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Cyclic Mathematical Morphology in
Polar-Logarithmic Representation

Miguel Angel Luengo-Oroz and Jesis Angulo

Abstract—We propose in this paper to perform mathematical
morphology operators in a geometric transformation of an image.
As a result of this procedure, processing images with regular
structuring elements in the transformed domain is equivalent
to working with deformed structuring elements in the original
representation. More specifically, the conversion into polar-loga-
rithmic coordinates provides satisfying results in image analysis
applied to round objects, if they are roughly origin-centered. We
have illustrated the interest of the derived cyclic morphology with
two pattern recognition examples: erythrocyte shape analysis and
multiscale description of iris textures.

Index Terms—Circular opening, granulometric iris code, polar-
logarithmic coordinates, radial skeleton, red blood cell shape anal-
ysis, spatially variant mathematical morphology.

I. INTRODUCTION

RANSLATION, rotation, and scale invariant represen-
T tations are very useful in shape analysis applications.
Usually, these representations convert visual shape information
into an abstract representation such as Fourier descriptors [1].
However, these spaces may not be suitable for the intuitive
processing performed by mathematical morphological op-
erators. One of the fundamental advantages of mathematical
morphology [2] applied to image processing is that it is intuitive
since it works directly on the spatial domain: the shape and
the size of structuring elements considered as the basic bricks,
play the same role as frequencies do in the analysis of sound.
We try to maintain this intuitive advantage for morphological
image analysis and find a representation system which presents
more advantages than the traditional Cartesian representation
when processing images which contain some kind of radial
symmetry, or in general, which have a center. The selected
transformation is the polar-logarithmic representation [3].
Morphological operators through this spatially variant support
space have been previously studied from a theoretical point of
view in [4], [5]. However, the direct implementation of polar
operators proposed in these previous works implies very high
computational cost. We propose here an alternative framework
which consist in firstly doing the polar-logarithmic transforma-
tion of the image; secondly performing classic morphological
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operators in the transformed image and finally performing the
inverse geometric transformation in order to restore the initial
image modified by the operations with deformed structuring
elements. We should point out the benefits of developments
introduced in this paper are limited to transformations in which
the object of interest remains (nearly) origin-centered.

A preliminary version of this work was presented in [6]. This
paper is organized as follows. In Section II, we review the polar-
logarithmic transform. In Section III, the theoretical support for
cyclic morphology in the log-pol space is presented. Next, in Sec-
tion IV, some morphological tools are proposed and their use is
illustrated by two patternrecognition applications developed with
the proposed methodology. Discussion concludes the paper.

II. POLAR-LOGARITHMIC REPRESENTATION

A. Geometric Transformations of Images

A geometric transformation of a digital image is an opera-
tion that converts the original image f(#) into the transformed
image f(7) by applying a function & : f(n) — f(1)) that maps
each point in the source image to its corresponding point in the
destination image. A simple solution to this problem is to per-
form an inverse-transformation £ ~! from each pixel coordinate
7 in the destination image to a corresponding pixel location 7 in
the source image. The calculated coordinates for the location of
the pixel in the source image will only rarely be integers, so the
calculated pixel location often lies in an area between multiple
pixels in the original image. In order to solve this problem, we
need to fit the discrete data to a continuous function and to cal-
culate the corresponding interpolated value. Concerning this re-
sampling step, the choice of the appropriate technique depends
on the tradeoff between the demanded accuracy of the interpola-
tion and the computational cost. The nearest-neighbor, bilinear,
or bicubic interpolation provide enough quality in most cases;
however, some applications may require more precise methods,
such as spline-based models [7].

B. Polar-Logarithmic Coordinates

The polar-logarithmic representation, or log-pol coordinates,
has already been used to map the visual cortex of primates [8]:
the photoreceptors of the retina are placed according to the same
organization. This model of log-pol fovea is applied mainly in
artificial vision systems, for instance in robotics [9]. In addition,
due to its scientific utility in describing fundamental aspects of
human vision, the artificial fovea has also been applied in order
to assess the optical flow [10] or to recognize and track objects
[11]. The polar-logarithmic transformation converts the original
image n = (z,y) into another 9} = (p,w) in which the angular
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Fig. 1. (a) — (b): Example of log-pol conversion f(n) — f(#), where 7.
corresponds to the center of the image, near Lena’s left eye.

coordinate is placed on the vertical axis and the logarithmic co-
ordinate is placed on the horizontal one (see Fig. 1, notice that
(z,y) and (p,w) axis are placed as in Fig. 1 for all figures in
the following sections). More precisely, with respect to a cen-
tral point n. = (z¢,yc): p = log(y/(z = zc) + (y — ve)?,
0 < p < pmax; w = arctan((y — y.)/(z — z.)), 0 < w < 27.

