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Exploiting Quasiperiodicity in Motion Correction of
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Abstract—Free-breathing image acquisition is desirable in
first-pass gadolinium- enhanced magnetic resonance imaging
(MRI), but the breathing movements hinder the direct automatic
analysis of the myocardial perfusion and qualitative readout by
visual tracking. Nonrigid registration can be used to compensate
for these movements but needs to deal with local contrast and
intensity changes with time. We propose an automatic registration
scheme that exploits the quasiperiodicity of free breathing to
decouple movement from intensity change. First, we identify and
register a subset of the images corresponding to the same phase
of the breathing cycle. This registration step deals with small
differences caused by movement but maintains the full range of
intensity change. The remaining images are then registered to
synthetic references that are created as a linear combination of
images belonging to the already registered subset. Because of the
quasiperiodic respiratory movement, the subset images are dis-
tributed evenly over time and, therefore, the synthetic references
exhibit intensities similar to their corresponding unregistered
images. Thus, this second registration step needs to account only
for the movement. Validation experiments were performed on data
obtained from six patients, three slices per patient, and the auto-
matically obtained perfusion profiles were compared with profiles
obtained by manually segmenting the myocardium. The results
show that our automatic approach is well suited to compensate for
the free-breathing movement and that it achieves a significant im-
provement in the average Pearson correlation coefficient between
manually and automatically obtained perfusion profiles before
(0.87 £ 0.18) and after (0.96 + 0.09) registration.

Index Terms—Heart, image registration, myocardial perfusion.

1. INTRODUCTION

IRST-PASS gadolinium-enhanced, myocardial perfusion
magnetic resonance imaging (MRI) is used to observe
and quantify blood supply to the different regions of the
myocardium. Ultimately, such observations can lead to the
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Fig. 1. Images from a first-pass gadolinium-enhanced, myocardial perfusion
MRI study. (a) Precontrast baseline. (b) Peak RV enhancement. (c) Peak LV
enhancement. (d) Peak myocardial enhancement.

diagnosis of coronary artery disease, which causes narrowing
of the coronary arteries leading to reduced blood supply to the
myocardium.

A typical imaging protocol includes some precontrast base-
line images, and the full cycle of contrast agent first enters the
right ventricle (RV), then the left ventricle (LV), and finally, the
agent perfuses the LV myocardium (Fig. 1). ECG-triggered im-
ages are acquired to ensure that the acquisition always takes
place at the same contraction phase of the heart. Mistriggering
may occur, resulting in nonrigid deformations of the heart.

The image sequence is acquired over 60 s and covers the per-
fusion from precontrast through the complete first pass, which is
too long for most patients to hold their breath. Therefore, respi-
ratory motion results in a nonrigid misalignment of the sequence
of images through the whole acquisition. If the patient tries to
hold the breath and fails, normally a sudden deep gasp occurs
and the imaging sequence will not contain movement in the first
part of the sequence but a strong movement will be present in
the second part. If the patient is allowed to breathe freely, the
respiratory motion is shallower and more repetitive, almost pe-
riodic. In both cases, proper alignment of the heart structures
over the whole sequence is desired to enable an automatic anal-
ysis. To achieve such alignment, a matching procedure such as
image registration may be performed.

A. State of the Art

The major challenge in correcting the motion problem in con-
trast-enhanced perfusion imaging is that the local tissue contrast
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in the image sequence changes locally with time, especially in
the region of interest, the left ventricular myocardium. In addi-
tion, although the imaging protocol triggers the acquisition at
the same cardiac cycle phase, resulting in a nearly rigid repre-
sentation of the heart, the breathing movement occurs locally
and the final sequence deforms nonrigidly.

Various registration methods have been proposed to achieve
the alignment of myocardial perfusion heart images. For
brevity, we will mention only a few publications; for further
information, we point the reader to the references given in [1]
and [2].

Some approaches rely on rigid registration only and employ
masks to restrict the registration to the area of the nearly rigid
motion of the heart [3]-[8]. To overcome the problem of inten-
sity change, one may optimize the similarity measures drawn
from information theory, e.g., (normalized) mutual information
(MI) [6], or (normalized) cross correlation (CC) [3], [5]. Other
options include the use of contour masks obtained from gradient
images and potential maps [7] or the removal of the area of high
intensity change by masking [8].

Another proposed approach [4] is to identify three feature im-
ages as a vector base (baseline, peak RV enhancement, peak
LV enhancement) using independent component analysis (ICA)
of the intensity curve within the LV and RV. This vector base
is then used to create a reference image for each time step by
a weighted linear combination, and hopefully this image ex-
hibits a similar intensity distribution to the corresponding orig-
inal image to be registered. Image registration of the original
image to the composed reference image is then achieved by a
rigid transformation that minimizes CC. Because the motion
may also affect the ICA base images, this approach was later
extended to run the registration in two stages [2].

Because rigid registration alone does not account for the
nonrigid deformations of the heart and requires some form of
masking or feature extraction, other authors employ nonrigid
registration optimizing MI to overcome the intensity change,
e.g., [9]. Ml is a global measure in the sense that it relies on
a consistent material-intensity mapping over the whole image
domain and does not account for the local intensity change.
Methods have been proposed to minimize the effects of these
local intensity variations on MI during registration [10], [11].
However, these methods are tailored only to accommodate
slowly varying intensities that may result from field inho-
mogeneities or tissue degeneration and not the strong local
changes resulting from a contrast agent passing through the
heart ventricles and the myocardium. In addition, the evaluation
of MI is quite expensive in computational terms.

To overcome these limitations, in our previous work [12], we
used a combination of normalized gradient fields [13] and the
sum of squared differences for registration. Because here only
image pairs in temporal succession were registered, the regis-
tration method needed only to accommodate small differences.
The final alignment of the whole image series to a common ref-
erence was achieved by accumulating the transformations re-
sulting from the paired registrations. In [14] another serial reg-
istration scheme was proposed, that would first identify a key
frame as the common reference, and then apply registration by
optimizing CC between images in succession.
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Fig. 2. Displacements of the manually obtained center of the LV in a free-
breathing acquisition. Note the quasiperiodicity of the breathing movement. In
this graph, horizontal corresponds to a movement in the direction septal« lat-
eral, and vertical to anterior < inferior.

