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Detection of Motor Impairment in Parkinson’s
Disease Via Mobile Touchscreen Typing

Teresa Arroyo-Gallego, Marı́a Jesus Ledesma-Carbayo, Álvaro Sánchez-Ferro, Ian Butterworth,
Carlos S. Mendoza, Michele Matarazzo, Paloma Montero, Roberto López-Blanco,

Verónica Puertas-Martı́n, Rocı́o Trincado, and Luca Giancardo∗

Abstract—Mobile technology is opening a wide range
of opportunities for transforming the standard of care for
chronic disorders. Using smartphones as tools for longitu-
dinally tracking symptoms could enable personalization of
drug regimens and improve patient monitoring. Parkinson’s
disease (PD) is an ideal candidate for these tools. At present,
evaluation of PD signs requires trained experts to quantify
motor impairment in the clinic, limiting the frequency and
quality of the information available for understanding the
status and progression of the disease. Mobile technology
can help clinical decision making by completing the infor-
mation of motor status between hospital visits. This paper
presents an algorithm to detect PD by analyzing the typ-
ing activity on smartphones independently of the content
of the typed text. We propose a set of touchscreen typing
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features based on a covariance, skewness, and kurtosis
analysis of the timing information of the data to capture PD
motor signs. We tested these features, both independently
and in a multivariate framework, in a population of 21 PD
and 23 control subjects, achieving a sensitivity/specificity
of 0.81/0.81 for the best performing feature and 0.73/0.84
for the best multivariate method. The results of the alter-
nating finger-tapping, an established motor test, measured
in our cohort are 0.75/0.78. This paper contributes to the
development of a home-based, high-compliance, and high-
frequency PD motor test by analysis of routine typing on
touchscreens.

Index Terms—Feature extraction, finger tapping,
keystroke dynamics, mHealth, passive monitoring, signal
processing, smartphone.

I. INTRODUCTION

PARKINSON’S disease (PD) is a chronic neurological dis-
order causing progressive disability related to the loss of

nigrostriatal dopaminergic neurons. It is the second most com-
mon neurodegenerative disorder, presenting an annual incidence
rate of 8-18 per 100,000 persons [1]. PD is commonly defined
by motor impairment, involving tremor, bradykinesia, postu-
ral instability, gait difficulty, and rigidity. However, non-motor
signs, such as mood alteration, cognitive alteration or sleep
disturbances, are also characteristic of this disease [2]. Symp-
tom diversity affects patients’ daily life in all physical, social
and mental planes, producing an adverse impact in the main
components of health-related quality of life [3].

At this time, available medication provides symptomatic re-
lief by setting an appropriate balance of dopamine levels. One
of the main difficulties in adapting treatment parameters is the
lack of a clear and objective measurement method to accurately
quantify and monitor the disease stage for each individual case
[4]. The Unified Parkinson’s Disease Rating Scale (UPDRS)
is the most commonly used metric in the clinical evaluation
of PD. It consists of a standardized test that provides an overall
score of the patients’ functional capabilities [5]. The UPDRS-III
evaluates motor performance by having the subject undertake
a series of motor tasks and assigning each a score from 0 to
4. The total UPDRS-III score is calculated as the sum of all
the individual task scores. Despite UPDRS-III being the most
accepted standard in clinical assessment, it requires significant
training to minimize inter-rater variability [6]. The need for
an experienced clinician to subjectively evaluate the progress
of the disease typically limits the gathering of information to
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on-site medical examinations. This clinical data constitutes the
main basis on which clinicians adjust patients therapy, which
means that decision-making is subject to the participant’s recall-
bias and is based on limited information. In summary, current
practices not only lack better monitoring of PD progress, but
also do not provide a consistent and objective evaluation of the
measured signs.