PSEUDOCODE DIRECT TRANSFORMATION

Input: Cartesian (z,y) € N x N

— Output: Log-polar (r,w) € M x K

. N/2-1 .
i = NS (M - 1) Tcos(2) + 5
L Nj2-1 e 9mw

§ = NPT (M = 1) 7 Tsin(2) + 5

PSEUDOCODE INVERSE TRANSFORMATION

Input: Log-polar (r,w) € N x N

— Output: Cartesian (z,y) € X x Y

2 z—X/2)2
o (o)

r=N
log (\/(2))
N yo¥/2 2o X/
(:) _ % + arctan( 2‘/7‘{2 x/2 )

Most of examples shown in this paper are images of size 256
x 256 pixels in (x,y) coordinates and a bilinear interpolation
schema has been used for the image transformation. For the sake
of coherence in the figures, the (p, w) coordinates have been dis-
cretized in the same number of pixels than the Cartesian ones.
However, as said above, the resolution can be increased by dif-
ferent interpolation schemes.

The log-pol representation presents some interesting prop-
erties. Rotations in the original Cartesian image become ver-
tical cyclic shifts in the transformed log-pol image because of
the periodic nature of the angular component. Analogously, the
changes of size in the original image become horizontal shifts in
the transformed image, according to the autosimilarity property
of the exponential function. The choice of the center is crucial
and all further treatments are sensitive to its choice (see Fig. 2).
Ideally the center point should be previously defined by the na-
ture of the object. If the center is not prefixed by any special
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(a) (b) () (d) (e (f)
Fig. 2. Log-pol transformation centered in 7. of a circle whose central point
iS Ncircle and radius r. The value of 7. is displaced from 7.irc1e at different
percentages of 7: (a) 0%, (b) 8%, (c) 16%, (d) 32%, (e) 48%, and (f) 70%.

feature, we may chose the center of gravity or the maximum of
a certain distance function, for instance the geodesic center [12].

III. CYCLIC MORPHOLOGY

A. Definition

Let f(z,y) be a2-D image defined on the discrete space F C
Z% n = (z,y) € (Z x Z), with values of the complete lat-
tice 7 (for simplicity the complete lattice is considered to be
T = Z or a subset from Z corresponding to the grey levels
7 ={0,1,--+,255}). The extension of the operators from clas-
sical mathematical morphology to the log-pol representation is
achieved by changing the support of the image in order to intro-
duce the principle of periodicity. The log-pol transformation of
the function f(x,y) generates a new function image f (pyw) :
E, . — T, where the support of the image is the space E,, ,,
7 = (p,w) € (Z X Z,) and where the angular variablew € Z,, is
periodic with period p equivalent to 2. A new relation of neigh-
borhood is established between points at the top of the image
(w = 0) and the ones at the bottom of the image (w = p — 1).
Therefore, the image can be seen as a strip where the superior
and the inferior borders are joined (see Fig. 3). The aim of this
change is to preserve the invariance with respect to rotations in
the Cartesian space, when morphological operations are done in
the log-pol space.

Let Bs., 5,(11) = SwV (1) ® SpH () be a rectangular struc-
turing element (SE) centered at point 7}, where V(7)) is the unit
vertical SE and H (7)) the unit horizontal SE, and Sw and Sp their
respective sizes (the symbol & is the Minkowski addition [2]). Itis
worth nothing the fact that horizontal and vertical neighborhoods
respectively acquire radial and angular sense when processing in
the original image representation. For instance, a vertical struc-
turing element corresponds to an arc in the original image and a
square corresponds to a circular sector. More precisely, working
in the log-pol space with the SE Bg,, s, () is completely equiv-
alent to work in the cartesian space with the SE Bs% sp(1,me)
(see Fig. 3).