However, it is important to note that in serial schemes the ac-
cumulation of small registration errors may produce consider-
able errors in the overall alignment for distant time frames with
respect to the common reference.

B. Our Contribution

Most of the methods described in the previous section are ap-
plied to data that are normally acquired during breath holding,
and only some of the proposed methods dealt with data ac-
quired during free breathing [8], [14], [15] or by simulation to
exhibit the motion found in free-breathing data [2]. However,
none of these methods was tailored specifically to free-breathing
data. When a patient breathes freely, the breathing movement is
quasiperiodic. As an example, Fig. 2 shows the movement of the
manually tracked center of the LV in one example sequence.

Our contribution exploits this quasiperiodicity to correct the
breathing movement. The registration scheme is divided in three
stages starting with the automatic selection of a global refer-
ence, followed by the identification and registration of a subset
of images that correspond to the same respiratory phase and, fi-
nally, the alignment of the rest of the images in the sequence
with respect to the synthetic reference images of similar in-
tensity distribution derived from the previously aligned subset.
Following this scheme, the two elements that introduce differ-
ences in the sequence of images—the intensity change and the
movement—are decoupled as follows. In the first registration
step, only small movements have to be corrected, but the reg-
istration method has to deal with strong intensity changes. In
the second registration step, the process deals with images that
have similar intensity distributions, but the full amplitude of
the breathing movement needs to be accounted for. The gen-
eral image alignment framework uses nonrigid registration to
account for deformations caused by the respiratory movement,
possible out-of-plane movement, and to provide a fully auto-
matic procedure that does not require user interaction. The non-
rigid registration scheme uses a semilocal B-spline parametric
transformation to optimize the similarity metric based on either
normalized gradient fields or the sum of squared differences, or
a combination of both as proposed in [12]. Robustness and effi-
ciency are achieved using a multiresolution approach. This ap-
proach was presented partially with preliminary results in [16].
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In this article, we describe our completely automated method,
which we validated thoroughly using data from six patients (18
sequences). We performed a number of experiments to deter-
mine the registration parameters that produced the best registra-
tion results. Intensity evolution curves from manually tracked
myocardial segments were used as the gold standard.

In the remainder of the paper, we first give a short overview
of the proposed nonrigid registration scheme, and describe our
choice of a normalized gradient fields (NGF)-based similarity
measure and our modifications. We then describe in detail our
approach to identifying and using the respiratory phase-aligned
image sequence to achieve motion correction. We then present
our experiments and results to validate our motion-correction
scheme by applying it to patient data. Finally, we discuss our
findings and point to future work.

II. METHODS

A. Proposal Overview

Given an image domain Q C R in the d-dimensional Eu-
clidean space, an intensity range V C R, an image at time step
i € O is defined as mapping I; := I(x,i) : @ x © — V. Let
us now consider an image sequence J := {I;|i € ©} obtained
following a first-pass gadolinium MR acquisition protocol over
N time steps © := {1,2,..., N}. Given this sequence, our
goal is to obtain a motion-corrected sequence 3. To correct for
the existing motion, these images are registered directly or in-
directly to a certain global reference I,.t. The proposed regis-
tration scheme is divided in three stages as outlined in Fig. 3.
First, the global reference I,.¢ for the whole registration process
and a subset of images J’ are selected automatically to corre-
spond to the same breathing phase of the quasiperiodic motion.
Second, this subsequence J' is registered nonrigidly to the ref-
erence I,.¢ obtaining a registered subset J'. Because the images
from the J’ sequence correspond to the same breathing phase,
they are almost aligned, and nonrigid registration needs only
to account for small deformations. However, the images in J’
will exhibit the full range of possible intensity change resulting
from the contrast agent passing through the heart. In the third
step, the remaining images I; € J\ J’ are registered. To do
so, for each registration process of images I; € J\ 7', a refer-
ence image R; is generated synthetically from the aligned sub-
sequence J’ using a weighted linear combination. Hence, the
reference images R; will have a similar intensity distribution to
that of the referring test image. Therefore, in this registration
step, the intensity change has less influence than it would have
without using the prealigned subset J’, but the full range of the
breathing movement still needs to be accounted for.

In the following subsections, the image registration frame-
work is described in detail, and a thorough description of the
different steps of the presented approach is given, including dis-
cussion of the method to select the prealigned subset, the global
reference image, and the particularities of the different registra-
tion processes.

B. Image Registration

Image registration can be defined as follows. Consider an
image domain 2 C R? in the d-dimensional Euclidean space, a
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Fig. 3. Scheme of the registration process. In the first phase, the overall ref-
erence [ and its prealigned subset J’ are selected, in the second phase J'
images are registered to obtain an aligned subset J’, and in the third phase the
remaining images I; € J\ J’ are registered using the corresponding synthetic
references R; generated from the aligned subset 3.

test image S, a reference image R, and a transformation of an
image as a mapping 7' : 2 — € from a set of allowed trans-
formations ¥, and St(x) := S(7T(x)) the test image deformed
by applying transformation 7'. Then, the registration of S to R
aims at finding a transformation 7, according to

Treg := ¥1€1n (F(St,R)+ kE(T)). (1

F measures the similarity between the deformed test image St
and the reference, E ensures a steady and smooth transforma-
tion T, and k is a weighting factor between smoothness and sim-
ilarity. In nonrigid registration, the transformation 7" needs only
to be neighborhood preserving, a restriction that is enforced by
the selection of a proper term F. In our application, the cost
function F’ is derived from a so-called voxel-similarity measure
that takes into account the intensities of the whole image do-
main. As a consequence, the driving force of the registration is
calculated directly from the given image data.

1) Image Similarity Measures: MR first-pass gadolinium
perfusion studies show a strong local change in intensity be-
cause of the dynamics of the contrast agent, which results in
local changes in the material-intensity mapping over the image
domain and with time. Global similarity measures that rely on
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a consistent material-intensity mapping over the whole image
domain are, therefore, not well suited for registering these
images. Instead, a proper image similarity measure should rely
on local features to drive the registration. One example of such
a measure is the normalized gradient fields (NGF) proposed by
Haber and Modersitzki [13].