Finger-tapping tests [7] are complementary methods that pro-
vide additional and objective information about motor function
health. These tests employ standardized finger-movement exer-
cises to detect and quantify psychomotor dysfunction. Alternat-
ing finger-tapping (AFT) is one of the varieties of this method.
Using a single hand, the tested subject has to alternatively press
two specified buttons as fast as possible during a predefined time
[8]. The test is repeated for both hands and the final score is the
average number of pressed keys between the two. Despite its
simplicity, AFT is a commonly used method to evaluate PD as
it provides useful information to characterize upper limb motor
function [9].

An increasing interest in developing new ways to apply tech-
nology for creating objective clinical assessment tools is shared
by patients, clinicians, and researchers. In the particular case of
PD, recent reviews confirm a keen interest in the exploration
of technological improvements in patient care [10]. In [11],
authors present a survey highlighting the existing consensus be-
tween clinicians and patients about the need for a monitoring
system to better understand response to therapy and improve
treatment titration.

PD motor impairment manifests in a variety of ways, which
allows for a broad range of measurement methods. Conse-
quently, a variety of techniques to provide complementary in-
formation for optimizing PD care are emerging [12]. Reported
results on ambulatory monitoring of PD patient activity shows
great promise [13]. However, its translation to clinical practice
remains elusive. The application of accelerometers and other
sensing systems to develop high frequency motor tracking tools
has become one of the main trends thanks to the advances in
sensor miniaturization, wireless technology, signal processing
and data analysis [14]–[16]. A notable challenge in sensor-based
solutions is the development of advanced algorithms to evaluate
the highly complex patterns that result from the interference of
PD motor signs and normal daily activity movements, this calls
for advancement in algorithms to process the accelerometers
data [17]. In the recent years, the use of commodity hardware
such as smartphones has gained traction over systems using
specialized sensors. For instance, the microphone of these de-
vices has been used to predict PD severity via speech analysis
algorithms [18].

Touchscreens and embedded accelerometers are another
source of data to quantify PD signs. One of the largest stud-
ies to date is mPower [19]. A smartphone-based activity tracker
including touchscreen tapping, memory, voice, posture and gait
tests that collected longitudinal data from a large number of PD
patients and controls during a six month period.

A common limitation between the cited tools is that they
require subjects’ active participation, in the sense that subjects
need to be reminded to take each test. This leads to reduced

compliance. In the mPower initiative, Bot et al. [19] reported
that out of the 9,520 participants who opted to share broadly
their data, less than 10% (898) performed the finger tapping test
for 5 days or more.

We propose a solution that takes advantage of the ubiquity
and pervasiveness of smartphone technology. Importantly, in
contrast to many other mobile-based approaches, our solution is
transparent to the user, and does not require the user to take any
action to initiate a test. Our primary objective is for this trans-
parent monitoring to provide information comparable to current
motor tests. More specifically our approach should simplify the
monitoring process by passively collecting information from the
routine use of smartphone devices. In our previous work [20],
we have demonstrated that clinically relevant motor function
changes can be measured by timing key press/release events
during typing on physical keyboards, irrespective of language
or text typed. In the specific case of PD, we have shown that
daily interaction with physical keyboards can be used to mea-
sure motor signs in the early stages of the disease [21]. In this
work, we introduce a set of numerical features derived from
similar keystroke dynamic variables on mobile phone touch-
screens. We learn characteristic PD typing patterns to facilitate
detection and quantification of the motor signs related to this
disease. PD motor phenotype is described by slowness, lack of
spontaneous movement, rigidity, and tremor. This clinical pic-
ture should affect the unconstrained finger performance while
interacting with smartphone devices.

In this paper, we propose a smartphone-based approach to as-
sess PD motor signs. The developed solution uses touchscreens
as hardware support, and relies on the typing signal as input
to evaluate motor function anomalies. Our study is a first step
towards a transparent and ubiquitous motor sign assessment
method that is objective, convenient, and can produce quasi-
continuous ambulatory data. The main contribution of this pa-
per is a new methodology to quantify motor impairment through
the analysis of the typing signal collected via smartphone de-
vices. We tested our solution on a validation cohort that includes
data from 21 PD and 23 control subjects. The performance and
relevance of the developed tool is verified by comparing the
obtained results with respect to the alternating finger-tapping
(AFT) motor test.

