12], segmentation methods [13]–[16],
among others. The more realistic the simulations, the more ro-
bust the assessment, and some attempts to include information
from real data have been reported. Some authors include the
anatomical information in the input models from brain mag-
netic resonance imaging (MRI) images [5], [17]. In order to ob-
tain more realistic simulations, functional information has also
been considered. Thus, Grova et al. [18] included the physiolog-
ical variability from an inter-individual analysis of anatomically
standardized SPECT data. In fields other than neuroimaging,
several authors derive this information directly from real func-
tional data of patients or healthy subjects [19]–[23]. However,
to the best of our knowledge, the inclusion of functional and
anatomical information from real patients in a voxel-by-voxel
approach has not been considered. By using the information of
each of the smallest elements of an image, the realism of the
simulated data could possibly be improved.
The aim of this work was to develop and assess Brain-VISET

(Voxel-based Iterative Simulation for Emission Tomography),
a method for simulating comprehensive databases of realistic
SPECT and PET studies which include anatomical and func-
tional information. Brain-VISET uses high-resolution images
(MRI and CT) to generate attenuation and initial activity maps.
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The activity map is modified using an iterative voxel-by-voxel
approach with functional information obtained from a real
SPECT or PET study. The method was used to simulate
realistic studies in refractory epilepsy. For the Brain-VISET
validation, the agreement between real and simulated studies
was assessed. The realism of the generated input maps was also
evaluated.

II. MATERIALS AND METHODS

A. Population of Subjects, Data Acquisition, and
Preprocessing

Simulation datasets were based on the brain scans of 30
drug-resistant epileptic patients selected from the pre-surgical
epilepsy database at the Hospital Clı́nic of Barcelona, Spain.
As part of the pre-surgical evaluation in epilepsy, all patients
underwent preoperative localization of the epileptogenic focus
using video-EEG monitoring, MRI, PET-CT and an interictal
SPECT studies. All subjects gave written informed consent
before entering the pre-surgical evaluation of the Epilepsy Unit.
MRI. High-resolution, 3-D T1-weighted images were ac-

quired using a Siemens Tim Trio 3T in the sagittal plane with a
matrix size of 224 240 256 voxels (0.86 0.90 0.86mm
voxel size) completely covering the brain.
Interictal PET-CT. PET-CT scans were performed using a

hybrid PET/CT (Classic BIOGRAPH, SIEMENS, Knoxville,
TN, USA) equipped with an ECAT EXACT HR+ BGO (Bis-
muth Germanium Oxide) PET scanner. PET images were
acquired 60 min after intravenous injection of approximately
5 MBq/Kg of [ F]-FDG in 3-D mode. The PET-CT scan
time was 11 min, 1 min, for transmission, and 10 more for
emission. Sixty three attenuation-corrected brain slices were
obtained using the Ordered Subsets Expectation Maximization
(OSEM) algorithm (16 subsets—six iterations) with a matrix
of 128 128 63 and 2.6 2.6 2.4 mm voxel size. The ac-
quired CT scan, 512 512 64 grid of 0.98 0.98 2.4 mm
voxel size, was already registered to the PET study.
Interictal SPECT. SPECT studies were acquired after injec-

tion of [ Tc]- HMPAO (925MBq), using an Infinia Hawkeye
4 (GE Healthcare) dual-head SPECT imaging system equipped
with low-energy high-resolution (LEHR) parallel-hole colli-
mators. The radius of rotation was 14 cm and 120 projections
(128 128 matrix and 3.3 3.3 mm pixel size) were acquired
over 360 at 40 s/projection. Images were reconstructed using
the filtered back projection (FBP) algorithm with a Butterworth
filter of 0.42 cm cut-off frequency and order 5.8.
MRI space of each patient was taken as the reference space.

Thus, the PET, CT, and SPECT images of each patient were
registered to the MRI. Emission tomography studies were reg-
istered to MRI using the registration algorithms of FocusDET
[24]. The CT scan was registered to the MRI by using the trans-
formation matrix obtained in the PET-MRI registration. Each
registration was visually validated andmanually corrected when
necessary.

B. Brain-VISET

Fig. 1 shows a flowchart of the iterative simulation method
proposed. The flowchart is divided into two steps. The first

Fig. 1. Flowchart of Brain-VISET.