Given an image I(x) x € {2 and its noise level 7, a measure
¢ for boundary “jumps” (locations with a high gradient) can be

defined as
fQ |VI(x)|dx

Jo dx

Note, that the denominator in (2) represents the volume of (2.
With

(@)

d

> (VIx)): + e 3)

i=1

VI ==

the NGF of an image [ is defined as follows:

VI(x)
VIOl

NGF-based similarity measures for the image registration of
a test image S to a reference image R have been formulated
based on either the scalar product (-, -) or the cross product X
of the vectors of the NGF [13]

/ Ind(R) x n(S)Pdx ()
-5 [ sy ©

n.(I,x):= 4)

NGF S R
(S R) =

However, both similarity measures exhibit problems when ap-
plied to nonrigid registration. The formulation F1£I>(<})F(5) that
is based on the cross product is zero at its minimum. How-
ever, n.(R,x) X n.(S,x) is zero when n.(R,x) || n.(S,x)
(as desired) and when either n.(R,x) or n.(S,x) has a zero
norm. Hence, F&XG)F may have various global minima that do
not coincide with the best solution for the image registration
task. FISéF, on the other hand, has only one global minimum
when n.(R, x) || n.(S,x) VxQ. Yet, even though the gradient
V Fyr is analytically zero at this optimum for practical imple-
mentations of the gradient evaluation, e.g., by using finite dif-
ferences, the gradient may evaluate to nonzero even if S = R,
thereby making the optimization using gradient-based methods
difficult.
To prevent these problems, the measure

__Ja—b, if(a,b)>0
d(a,b) = { a+ b, otherwise

1 2
. / (ne(R), d(n.(R),n.(5)))*dx ()

(7
Fxgr(S, R) =

was proposed in [12], but this introduces an unsteady first
derivative when n.(R,x)Ln.(S,x), thereby making the reg-
istration unstable. Therefore, we refined this approach and
propose to replace (7) by

(a,b)

d*(a,b):=a— ————
[alllibl]

&)
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resulting in

Fxar(S,R) := %/Q (||nE(R)||2 -

as another NGF-based cost function.

This cost function is always differentiable and both its eval-
uation and the evaluation of its derivatives are straightforward,
making it easy to use for image registration. Fxgr(S, R)|x
is minimized when n.(R,x) || n.(S,x). In the optimal case,
S = R the cost function and its first-order derivatives are
zero, and their evaluation is numerically stable. In addition, as
outlined by Haber and Modersitzki [13], NGF-based similarity
measures have less local minima than e.g., MI-based mea-
sures, are easier to implement, and have a low computational
complexity. However, in homogeneous areas of the reference
image, where n.(R,x) has a zero norm, Fxgr(S, R) also has
a zero value and a zero gradient. Therefore, the measure is
best applied using a reference image with many gradients. In
addition, if large deformations are to be accommodated and the
images contain large homogeneous areas, nonrigid registration
can generally not be achieved using an NGF-based measure
only, and improvements are required to obtain a robust measure.

Pluim et al. [17] proposed combining MI and gradient infor-
mation to achieve better registration results. In our application,
most of the imaged area, i.e., everything outside the heart, will
exhibit similar intensities in the test and the reference images.
In addition, as outlined below, in the final step of our series reg-
istration, we will create synthetic references that will exhibit
a similar material-intensity mapping as the corresponding test
image over the whole image domain. Therefore, as discussed in
[12], we will also consider combining the proposed NGF-based
measure (10) with the sum of squared differences (SSD) as a
registration criterion in parts of the algorithm

(nc(R),n

(5))*
e (B)[[ne(S)]
(10)

1

Fssn (8, R) = 5 /Q(S(x) — R(x))” dx. (11)

This combined similarity measure is defined as

FSum = AngfITNGF + )‘sdeSSD (12)
with Apgr and Ageq to weight the two measures appropriately.
As the validation will show, it is possible, to actually use Fngr
as the sole measure in one part of the algorithm and Fssp in the
other.

2) Transformation Space, Regularization, and Optimization:
In our registration approach, the transformation is formulated
in terms of B-spline basis functions located on a regular grid of
control points i € J C Z?[18]

X) ::x—}—ZciﬂD (% -

ieJ

i) (13)

where (3”(x) is the tensor product of centered uniform
B-splines of degree D, and c¢; € R? are the vector
value-weighting coefficients. The parameter h governs the
grid knot spacing and, therefore, the number of registration
parameters and partially the smoothness of the solution.
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To enforce smoothness of the transformation and to improve
the stability of the solution in homogeneous areas, our nonrigid
registration approach employs a regularization that is based on
the separate norms of the second derivative of each of the defor-
mation components [19] as energy term E(T') in (1)

Emzéii

As given in (1) the regularization term is weighted against the
similarity measure by a factor x.

To solve the registration problem by optimizing (1), gener-
ally any gradient-based optimizer could be used. Specifically,
we considered a gradient descent optimizer with quadratic step
size estimation (GD) [18] and a variant of the Levenberg-Mar-
quardt (LM) optimizer [20] using a Hessian approximation as
outlined in [21]. To reduce the computational load, only a max-
imum number 7N, Of the niota; parameters of the deforma-
tion function is updated during every single iteration. Here, the
Nmax B-spline coefficients corresponding to the steepest gra-
dient values of V (F(St, R) + «E(T)) are chosen.

Speed and robustness are improved by the use of a mul-
tiresolution approach in both the image and the transformation
space. Its implementation is based on [18]. The multiresolution
strategy makes use of a pyramid of subsampled images that
are optimal in the L2-sense, taking advantage of the spline
representation [22].