II. MATERIALS AND METHODS

This sections includes a general description of the data
acquisition, followed by the presentation of the proposed
methodology.

A. Data Acquisition

We collected 51 typing signals from a population composed
of 24 people diagnosed with Parkinson’s and 27 healthy con-
trols. Subjects gave informed consent prior to experiments,
and experimental procedures were approved by the Committee
On the Use of Humans as Experimental Subjects (COUHES)
at the Massachusetts Institute of Technology, protocol no.
1504007090. During the meeting the subjects independently
underwent a clinical evaluation including the UPDRS-III test
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TABLE I
DATASET DEMOGRAPHICS

Avg. (std) Avg. (std)
Parkinson’s Controls Significance

Age 59.24 (11.43) 54.35 (13.95) p = 0.32
Women # (%) 11 (52%) 19 (83%) p < 0.05
Men # (%) 10 (48%) 4 (17%) p < 0.05
UPDRS-III 17.76 (7.92) 1.22 (1.70) p < 0.001
Alternating finger-tapping 49.17 (10.65) 67.54 (14.11) p < 0.001
Hoehn and Yahr 2.05 (0.31) N.A. N.A.
n (total n = 44) 21 23

The complete study cohort comprised 51 subjects. From the total participants,
44 provided enough typing information to perform the analysis. A minimum of
5 key presses every 15 seconds during at least half of the duration of the typing
task was required to apply the proposed method. Seven subjects, 3 from the
Parkinson’s group and 4 healthy controls, did not provide enough data and were
excluded from the analysis (see Materials and Methods). The table provides a
summary of the demographic information of the participants included in the
analysis, 21 people diagnosed with Parkinson’s (PD) and 23 control subjects
(CNT). PD subjects and controls are statistically similar in age, according to
the two-sided Mann-Whitney U test. The same test suggests gender might be
a confound variable in this study. These differences were accounted in the
analysis. The table also shows the results of the clinical evaluation that includes
UPDRS-III, alternating finger-tapping and the Modified Hoehn and Yahr scale.
The Hoehn and Yahr scale is a widely used clinical rating scale that defines
broad categories of disability in PD in a 0 to 5 range.

conducted by a movement disorder expert. After the clinical
assessment, each participant created an account on our website
(www.neuroqwerty.com). The Alternating finger-tapping (AFT)
test was performed on a physical keyboard. Subjects had to alter-
natively press two keys, separated approximately 25 cm, using
their index finger. They repeated the test for both hands. The
final score was computed as the average number of buttons
pressed between the two hands. The typing data was collected
using dedicated smartphone software. Participants transcribed
a randomly-selected text excerpt for five minutes and were in-
structed to type as they would normally do in order to reflect
actual routine use of the device. PD subjects were tested during
their “ON” state, under best medical treatment.

Seven participants, 4 from the control group and 3 Parkin-
son’s subjects, did not have enough data to compute the feature
analysis and were excluded from the dataset. All of them pre-
sented a typing rate below 20 keys per minute for at least half
of the typing time. Table I summarizes the demographic infor-
mation of the remaining 44 subjects that were included in the
analysis.

For the study, we developed a custom screen keyboard in
order to enable typing data collection. The application was
based on the open source software keyboard AnySoftKeyboard
(github.com/AnySoftKeyboard). Running in the background of
any application that receives keyboard input, it captures the
time stamps corresponding to press and release events for each
keystroke. The system tested has a clock speed and a theoretical
low-level sampling frequency of 1.2 GHz. Our implementation
uses a software timer with a time granularity of 1 millisecond.
The encrypted information was sent to a remote server for the
analysis. All the subjects were tested on an Android terminal, i.e.
Motorola Moto G II running Android 5.0. In Fig. 1 we provide
a graphical representation of the study procedure.