B. Implementation

The direct implementation of w-periodicity needs the connec-
tivity relationship to be modified by replacing the y coordinate by
y mod(Ymax ). As an alternative, we propose to extend the image
alongits angular direction by adding the top part of the image onto
the bottom and the bottom part onto the top. The size of this dupli-
cated parton each side should be bigger than the size of the vertical
component of the structuring element in order to avoid a possible
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Fig. 3. (a) — (b): Dilation of one point by a square in log-pol coordinates.
(c)«<= (d): Square structuring elements in log-pol space and their equivalence in
c;lrtesian space. (e) < (f): Bsw,s,(7) and its equivalence in cartesian space

BSw,Sp(]]-, TIC)~

Fig. 4. Example of 2-D cyclic dilation (from left to right): (a) Original —; (b)
cycled image —; (c) dilation by a square —; (d) original image mask: cyclic
dilation.

edge effect. After having rendered the image cyclic, morpholog-
ical operators should be applied as usual and only the image corre-
sponding to the initial mask should be kept (see Fig. 4). After this
preparation of the image, all the existing code of standard imple-
mentation of morphological operators in square neighborhoods
may be used unchanged.

IV. APPLICATIONS

In this section, we present two applications of cyclic mathe-
matical morphology: one for shape analysis (binary images) and
the other for texture description (grey-level images). Before de-
scribing these applications, we introduce the morphological op-
erators which will be used in the sequel.

A. Morphological Tools

* Circular filtering by openings/closings.
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The basic morphological operators are the ero-
sion, ie., €Bg, s, (f)(7) and the dilation, ie.
0Bs, s, ( F)(#). The two elementary operations of
erosion and dilation can be composed together to
yield a new set of operators having desirable filtering
properties  which are given by the opening, ie.,
VBsw,sp (Hm) = éBSu.S/) [EBSL‘).S/) (O, al’lfl the
closing, i.e., ¢Bg, s, (Hm) = €Bsw,sp [6BSW.S;7 (OI),
The morphological openings (closings) filter out positive
(negative) peaks from the structures according to the pre-
defined size and shape of structuring element B, 5,(7).
Extracting inclusions or extrusions from the contour of a
relatively rounded binary shape with simple log-pol open-
ings vBs,, 5, OF closings g, o is the most direct appli-
cation of cyclic morphology [see Fig. 5(a)].

A morphological tool that complements opening/closing
operators for extraction of marked particles is the
morphological reconstruction, implemented using the
geodesic dilation, operator based on restricting the it-
erative dilation of a function marker f,(7) by the
unitary structuring element Bp; to a function refer-
ence fr(7), ie., 6;n>(fm) = 5;?6;7:_1)(]2”1), where
6;1)(]5”1) =B, , (fm (7)) A f,(). The reconstruction by
diiétiqn or openin§ by reconstruction i§ then dfl:ﬁnedA as
Y fons fr) = 67 (fn) such that 6 (fn) = 877 (fn)
(idempotence). The definition of closing by reconstruc-
tion ©"( Fns fr) is obtained by duality. Whereas the
adjunction opening g, s, ( f) (from an erosion/dila-
tion) modifies the structures of the image, the associated
qpening by recons}mctioy fymc(fm./ f ) (Wl}ere the marker
fo = €Bansy(F) OF fn = ABons, () is aimed at
efficiently and precisely reconstructing the ‘“shape” of
the structural peaks which are not totally removed by the
marker filtering process (peaks of size Bs., sp).

Radial skeletons.

The concept of skeleton of a binary set X is very intu-
itive, however, its mathematical definition is not simple
[13]. We propose to build the morphological skeletons
using the thinning transformation. The skeleton by thin-
ning, Thin(X), is the application until stability of the
hit-or-miss operator according to a predefined family
of patterns. See in [2] details on the suitable series of
patterns to be used to obtain homotopic skeletons. Using
cyclic morphology, we define a radial inner skeleton
skin(f(n)) = Thin(f(7)) as the skeleton obtained by
homotopic thinning from the log-pol transformation of
an objet f(n). The invert transformation to Cartesian
coordinates from the branches of the radial inner skeleton
has radial sense and tends to converge on the center
(p = 0). We also define the radial outer skeleton as
the skeleton obtained by an homotopic thickening of the
image, f°(7)) of the log-pol transformation of the object,
sko™(f(n)) = Thin(f(#)). The inverse transformation
to Cartesian coordinates from the branches of the radial
outer skeleton has also radial sense and this time, they tend
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Fig. 5. Top row, extremities segmentation from “Leiurius quinquestriatus’: (a) Original Cartesian image; (b) log-pol image (the center is the central image point);
(c) opening in log-pol space with a vertical structuring element Sw = 7 /5; (d) effect of filtering in Cartesian image. Bottom row, radial from an “Achantocyte”
(red blood cell): (e) original Cartesian image; (f) log-pol image (the center is the central image point); (g)—(h) radial inner and radial outer skeletons respectively
on cycled version of log-pol image; (i) effect of radial skeletons in Cartesian image.