2
dx. (14)

(-’)2
—)—T
8:172' 8:Ej (X)

C. Automatic Motion-Correction Algorithm

A scheme of the automatic motion-correction algorithm as
summarized in Section II-A is shown in Fig. 3. In this section,
we describe the three stages of the algorithm in more detail:
first, the selection of the global reference I,.s and the subset
of prealigned images J; second, the registration process of the
prealigned subset; and finally the alignment of the rest of the
images in the sequence.

1) Selecting a Global Reference and the Prealigned Subset:
The motion-correction procedure requires that all the images
from the sequence be transformed to the same spatial reference
framework. This process is accomplished by registering all im-
ages directly or indirectly to a certain global reference image
Iref .

The selection of the global reference I..f is based on finding
an image with high contrast to ensure that NGF-based simi-
larity measures generally give a good response and on finding
an image that provides strong periodicity in its sequence-simi-
larity profile

§ = {Fnar (i, Ler)|1; € T}. (15)
The application of sequence-similarity profiles for selecting a
good reference has been used previously in [23]. Because the LV
does not exhibit any usable gradients before the contrast agent
passes through it, the search range for I,.r will be restricted to
the sequence interval starting at the LV enhancement peak.

Once the global reference is selected, its corresponding se-
quence-similarity profile § comprises a representation of the
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Fig. 4. Sequence-similarity profiles with respect to two different global refer-
ence image candidates and their respective overall frequency spectra. Note, that
reference image 13 is a better candidate because its sequence-similarity profile
exhibits stronger periodicity, which is reflected by the high energy value in the
frequency spectrum.

quasiperiodic movement and allows the selection of images cor-
responding approximately to the same breathing phase. To per-
form this step automatically, an extreme phase of the breathing
movement has been selected.

In more detail, to obtain I,.¢, for each image I; € J, we first
estimate the standard deviation o (I;) of its pixel intensities as
an indicator of the image’s contrast. We next select a subset
of the images with the highest intensity standard deviations;
these comprise the candidate set J* for the overall reference
image. Then, for all I}, € J*, we evaluate the sequence-sim-
ilarity profiles fr = {Fnxgr(li,Ix)|I; € J}. The profile fy
that exhibits the strongest periodicity is identified based on its
Fourier transform. Because fj comprises real numbers only, its
Fourier transform is symmetric and we only need to take into
account the positive frequency coefficient. Here, we select the
profile § = fr+ with index k* that exhibits the largest abso-
lute value in the positive frequency coefficients of its Fourier
transform. It corresponds to the profile where most of the signal
energy is concentrated in one frequency, which in turn points to
a strong periodic component (Fig. 4). Therefore, our global ref-
erence image will be [ = Ij-.

Next, we choose all I; € J for which Fxgr(Li, Let) € §
exhibits a local minimum

Fxar(Li, Tix) < Fnar(Ligm, Tis)Ym =1, 2. (16)

These images form the phase-aligned subsequence of the
quasiperiodic motion.

Because of the quasiperiodic nature of the breathing move-
ment, the images of this subset will be evenly distributed over
the time series (Fig. 5). To ease the implementation of the last
registration step, we also add the first and the last image of the
series to this set to obtain the subset 3’ C J for the initial regis-
tration step.

2) Aligning the Prealigned Subset: In this step, we register
all images I € J' to I s following the registration method de-
scribed in Section II-B. Because these images will exhibit strong
differences in their intensity, using a combined similarity mea-
sure that also employs Fssp(11) would be counterproductive. In
addition, because these images all stem from the same breathing
phase and are, therefore, already well aligned, using Fxgr(10)
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Fig. 5. Series reference and prealigned subset obtained by the first step of the
algorithm. Note the even distribution of the time points selected for the subset.

as the registration criterion should suffice. As a result of this
step, we obtain a phase-aligned-registered subset J’ of the orig-
inal image series J.

3) Aligning the Remaining Images: In the last processing
step, we pick up on the idea of Milles et al. [2] to create synthetic
reference images to overcome the intensity change. For each
unregistered image I; € J\ J’, we first select the two registered
images from the phase-aligned subset I, , I;+ € J’ that enclose
I; in the temporal continuity

i <it Ade(i,it) A (i —4i7) — min. (17)
Because we added the first and the last image of the series to
the subset J’, these two images I;—, I;+ always exist. Then, a
reference image R; is created as a weighted linear combination

i—im it —i

Iiv (x) + ————1; (x).

- —1;
it — 4~

Rl(X) M

it i

(18)

Because of the quasiperiodic motion, one of the preregistered
images can be found about every five frames. Therefore, the
images used to create the weighted combination are very close
to each other, and for most of the series, linear interpolation
should suffice to create reference images R; that will exhibit
a similar intensity distribution like I;, the image to be registered
to.

Compared with Milles et al. [2], who reported that the syn-
thetic reference images created from the ICAs were blurred and
thus needed a multipass scheme, in our approach, the interpo-
lated images used to create the reference images are already reg-
istered and, therefore, no multipass scheme is required.

In the optimal case, creating synthetic reference images make
it possible to use Fssp as the only registration criterion. How-
ever, at the beginning of the image series, when the contrast
agent passes through the right and left heart ventricles, the in-
tensity change is not modeled well by the linear interpolation,
and using Fs,,n(12) as the registration criterion may be a better
choice. Therefore, we investigated the best weighting between
Fssp and Fnxgr in Fgyy, during validation.

D. Approaching Validation

Various methods have been proposed for validation including
tracking the LV center [2], [24]; correlation and/or the mean
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square error between manually obtained intensity profiles and
automatically obtained profiles [2], [15]; measuring the per-
frame intensity variation within the myocardium [2]; counting
the number of false-positive/false-negative pixels of masks of
the myocardium obtained from a reference in the registered se-
quence, with respect to a manual segmentation [24]; and the
myocardial boundary error defined as the minimum distance be-
tween the myocardial contours obtained from the hand segmen-
tation and the registered slices [24].

Considering these validation techniques, tracking the LV
center is not an appropriate approach to validate our method-
ology because this method does not account for differences in
rotation and nonrigid deformation and, therefore, we did not
use it for validation purposes.