Fig. 2. Generation of initial maps. a: From left to right and top to bottom,
T1-weighted MRI, extracted brain image, outskin image, and its corresponding
brain tissue segmentation. b: CT (top) and bone (bottom) images.

(lighter dashed box) includes the anatomical information from
an MRI and a CT image to obtain a simulated SPECT or PET
study. This step is performed only once. In step 2 (heavier
dashed box), the reconstruction obtained in step 1 is compared
voxel-by-voxel with the clinical SPECT or PET data in order to
modify the activity model used in the simulation. This step can
be repeated until the simulated and clinical studies are similar
enough. The details involved in these two steps as well as an
evaluation of the new method are set out below.
1) Including the Anatomical Information (Step 1): MC sim-

ulations of brain SPECT or PET data require an activity map of
radiotracer distribution and an attenuation map describing the
attenuation coefficients of the head. In our study, T1-weighted
MRI and CT data were used to generate the initial maps.
T1-weighted MRI studies were brain-extracted using BET [25]
and segmented with FAST [26] (both tools included in FSL
[27]) to obtain the image set presented in Fig. 2(a), from left
to right and top to bottom: 1) T1-weighted MRI, 2) extracted
brain image, 3) outskin image, and 4) brain tissue segmented
image (grey matter, white matter and cerebrospinal fluid (CSF)
separately). Bone tissue was extracted from the CT image by
thresholding [see Fig. 2(b)]. Hounsfield values greater than 600
were considered to be bone.
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The attenuation maps were generated from a combination of
the bone tissue and outskin images. Two attenuation media were
distinguished: 1) bone ( cm and

cm ) and 2) all other tissues, i.e., everything inside the
head other than bone ( cm and

cm ). To generate the activity maps, information from
all images in Fig. 2 was taken into account. Four tissue types
were defined in the initial activity map, based on empirical mea-
sures. Grey matter was considered to be the tissue of highest up-
take and so was assigned a value of 100, white matter was given
a value of 25, CSF and everything that is neither bone nor brain
received a value of 4 for SPECT simulations and 20 for PET
simulations, and finally, bone had a value of 0.
SimSET v2.9 MC code [28] was employed to simulate

SPECT and PET sinograms. In SPECT simulation the Infinia
Hawkeye 4 from GE Healthcare was modeled to generate
emission projections using Tc as the radioisotope. The
simulated collimator had hexagonal holes (radius: 0.75 mm,
septal thickness: 0.2 mm) and 35 mm in length. One hundred
twenty projections over 360 (matrix size: 128 54, pixel
size: 3.3 3.3 mm ) were simulated, using a 20% energy
window centered on 140 keV. In PET simulation, a BGO-based
Siemens Biograph scanner was modeled to generate emission
and transmission projections using F as the radioisotope.
Random events and dead-time were not modeled during the
simulations. A cylindrical detector of 32 axial rings of 41.2 cm
radius was simulated. A 3-D-mode acquisition with no axial
compression (maximum ring difference of 31 and span one)
was simulated using an energy window of 350–650 keV. Sino-
gram dimensions were 288 transaxial bins (bin size: 2.2 mm)
and 288 angular positions. In PET simulations, photons were
separated into true and scatter coincidences, allowing us an
ideal scatter correction because only the true photons were
considered in the reconstruction. Simulations were performed
in order to obtain sinograms with 5 million counts in SPECT
projections and around 80 million counts in PET simulations.
Simulated studies were reconstructed in a similar way to the

clinical data. Thus, SPECT reconstruction was performed using
FBP and a Butterworth filter with 0.42 cm cut-off frequency
and order 5.8. PET sinograms were firstly corrected for attenu-
ation using SimSET tools. Then, the sinograms were combined
with axial compression (span nine) and reconstructed by using
an OSEM-based algorithm (eight subsets, 12 iterations), both
processes being performed with the STIR package [29]. Before
reconstruction, the sinograms were normalized using normal-
ization factors previously calculated, rebinning a uniform sino-
gram (all values set to one).
2) Including the Functional Information (Step 2): The ac-

tivity maps were updated by incorporating the functional infor-
mation provided by the clinical studies