to diverge to an hypothetical circumference in the infinity
(p — o) [see Fig. 5(b)].
* Cyclic rectangular granulometry.
A granulometry is the study of the size/shape structure dis-
tribution of an image. We focus here on rectangular gran-
ulometries, which uses rectangular SE and have been pre-
viously used to characterize document images [14]. Using
horizontal/vertical operators in the log-pol representation,
this shape and texture descriptor is specially adapted to an-
alyze images with multiscale radial and angular patterns.
Formally, a granulometry can be defined as an indexed
family of transformations I' = (B, 5, )sw>0,5,>0, Such
that yp,, 5,, or more generally ', verifies:
1) o is the identity mapping; i.e., yo(f) = f;
2) ~x is increasing; i.e., f < g = W (f) < 1alg), VA >
0, for every f and g;
3) . is anti-extensive; i.e., YA (f) < f,VA > 0, for every
fi
4) v, follows the absorption law; i.e., VA > 0,Vy > 0,
YAV = T YX = Ymax(\,p)-
In particular, these axioms are valid for the adjunction
opening ’YBSu).Sp(f) = 6BSu.S/)EBSu.S/) (f) or for the
opening by reconstruction nyBSw-Sp(f )/ . Granulometries
by closings (or anti-granulometry) can also be defined as
families of increasing closings ® = (¢By,, ,)sw>0,5,>0-
Performing the granulometric analysis of an image
in log-pol f(A) with ' is equivalent to measuring
the area of the opened image M(vp,, . (f)) after
each opening of sizes Sw (angular) Sp (radial), where
M(f(#7)) is the Lebesgue measure of the image f(7)
(M is the area in the binary case and the volume
in the grey scale case). The cyclic size distribution
of f(f}) with respect to T, denoted CSD}F(Sw, Sp)
is defined as the following (normalized) mapping
CSDL(Sw,Sp) = (M(f) = M(vBs. s, (1)) M(]).
The size distribution CSDJE(Sw./ Sp) maps each an-
gular/radial size (Sw, Sp) to some measure of the positive
structures with this size. The size distribution of dark
structures is obtained from a family of closings, i.e.,

CSDF(Sw,Sp) = (MY 5, (f) = MH)/M(S).

(e (h)

@ (b) © (d) ©)

Fig. 6. Different typologies of red blood cells: (a) Normal erythro-
cyte;(b) “Mushroom” erythrocyte; (c) “Spicule” erythrocyte; (d) “Echinocyte”
erythrocyte; (e) “Bitten” erythrocyte.

Another useful measure is the pattern spectrum [15], cal-
culated as the derivative of size distribution C’SD? with
respect to Sw or Sp.

B. Application to the Erythrocyte Shape Analysis

In hematology, the visual analysis of the morphology of ery-
throcytes (size, shape, color, center,. . .) is of vital importance as
it is well known that anomalies and variations from the typical
red blood cell are associated with anemia or other illnesses [16].
In Fig. 6, a selection of abnormal erythrocytes is shown. We
present hereafter one of the algorithms dedicated to the shape
analysis developed in the MATCHCELL?2 project [17], [18].

The aim of the proposed algorithm is to extract the inclu-
sions from the erythrocyte shape, which is ideally round. This
algorithm is used to identify the “bitten” class. It starts with the
binary mask of the segmented erythrocyte, image (A), and its
centroid 7). The results correspond to image (E) (see Fig. 7); if
(E) # 0 and the verifications are confirmed, it is classified as
“bitten” erythrocyte (we have considered the gravity center as
the center of the log-pol transformation).

1) Log-pol transformation (A) = (B) = &,.(A).

2) Radial outer skeleton (B) = (C) = sk°"*(B).

3) Circular filtering: Residue from a vertical closing of size
Sw = m/3 (maximal admissible angle for the inclusion)
(B) = (D) = @r/3(B) — (B) are the inclusion candi-
dates.

4) Geodesic reconstruction of (D) using the marker (C') =
(E) = v*<((C), (D)).

5) We verify that V FE; connected
[Surface(E;)/Sizeimage] > pu1.

subset € (E),



1094

B) © D) E) F) (

1-(A) 1-(E)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 5, MAY 2009

A and F)

2-(A) 2-(E)

Fig. 7. Top row, extrusion extraction algorithm for “bitten” erythrocytes. Bottom row, other examples of “bitten” extraction (1,2).