Segmentation based methods could be also used. However,
the accurate tracking of corresponding anatomical features
through time in perfusion studies is not an easy and repeatable
task. Firstly, at the beginning of the series the myocardium
and the left ventricular cavity exhibit the same intensities.
Secondly, the papillary muscles and the myocardium often also
exhibit the same intensities. In order to assess the reliability
of segmentations we repeated the series segmentation in two
slices by two observers obtaining a mean Hausdorff distance of
3.6 mm and a maximal Hausdorff distance of 5.7 mm between
the segmented boundaries of the myocardium. These errors
in the segmentation would show up as misregistrations when
segmentation based statistics are used that analyze the my-
ocardial boundary error or false-positive/false-negative pixels.
Therefore, segmentation based methods were not used to assess
the quality of the correspondence of the boundaries or the
section overlap in the registered series.

However, when assessing the performance of the intended
task—perfusion analysis through intensity profiles—we con-
firmed that the influence of the segmentation differences was
quite small, and hence, using intensity profiles obtained from
manually segmented series as a gold standard for this compar-
ison is still an effective approach for validation. Therefore, we
generally provide methods to assess the quality of the image
registration by analyzing time-intensity curves.

For a first automatic assessment of the registration quality, we
measure how well the structures are aligned by focusing on the
pixel-wise intensity curves over time. Here, the second-order
intensity derivative is of interest. In a registered series, only the
perfusion by the contrast agent will induce an intensity change,
and its temporal gradient changes rapidly thereby producing
outliers when the contrast agent enters, reaches saturation, or
leaves the area corresponding to the pixel. By contrast, in an un-
registered series, the temporal gradient may also change rapidly
at tissue boundaries. Therefore, we propose to use the median of
the absolute values of the second-order derivative of the pixel in-
tensity over time as quality measure. It is expected to be much
lower in a registered series than in its corresponding unregis-
tered series. To obtain this gradient-based measure, we first re-
duce the interacquisition noise by smoothing the pixel-wise in-
tensities over time by applying a Gaussian filter G of width 5

Ig,(x,i) == Y Gs(k)I(x,i—k). (19)
k=—2
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horizantal

Fig. 6. Segmentation of the LV myocardium into six segments and horizontal
and vertical profiles of the original image series before motion correction. Note
that, in the profiles, the breathing movement is evident in the zigzag lines that
visualize the movement at tissue boundaries.

The smoothed image series Jg. = {Ig.(i)|i € ©} is then used
to evaluate the median second-order derivative image pixel-wise

dZIG5 (X7 t) )
t=i

dt?
For every sequence, we restrict the evaluation of these images to
the region around the LV, which was obtained by enlarging the
LV bounding box obtained from the manual segmentation of the
LV myocardium that is required for the analysis of the intensity
profiles described below. Finally, to obtain a single measure of
image alignment, we evaluate the mean intensity

o2 . fQ T2 (x)dx
) fQ dx

of this median time-derivative image I5-. For a better interpre-
tation of this value D2, we compared the results evaluated from
the free-breathing acquired series before and after registration
with values obtained from the nonmoving initial images of a se-
ries of three slices acquired during breath holding.

However, the above measure is useful only for preliminary
assessment of how well gray-scale values are aligned by the reg-
istration method. For a more thorough validation, we turn to the
comparison of perfusion profiles obtained from the registered
image series with profiles obtained by manually segmenting
the myocardium in the original sequences. Therefore, as a pre-
requisite, in all images of every sequence, the myocardium of
the LV was segmented manually into six transmural segments
S = {s1, 82,...,s6} (Fig. 6) counting clock-wise and starting
at the LV and RV anterior intersection.

The reference intensity profiles K r(;) of the segments s € S
over the image series were obtained by evaluating the average
intensities in these regions and plotting these over the time of

Ip:2(x) := median;co < (20)

21
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the sequence. By using only the segmentation of the reference
image I,.r as a mask to evaluate the intensities in all registered
images, the test intensity profiles K. r(ig were obtained. The in-
tensity profiles K, éfi)g for the unregistered series were evaluated
similarly.

To make it possible to compare the sequences of different
image series, the intensity curves K were normalized based
on the reference intensity range [Umin, Umax), With Umin =

. El S
minges teco Kr(of) (t) and Umax := maxsesrco K f (1)
UV — Umin

f(::{iveK}.
Umax — Umin

To quantify the effect of the motion correction, the quotient
of the average absolute distance between the registered and ref-

erence curves, K r(jé and K r(osf) and the average absolute distance

(22)

between the unregistered and reference curves, K, Sfi)g and K. T(Zf),

are evaluated, producing the value )5 as a quality measure of
the registration with respect to each section s € S
S 1K) - K3 0]
Q. = te®
S 1K (0) ~ K2 0)
te®

(23)

As a result, we obtain (), > 0 with smaller values indicating
better registration.

We also evaluated the squared Pearson correlation coefficient
R? of the manually obtained intensity profiles and the corre-
sponding postregistration profiles. The range of this coefficient
is R? € [0,1] with higher values indicating a better correla-
tion between the data sets. However, because the correlation ac-
counts only for linear dependencies, neither an error in scaling
nor an intensity shift is caught by this measure.

Finally, we consider the average standard deviation of the
intensity in the six segments s; of the myocardium o, ; :=
> ico 0(si) as obtained by using the myocardial mask of the
reference image I, to the motion-corrected sequence. Because
the intensity in these regions is relatively homogeneous with a
good alignment of the images, only noise and the intensity dif-
ferences caused by disease should influence this value. In partic-
ular, in the first part of the perfusion image series, when the con-
trast agent passes through the RV and LV, this approach makes
it possible to assess the registration quality without comparing
it with the manual segmentation. Any misalignment between
the section mask of the reference image and the corresponding
section of the analyzed series frame will add pixels of the ven-
tricular cavity to one or more segments, increasing the intensity
range, and hence its standard deviation. Therefore, with proper
alignment, this value will decrease.

For all measures, the statistical measures average, standard
deviation, median, minimum, and maximum were evaluated and
used to compare the results.