(1)

where is the value of the activity map in voxel at iteration
is the corresponding updated value, is the value of

the clinical study in voxel and is the value of the simulated
study in voxel at iteration . Bone and outskin information was
used to ensure that the updated activity map is zero in

those voxels belonging to tissues where there is no radiotracer
uptake. Simulation and reconstruction processes for SPECT and
PET data were performed as per step 1.
3) Assessment of Generated Studies: To evaluate the simil-

itude between the simulated and real images, the correlation
coefficient (CC) and the histogram of quotient image
were calculated. A theoretical value of 1 for CC and a Dirac
delta distribution for the quotient image histogram should be
obtained when the two images have identical distribution. Thus,
studying the behavior of these functions throughout the iterative
process we could: 1) assess the convergence of the method and
2) define the stopping criterion by determining the number of it-
erations necessary to ensure a good agreement between images.
The Brain-VISET method was assessed for both modalities,

PET and SPECT, by using 30 studies of our dataset, calculating
CC and quotient image histograms for 1–10 iterations.
A region of interest (ROI) analysis was also performed for

different brain structures by comparing activity concentrations
between real and simulated studies in a digital human brain atlas
[30]. To this end, the contrast (Con) was calculated. This pa-
rameter was defined as the ratio between the mean activity in a
selected ROI and the mean activity in a reference region cov-
ering the whole white matter region. A bias between contrasts
obtained from clinical and simulated data for each subject and
for each ROI was calculated as

(2)

where is the contrast at ROI of subject of the clin-
ical data and is the contrast at ROI of subject of the
simulated study at iteration . Then, mean biases and standard
deviations for each iteration of the Brain-VISET method were
calculated for each ROI over the 30 (N) studies as

(3)

(4)

Finally, in order to assess the behavior of ROI analysis
throughout iterations, a global mean bias and a global standard
deviation over the 110 (M) ROIs were calculated as

(5)

(6)

All studies of SPECT and PET from our dataset
were used for the ROI analysis. This was performed in the
Montreal Neurological Institute (MNI) standard space where
the ROI atlas is defined. SPECT and PET studies were normal-
ized to the standard space using the MRI deformation fields.
These fields described the spatial deformations to normalize
each individual MRI to MNI space and were obtained by
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Fig. 3. Brain-VISET results for SPECT (a) and PET (b) studies. Upper row: activity maps at iterations one, two, five, and 10 and attenuation map. Bottom row:
simulated images and clinical study.

normalizing each MRI study using the DARTEL method, an
alternative normalization method in SPM8 [31].
4) Assessment of Generated Models: In addition to the

assessment of generated studies, the realism of the generated
models was also evaluated. For this purpose, the clinical
SPECT or PET study from Fig. 1 was replaced by a simu-
lated study where the input model was known. Thus, we used
the previously simulated studies at iteration five as the
“clinical” study in Fig. 1 and the corresponding model as the
theoretical activity map . Then, the activity maps
generated throughout Brain-VISET iterations were compared
with the theoretical .
CC and the ROI analysis described in the subsection above

were also performed to quantify the realism of generated models
for 1 to 10 iterations using the 30 studies from our dataset.

III. RESULTS

A. Brain-VISET

1) Simulated Studies: Simulated studies were obtained using
an Intel Core i7 CPU 3.7 GHz 12 GB of RAM system. Mean
computational time to perform a SPECT iteration was 5 h,
consuming a maximum of 0.5 GB of RAM, whereas for a PET
iteration the time was 24 h on average, consuming a maximum

of 2.7 GB of RAM. In order to speed up PET simulations
and taking advantage of the fact that SimSET simulation is
intrinsically parallelizable, a different simulation strategy was
followed for PET. By parallelizing PET simulation into eight
simultaneous processes, the mean time was reduced to 3 h per
iteration.
Fig. 3 shows examples of MC simulation of SPECT (a) and

PET (b) studies using Brain-VISET. Pairs of activity maps and
simulated studies are shown for both modalities. The corre-
sponding clinical study is shown on the right side of Fig. 3(a)
and (b), below the attenuation map. It can be seen that as the
iteration number increases, the simulated images become more
similar to the clinical studies. Note that the simulated images
at the first iteration correspond to those obtained in the first
step of the method, when no functional information is included.
Throughout the paper, FI or no-FI abbreviations will be used
to indicate whether the functional information was included or
not.
2) Assessment of Generated Studies: Fig. 4 shows the CC

between clinical and simulated studies against the iteration
number. CC rapidly increases during the first iterations and
reaches a plateau after four iterations in both modalities.
Fig. 5 shows an example of the quotient image histograms

between the simulated and clinical studies for SPECT (a) and
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Fig. 4. CC between simulated and clinical data for SPECT (filled circles) and
PET (hollow circles) studies as function of the iteration number.