6) Inverse transformation (E) = (F) = ¢~Y(E).

The algorithm has an efficient and robust performance in the
extraction of inclusions and extrusions. The use of the skeleton
in order to sieve the candidates gives much greater robustness
than would a mere opening or closing. This procedure removes
small connected components preselected as deformations.
Furthermore, the examples corresponding to ‘“‘echinocytes,’
“spicules,” and “mushroom” have been correctly classified (see
more examples and details in [17]).

C. Application to Biometric Iris Identification

Iris texture patterns are considered to be different for each
person and to remain stable over time. This interclass variability
makes iris recognition one of the most interesting techniques
for security applications, as very high recognition rates have
been reported for iris identification systems [19]. However, only
a few large-scale experiment evaluations have been reported,
and there are insufficient publicly available databases. Further
work in this field remains to be done, especially in validation
and concerning with non ideal quality images. An iris recog-
nition system can be divided into four parts: data acquisition,
iris segmentation, iris feature extraction and classification. In
this work, we just deal with the iris feature extraction. The goal
is to produce a compact codification of the iris patterns from
the segmented iris image which is made by a multiscale de-
composition. The best known and proved system has been pro-
posed by Daugman [20] and the encoding of the iris is done
through the application of 2-D Gabor wavelet. Other methods
use a Laplacian pyramid decomposition [21] or zero-crossing
wavelet transform [22]. Regarding morphological approaches,
a work based on skeletons representations of the iris patterns
has been also proposed [23]. However, this method suffers from
lack of robustness.

We propose to characterize the iris pattern by a grey-scale
cyclic rectangular granulometry of openings by reconstruction
and closings by reconstruction. Therefore, after eye’s segmen-
tation, each eye pattern in log-pol coordinates fseg is charac-

terized by the two bivariate histograms C'S D}FW (Sw, Sp) and

rec seg
CSD;’ (Sw, Sp) (see Fig. 8). Note that the use of openings
and cloéings by reconstruction for the multiscale represen-
tation preserves contour information of the decomposed iris

patterns (see Fig. 9). The measurements CSDJErcc (Sw, Sp) and

CSD;‘{’YEC(Sw7 Sp) permit to describe the morphological size
distribution of the different structures under a radial-angular
metric. Tested images have shown interesting discriminative
properties for the selected descriptors. This representation is
invariant under size changes and rotations (which may be a
problem due to the non perfect alignment of the user’s head).
Concerning the computational complexity, it is possible to
perform a very efficient implementation by decomposing the
rectangular SE in linear SE [24]. In relation to the next step
in the biometric identification procedure, a codification of the
CSD surfaces should be extracted to obtain the user’s key. As it
is desired to have a small key, the length Sp and Sw of the unit
linear SE should be correlated to the quantity of information
chosen for the codification (notice that the variation of the unit
linear SE length provides a subsampling of the CSD surfaces).

The proposed methodology is currently being validated in
larger databases. In first experiments, multivariate cyclic granu-
lometries and its derived measurements show promising results
as an alternative to wavelet analysis in iris biometric character-
ization.

V. DISCUSSION

We have presented the general framework for cyclic mor-
phology and some basic morphological tools adapted to this rep-
resentation. Two pattern recognition examples developed with
these operators have been presented.

The fundamental idea is that processing images in an intu-
itive geometric space can provide advantages over the tradi-
tional Cartesian representation. Regarding specifically mathe-
matical morphology, the key issue is to obtain structuring ele-
ments that are adapted to the nature of the objects to be analyzed,
not by deforming them (such as in morphological amoebas [25]
or in viscous operators [26]), but by transforming the image it-
self. We consider that applying morphological operators with
regular structuring elements in the transformed domain is equiv-
alent to work with deformed structuring elements in the orig-
inal image. Not only adapted metrics may be used, but also
this kind of process provides benefits in terms of computational
costs. More specifically, the conversion into polar-logarithmic
coordinates as well as the derived cyclic morphology provides
satisfying results in image analysis applied to round objects or
spheroid-shaped 3-D-object models. The study of more com-
plex morphological operators in the log-pol space still remains
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Pmin Pmax
(al) (b1)

(a2) (b2)

Fig. 8. Morphological description of two iris patterns: (a) Eye image (f); (b) segmented iris pattern in log-pol coordinates ( fmgy); ) CS D;':ec (Sw, Sp); (@)
rec seg
CSD‘f’i (Sw, Sp).
Jseg

(d2)

an open topic, as well as the possibility to work under other geo-
metric transformations.
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