E. Comparison With Rigid Registration

To assess the differences between applying rigid registration
and nonrigid registration for motion compensation, we used two
approaches. In one approach, we implemented the ICA-based
registration scheme [2]. In the other approach, we implemented
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our motion-compensation scheme by replacing the nonrigid reg-
istration by an implementation for rigid registration [25] that
makes use of The Insight Toolkit (ITK) [26]. As discussed later
in Section III-D3, rigid registration including rotation turned out
to be unstable. Therefore, the rigid movement was restricted to
translation only. Optimization was achieved by using the regular
gradient descent optimizer provided in the ITK library. This ap-
proach was run on cropped images series containing only the
LV.

III. EXPERIMENTS AND RESULTS

A. Image Data

First-pass contrast-enhanced myocardial perfusion imaging
data sets were acquired and processed for six subjects under
clinical research protocols approved by the Institutional Review
Boards of the National Heart, Lung, and Blood Institute and
Suburban Hospital. The patients provided written informed con-
sent, and the analysis was approved by the NIH Office of Human
Subject Research. Two distinct pulse sequences were used for
image acquisition: a hybrid GRE-EPI sequence and a true-FISP
sequence. Both sequences were ECG-triggered and used 90°
saturation recovery imaging of several slices per R-R interval
acquired for 60 heartbeats. The pulse sequence parameters for
the true-FISP sequence were 50-degree readout flip angle, 975
Hz/pixel bandwidth, TE/TR/TI = 1.3/2.8/90 ms, 128 x 88
matrix, 6 mm slice thickness. The GRE-EPI sequence param-
eters were 25° readout flip angle, echo train length = 4, 1500
Hz/pixel bandwidth, TE/TR/TI = 1.1/6.5/70 ms, 128 x 96
matrix, 8 mm slice thickness. The spatial resolution was about
2.8 mm X 3.5 mm. Parallel imaging using the TSENSE [27]
method with acceleration factor = 2 was used to improve tem-
poral resolution and spatial coverage.

Motion correction was performed for three short-axis slices
of the six patients {A,B,...,F} (18 distinct slices total) cov-
ering different levels of the LV myocardium (basal, mid, and
apical levels). For all but one patient, a single dose of contrast
agent (Gd-DTPA, 0.1 mmol/kg) was administered at 2.5 ml/s,
followed by saline flush. For Patient C the dose was 5 ml/s
instead. Images were generally reconstructed to a final matrix
size of 256 x 192 (3/4 phase FOV) using zero filling for in-
terpolation. In the case of Patient A, the final matrix size was
256 x 196, and in the case of Patient B, 128 x 128. The data
for Patient D were acquired with a shallow breathing protocol,
and all other series were acquired using free breathing. Mistrig-
gering occurred in only one time step in the data set of Patient A.
Of the slices obtained, the first two were baseline images taken
with a proton density-weighted protocol and, therefore, exhib-
ited a different intensity distribution compared with the rest of
the series. For that reason, these images were omitted from the
analysis.

B. Parameters

In the first step of the algorithm, we set the search range for
the global reference to [20,N]. The nonrigid registration ap-
proach used uniform cubic B-splines for the transformation with
Dirichlet boundary conditions. To investigate the best param-
eter combination, we tested the performance of the algorithm in
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Fig. 7. Profiles (Patient E) cut through the time stack at the locations indicated
in Fig. 6. In the original series (upper row), the breathing movement is clearly
visible. In the registered series (lower row), this movement is nearly completely
removed.

terms of the quality measure () using different parameter values
for the knot spacing h € {5,7,10,16,22,26} given in pixels
for the B-spline grid, and the weight x € {1.0,5.0, 10.0,20.0}
of the regularization term. For the last part of the registra-
tion scheme, i.e., the registration of the images not corre-
sponding to the respiratory phase-aligned subset, we used
(hugts Awa) € £(0,1), (1,1),(1,1/2), (1,1/10), (1,0)} as
weights between the Fxgr and Fsgp. Estimating the noise
level of images is difficult, and we only approximated it by
using the standard deviation of the intensity gradient norm:
n =~ o([[VI(2)]).

After some initial experiments, the number of multiresolution
levels [ was fixed to 3.

C. Implementation and Run Time

The analysis software was implemented as a mix of Python
for selecting the reference image and the prealigned subset, and
a set of C++ programs to run the registration and to evaluate
similarity measures. The software was run on a Linux worksta-
tion equipped with an Intel Pentium Core2 6600 and 4 GB of
working memory. The complete run time of the nonrigid reg-
istration scheme of a series with 60 images of size 256 x 192
pixels was about 3 min. This time could be reduced easily by
running the registration in parallel.

D. Results

Following the scheme described above, a good reduction of
the breathing motion was achieved for all image data sets. A
first visual assessment of the registration results was obtained
by observing videos of the registered images and by analyzing
the time profiles of the image series (Fig. 7). Examples of these
videos are available online [28].

Analyzing the I5> images (Fig. 8) before and after registra-
tion confirms these results. A visual inspection shows a clear re-
duction in the median second-order time-intensity gradient after
registration in the areas of the moving heart (Fig. 8). Table I
shows the summary over all time series of the analysis of the D2
registration quality measure corresponding to the mean time-in-
tensity deviation over the region of interest, which results in a



1524

Fig. 8. I> image (Patient A): Note the high values before registration (left)
that correspond to the intensity changes at the tissue boundaries resulting from
movement and that are represented by the zigzag line in the profile images
(Fig. 7). The absence of these high values after registration marks the successful
alignment (right).

TABLE I
GENERAL REGISTRATION QUALITY BASED ON D2

Mean SD Median Min  Max

unregistered 2.55 1.25 2.35 1.05 5.12
registered 132 035 1.29 077 199
nonmoving reference 1.66 0.08 1.65 1.58 175

Statistical analysis of the registration quality based on the median of the
second-order derivative of the pixel-wise intensity over time (D?*) (a smaller
number is better).

clear improvement. The results after registration are similar to
the ones obtained from nonmoving image series, indicating that
the remaining gradients over time result mainly from noise.