Fig. 5. Histograms of the quotient images between clinical and simulated
SPECT (a) and PET (b) data. Solid line: histograms when no-FI was included
in simulation. Dashed lines: histograms at iterations 2, 5, and 10 when FI was
included in simulation. Vertical dotted line: Ideal value of quotient image.
Vertical solid lines: lower and upper limits of the range values used to obtain
statistic moments of the histogram.

PET (b) data. The solid line represents the quotient image
histogram between clinical and no-FI simulated data, with

Fig. 6. Standard deviation (a) and kurtosis (b) of the quotient image histogram
values for SPECT (filled circles) and PET (hollow circles) studies.

dashed lines indicating the quotient image histogram between
clinical and FI simulated data at iterations two, five and ten.
A dotted vertical line shows the ideal value of these quotients

, when no differences exist between simulated and real
data. It can be seen that distributions become taller and thinner
as iterations increase. In order to quantitatively assess this
behavior, standard deviation, and kurtosis (as a measure of
peakedness) were calculated. Solid vertical lines indicate the
limits of the quotient image values that were considered to
obtain these parameters.
Fig. 6(a) and (b) shows the standard deviation and kurtosis

against the iteration number. As in CC behavior, these parame-
ters rapidly change with early iterations and tend to stabilize as
the number of iterations increases.
The results of the ROI analysis are shown in Fig. 7(a)

and (b) for SPECT and PET, respectively. In SPECT data,
global bias is almost zero over the iterations, whereas in PET
data the bias decreases, reaching a value close to zero
% when FI is included. On the other hand, global standard
deviation of the bias in the ROIs (indicated as error bars)
strongly decreases throughout iterations, remaining constant
after four iterations in both modalities. It should be noted
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Fig. 7. SPECT (a) and PET (b) ROI global bias. Grey solid line is the ideal
value of the bias (0).

that the dispersion of SPECT studies is higher than that of
PET studies. This could be explained by the fact that PET
studies always have greater number of counts (usually ten times
greater) than SPECT studies.
Finally, Fig. 8 shows an example of SPECT (a) and PET (b)

images obtained using Brain-VISET. In both images, the first
column shows sagittal, coronal and axial views of the clinical
study, and the second and third columns show the same views
of the no-FI and FI (it 5) simulated data.
3) Assessment of Generated Models: Fig. 9 shows the CC

between each new generated map and the theoretical
activity map throughout Brain-VISET iterations. In this
case, CC rapidly increases between the first and second itera-
tion, remains almost constant in the next two iterations and fi-
nally, decreases slowly. This behavior is similar in both modal-
ities although a more pronounced decrease is observed in PET
studies (hollow circles).
The ROI analysis for the activity maps is shown in Fig. 10(a)

and (b) for SPECT and PET, respectively. As for the generated
studies (Fig. 7), the behavior of the mean global bias through
iterations is quite similar and remains close to zero once FI
is included. Global standard deviation (error bars) also de-
creases rapidly, reaching a constant value after four iterations.

Fig. 8. Sagittal, coronal and axial views of SPECT (a) and PET (b) studies.
From left to right: clinical image, no-FI simulated image (it 1) and FI simulated
image (it 5).

Fig. 9. CC between theoretical and generated activity maps for
SPECT (filled circles) and PET (hollow circles) studies as a function of the
iteration number.

However, this dispersion is greater than that in the generated
studies.
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Fig. 10. SPECT (a) and PET (b) ROI global bias between activity maps. Grey
solid line is the ideal value of the bias (0).