The registration results were also confirmed by observing
the signal intensity time courses in different regions of the my-
ocardium and by comparing these with the manually segmented
intensity curves. Fig. 9 shows the intensity curves of the corre-
sponding sections of the LV myocardium represented in Fig. 6.
In the example given (Patient A, basal), a clear improvement is
observed for all regions, enabling further automatic analysis of
the myocardial perfusion and easier visual inspection.

1) Optimal Parameters Set: Using Fgsp as the only crite-
rion in the second phase of the registration, employing [ = 3
multiresolution levels, a value of x = 15.0 as the regulariza-
tion weight, a knot spacing of h = 5 pixels, and the modi-
fied Levenberg-Marquardt optimizer results in a good registra-
tion in all cases with a slight deviation for patient C that will
be discussed later. This parameter set corresponds to an aver-
aged quality measure of () = 0.62, an averaged correlation co-
efficient of R? = 0.96, and an average intensity variation of
o = 0.53 as given in Table II. Nevertheless, based on our sta-
tistical analysis of the parameter set given above, using regular-
izer weights of k € [5.0,20.0], (Angr, Assa) € {(0,1),(1,1)},
and h € [5,16], all give comparable registration results, i.e.,
according to the Welch two-sample t test (p = 0.05) the av-
erage values for @, o, and R? do not differ significantly. As for
the comparison between the application of LM and GD as op-
timizers and as suggested in [18], the modified implementation
of the LM generally needed fewer iterations to converge, and it
resulted in a slightly higher registration accuracy. The gradient
descent, on the other hand, needed less time and less working
memory to achieve similar registration results.
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Fig. 9. Intensity curves before and after registration compared with the manu-
ally obtained curves in three segments of the basal slice of Patient A. Note the
periodic intensity variations in the unregistered series caused by the breathing
movement and how the registered series more closely resembles the manually
obtained intensity curves. The spike in the intensity curve in (a) is caused by an
error in triggering, which is amplified by the breathing movement but damped in
the other sections. As one can see, the nonrigid registration can also compensate
for this error. (a) Segment 1 (anterior). (b) Segment 3 (posterior). (c) Segment 5
(inferior—septal).

For patient C the dose of contrast agent used was twice as
high as for the other patients, this resulted in a stronger intensity
change before LV peak enhancement, and therefore, the linear
interpolation used to create synthetic reference images in the last
registration step did not model the intensity change well. As a
result, the registration resulted in artifacts at the beginning of
the series that could be compensated by using higher values for
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TABLE II
MEASURES OF REGISTRATION WUALITY

Angt, Assd | Mean SD Median Min  Max

Q smaller is better 07 1 0.62 0.26 0.62 0.14 1.38
R? unreg 0.87 0.18 0.94 -0.17 100
larger is better 0, 1 0.96 009 098 009 100
Os unreg 0.66  0.34 0.58 0.15 233
smaller is better manual 0.45 0.14 0.45 0.17 0.84
0,1 053 023 0.49 014 1.26

The registration quality Q, the correlation R2, and the average intensity
variation o, analyzed for all 18 data sets (108 myocardial segments) of the full
series Fgp is the only registration criterion in the second registration step. The
remaining registration parameters are fixed to [ = 3 multiresolution levels, a
B-spline knot spacing of A = 5, and a regularizer weight of x = 15.0.

TABLE III
SEPARATED BY SLICE LOCATION

Q R? o
unreg reg | unreg manual  reg
apex | 0.65 | 0.87 095 [ 0.0 0.37 0.40
mid 0.56 | 0.87 098 | 051 0.35 0.41
basal | 0.53 | 085 097 | 0.72 0.54 0.60

The registration quality @ analyzed by slice location for registration param-
eters fixed to [ = 3 multiresolution levels, a B-spline knot spacing of h = 5,
and a regularizer weight of x = 15.0 and Apgr = 0, Aq¢ = 1 is the last
registration phase.

the regularization weight and a larger B-spline knot spacing at
the cost of more residual movement after registration.

2) Slice Location-Based Analysis: One may also compare
the results for the different slices with respect to the position
relative to the heart. The results shown in Table III suggest
that the registration at the apex performs worse than that in
the other imaging planes. This is not surprising because at the
apex, the out-of-plane motion is usually greater than in the other
planes, and this motion cannot be corrected by a 2-D registra-
tion algorithm.

The intensity-time curves for the hand-segmented, unregis-
tered, and registered series, as well as the quality measures for
each slice are given in a separate technical report [28]. At re-
quest we also provide the raw time-intensity data and the scripts
used to obtain the reported results.

3) Comparison With Rigid Registration-Based Methods:
Comparing the registration results with other published results
is difficult because different data sets have been used, and the
exact methodologies used to obtain the statistical results are
not described thoroughly. Therefore, selecting a measure to
compare results fairly is almost impossible. Milles et al. [2]
used various measures to describe registration accuracy, among
them Pearson’s correlation coefficient R? between manually
obtained intensity curves and automatically derived ones. They
reported R? values of 0.88 4 0.16 before and 0.92 + 0.10 after
registration [2].

Before registration our image data is comparable to theirs as
it exhibit a similar mean correlation R? of 0.87 & 0.18. After
registration, the obtained intensity curves correlate better on av-
erage with a lower standard deviation, suggesting better motion
correction with our method, i.e., we obtained an average R? of
0.96 % 0.09 (Table II). This is not surprising because in terms
of registration accuracy, nonrigid motion correction should out-
perform rigid registration.
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TABLE IV
RESULTS COMPARING RIGID AND NONRIGID REGISTRATION

Measure | Mean SD Median Min Max

R? 0.88 0.22 0.97 -0.43  1.00

rigid Q 0.85 0.43 0.79 0.13 2.88
Os 0.59 0.30 0.59 020 227

R? 096  0.07 0.98 0.53 1.00

nonrigid Q 0.63 0.26 0.64 0.11 1.37
Os 0.56  0.25 0.50 0.15 1.35

Results obtained using rigid registration allowing translations only instead
of nonrigid registration in our scheme compared with results obtained by
the nonrigid registration scheme. Compared with Table II the analysis was
restricted to the time after LV peak enhancement. All three measures indicate
that nonrigid registration performs better.

To validate this finding, we ran the ICA-based registration
approach as reported in [2]. For data with initial breath holding,
this approach worked as expected, which confirmed that we had
implemented the method properly. However, in free-breathing
data, the periodic movement made the estimation of the RV and
LV peak enhancement time point unstable, and thus automatic
mask creation was difficult. Applying the ICA-based method to
the cropped images, thereby circumventing the mask creation,
also did not produce reliable registration results.

We then modified our scheme presented here by replacing
the nonrigid registration with rigid registration and then applied
the method to cropped images containing only the LV region.
However, the use of the ITK framework for rigid registration
required a fine-tuning of the scaling between the rotational and
translational parameters that highly influenced the registration
result and made the procedure unstable. By further restricting
the transformation space U to translations only, this parameter
tuning was no longer needed and a more stable rigid registration
could be achieved. Note, that the rigid registration method used
in [2] also optimizes only the translation.

As a result, a reasonably good and stable registration could
be obtained for 16 of the 18 slices, but for these 16 slices, only
the subset of the slices beginning at and after LV peak enhance-
ment registered well. In some series, before LV peak enhance-
ment the cropped images did not contain sufficient gradient in-
formation to obtain a reliable rigid registration of the prealigned
subset. In these cases it could happen that the gradient-based
rigid registration actually aligned a part of the outer wall of the
myocardium in one image to a part of the inner wall in the other
image, which in turn resulted in misaligned synthetic references
for the final registration step. This effect does not occur with
the nonrigid registration of the full images, because here the
smoothness constraint combined with the nonmoving parts sur-
rounding the heart limit the freedom of the transformation.

In summary, employing rigid registration generally per-
formed less optimally than using nonrigid registration. This
is even the case when the instabilities described above are
avoided by running the analysis only for images after LV peak
enhancement and by restricting the transformation space ¥ to
translations only (Table IV).

IV. DISCUSSION AND FUTURE WORK

Allowing a patient to breathe freely during myocardial per-
fusion image acquisition has some advantages over asking the
patient to hold his or her breath. On one hand, the procedure is
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easier for the patient. On the other hand, normal free breathing
typically results in smaller, more periodic, and hence, pre-
dictable movements, which are easier to correct for respiratory
motion than breath holding in situations when the patient can
no longer hold the breath and takes a large gasp.

Following this protocol, the obtained image series pose two
problems: the strong local difference in image intensities and the
breathing movement. In this case, registering all images to one
reference directly is usually unreliable, and serial registration
can fail because of error propagation.

Based on these assumptions, we propose a fully automated
approach based on nonrigid image registration to correct for
the breathing movement by taking into account the advantages
of free-breathing acquisition protocols as follows. First, by
aligning a subset of the image series acquired at a similar
breathing phase, we can establish a baseline of registered im-
ages that first ensures that no error propagation occurs. Second,
because these images are already well aligned, the challenge
in their registration is reduced to dealing with the strong local
intensity change. Third, by using intensity-interpolated images
as references for the registration of the remaining images,
which are very close in the temporal series, the problem of
intensity change is reduced significantly in the last phase of the
algorithm.

In the first phase of the registration, the image pairs will nat-
urally exhibit strong differences of the intensity-material map-
ping. Therefore, we rely on the normalized gradient-based sim-
ilarity measure Fxgr as the registration criterion. The normal-
ized gradient-based similarity measure Fxgr has some advan-
tages over well-known measures based on information theory,
e.g., MI. The evaluation of Fxgr can be implemented easily,
and it has a low computational footprint. In addition, it is a
local measure in the sense that contributions to the overall cost
function are based only on the very close vicinity of each pixel.
Therefore, it is well suited to accommodate the local intensity
change induced by the contrast agent passing through the heart
ventricles and the myocardium. However, because of this local
nature of the NGF-based measure, it is not advisable to use it as
the sole criterion when large differences between images must
be accommodated.

Therefore, in the second phase, learning from previous expe-
rience [12], we performed the analysis using a weighted com-
bination of Fngr and Fsgp as the registration criterion. The
validation showed that one can actually omit Fxgr from this
measure because the synthetically generated references gener-
ally model the intensity distribution of the corresponding unreg-
istered images well enough. Only at the beginning of the series,
when the contrast agent passes through the right heart ventricle,
the linear interpolation sometimes did not produce good ref-
erence images resulting in worse motion compensation in this
phase of the sequence. This is the case for high contrast data
(Patient C). In addition, when applying the method to shallow
breathing data (Patient D), the selection of the prealigned subset
in the first step of the algorithm may result in a poor distribu-
tion of references. While it is possible to compensate for these
problems by applying a higher weight to the regularization term
and a larger knot spacing (as we did in the case of patient C),
this usually results in more residual movement after registration
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and, hence, in less over-all alignment. Therefore, to make the
algorithm more robust, other interpolation strategies could be
used to model the intensity change better when creating the syn-
thetic references. By comparing the intensity-time curves ob-
tained from our registered image sets with manually acquired
images, we were able to prove that our proposed method yields
good results for motion correction. Compared with the nonreg-
istered data, the corrected intensity curves align well with the
manually acquired sets (Fig. 9), improving both the visual and
quantitative analysis significantly. With the validation method
in place, we were also able to optimize the parameters to obtain
the best registration results.

Finally, a comparison of our validation results with those
reported by Milles et al. [4], who relied on rigid registration
only, suggests that the nonrigid registration described above
produces greater registration accuracy. We ran their ICA-based
registration scheme for comparison and, although the method
worked well for breath-holding data, thereby confirming their
results and validating our implementation, its application to
free-breathing data was not robust. Replacing the nonrigid
registration method by rigid registration in our method did not
provide a stable motion-compensation scheme. In the cases
where it worked reasonably well, the rigid registration method
performed worse than the proposed nonrigid registration
scheme.

Future work will include comparing this method with other
approaches. We also plan to exploit the quasiperiodicity of free
breathing even more by targeting an optimization process that
would register all images in one step to describe the quasiperi-
odic transformation using a spatiotemporal transformation
model [29].
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