IV. DISCUSSION

In the present study Brain-VISET has been developed and
evaluated.Thismethod is avoxel-based iterative approachwhich
includes anatomical and functional information from clinical
data inhigh-resolution inputmapsas suggested inanearlier study
[32].Although a simulated studywill hardly recover all high-fre-
quency details because of the digitization of the activity map,
high-resolution inputmapsallow thesimulated studies to achieve
a spatial resolution similar to that observed in clinical studies.
Using Brain-VISET, the intrinsic heterogeneity between and

within brain structures can be accurately modeled. This offers
advantages over those methods that add the functional infor-
mation into piece-wise activity maps by using constant values
or measurements from real studies. Other authors include the
functional information voxel-by-voxel using the SPECT or PET
study from a real patient directly as the activity map [20], [32],
[33]. The novelty in this work lies in the inclusion of both func-
tional and anatomical information (fromMRI and CT) in an iter-
ative simulation process. The use of anatomical information in
the Brain-VISET method seems to be important to achieve the
accurate results obtained from regional comparisons between
simulated and clinical studies (Fig. 7). Less accurate results
were obtained when the Brain-VISET process started using a
uniform activity map (without MRI-based information).
Our findings show that four or five iterations are suitable

values to ensure that functional information is properly included
whilst avoiding the increase of noise in the generated maps. As

shown in Figs. 5 – 7, four iterations can be considered as an ac-
ceptable trade-off between realistic results in simulated studies
and computational demand. As regards generated models, CC
between the generated and theoretical maps (Fig. 9) decreases
after four iterations. This behavior can be attributed to the effect
of noisewhich can also be visually perceived in the activitymaps
at iteration 10 in Fig. 3. The noise in thisfigure also seems to have
a greater effect in PET than in SPECTmodels, in agreement with
the more pronounced decrease observed in Fig. 9 for PET maps.
Brain-VISET appears to work equally well on SPECT and

PET when simulated and clinical studies are visually compared
(see Fig. 3). However, as the statistical parameters indicate,
simulated-clinical pairs are more similar in SPECT than in PET
(see Figs. 5 –7). We hypothesized that this behavior might be
due to: 1) SPECTs lower spatial resolution and 2) better SPECT
modelization, which included a more accurate simulation and
reconstruction to mimic clinical studies. To prove the first hy-
pothesis, thePETstudieswere smootheduntil a spatial resolution
similar to that ofSPECTstudieswas reached.This resulted in im-
proved statistical parameters that were closer to those of SPECT.
On the other hand, the process of mimicking our real studies
was less complicated for SPECT than for PET data. Commercial
PET scanners use closed source software, beingmore difficult to
accurately reproduce some imageprocessing steps suchasdegra-
dation corrections, rebinning or reconstruction. For example, the
scatter was corrected using the true scattered photons provided
by the Monte Carlo simulator and not by the scatter correction
method of the PET scanner. This could account for some of the
differences between the clinical and simulated images observed
in our results. To demonstrate that clinical SPECT studies were
better reproduced,we used the studies obtained in the assessment
of generatedmodels (using a simulated study as “clinical” study)
to perform CC and ROI analysis of the generated studies. Both
analyses for PET data were improved with respect to previous
figures [Fig. 4 and Fig. 7(b)] and were closer to SPECT results.
Accuracy and computational demand are correlated in MC

simulation. GATE [34], one of the packages most widely used
because of its accuracy, has the inconvenience of long execution
times. In this work SimSET, a package with a lower computa-
tional burden, was used. Our previous experience led us to con-
sider SimSET as a suitable code to obtain realistic SPECT and
PET simulations. This assumption was confirmed by the find-
ings, showing that Brain-VISET can be run in a reasonable com-
putational time on standard computers used in biomedical image
processing. To accelerate the Brain-VISET method, a combi-
nation of Monte Carlo and analytical simulations could be ex-
plored, using the analytical simulation for the first iterations and
a Monte Carlo simulation for the last ones. The accuracy of this
approach should be assessed.
The results of this study show that Brain-VISET is a reliable

simulation method for the generation of brain emission tomog-
raphy data that could not be distinguished from clinical images,
thereby allowing the assessment of image processing methods
in a realistic and well-controlled environment. The proposed
methodology for including functional information might be ex-
tended to other emission tomography studies. Nonetheless, the
difficulties derived from image processing of soft tissue, such
as segmentation, respiratory motion correction or registration,
need to be addressed.
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Further work will be carried out to make freely available the
generated database from our 30 drug-resistant epileptic patients
and to create comprehensive databases from healthy subjects
which could be easily modified to simulate pathologies.

V. CONCLUSION

This paper details the development and assessment of Brain-
VISET, a voxel-based iterative method for realistic MC simu-
lation of SPECT and PET studies. Applying Brain-VISET to
image sets from 30 refractory epileptic patients, a comprehen-
sive database was generated. After four iterations a good agree-
ment was obtained between simulated and real studies.
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