Fig. 1. The figure presents a schema of the study procedure that com-
prises a clinical evaluation, finger-tapping test and our typing test. For the
clinical evaluation a movement disorder specialist filled-in the motor sec-
tion in the Unified Parkinsons Rating Scale (UPDRS-III). The alternating
finger-tapping test was included as an external reference to quantify up-
per limbs dexterity. It was performed on a physical keyboard. The typing
test consisted of a five minutes task were participants were asked to
transcribe a non-standardized text excerpt using a touchscreen device.
The custom screen keyboard and smartphone model used in the test
are shown in this figure.

B. Data Analysis

The method description is divided into three different phases
as follows: An initial signal conditioning phase in order to mini-
mize signal noise and artifacts. Then, statistical analysis is used
to describe the processed signal using a limited number of typ-
ing features. In the last stage the feature vector is evaluated to
determine its suitability for detecting PD status.

1) Signal Conditioning: In this study, we define the typ-
ing signal (X[t]) as the sequence of flight time (FT) values
corresponding to each key tap. In the context of our work, we
define FT as the release latency between key taps, i.e. for two
consecutive keystrokes the time measured between first and sec-
ond key release times. The captured typing data requires further
processing in order to remove noise, minimize the effect of
confounding factors on the analysis and define a standardized
representation of the whole signal. Noise can be introduced by
many sources, such as software inaccuracies or unnatural typ-
ing episodes (e.g. special keys). Additionally, to reduce noise
levels, the signal is processed by a series of conditional filters
that remove potentially noisy samples if the FT value exceeds
a 3-second threshold, or if they correspond to special key-types
that engage non-standard digit kinematics (e.g. SHIFT). To min-
imize the effect of typing skills in the results of the analysis, each
signal is normalized by subtracting its mean value to every data
sample in X[t]. Fig. 2 compares the probability density func-
tions for the normalized FT (NFT) data grouped by condition.

X ′[t] = X[t] − X̄ : X ′ ∈ [θA , θB ]

where X ′ is the normalized signal and X̄ its average. The value
t represents the time at which a key has been pressed to generate
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Fig. 2. The figure shows the probability density distribution (PDF) esti-
mated for the normalized flight time (NFT) signals both for each subject
(light color) and grouped by condition (dark color). Normalization min-
imizes the influence of confounding variables related to typing skills.
Parkinson’s subjects’ (PD) distributions present a greater sparsity than
controls’ (CNT) distributions. A Mann-Whitney U test suggests a signif-
icant difference between the NFT values measured on PD participants
and controls (p < 0.001).

the relative FT signal. The parameters θA and θB give the esti-
mated range of values in which the 99% of the normalized FT
data is concentrated. These two parameters have been estimated
in an external typing database of 27 healthy subjects.

We define a new type of signal representation (X ′
S ) based

on the FT time series as to adapt the normalized data to the
following analysis stages. Given X ′[t], the signal structure, X ′

S ,
is defined as a set of vectors X ′

Si with a varying number of
elements but a fixed length in the time domain:

X ′
Si [t,N ] = X ′[t]w[t − iN ]

where i is a strictly positive integer which serves as an index
to the list of vectors, N = 15, 000 is the length of the window
time expressed in milliseconds and w[n] is defined as:

w[n] =

⎧
⎨

⎩

1, 0 ≤ n < N

0, otherwise

2) Feature Extraction: Evaluating X ′
S using distribution

and covariance based approaches we define two different feature
families.

a) Skewness and Kurtosis: These measurements correspond
to the third and forth moments of a distribution. Skewness can be
interpreted as an indicator of distribution symmetry, while kur-
tosis measures the variable distribution flatness. Each element
in the typing structure (X ′

Si) is evaluated as an independent

realization of the same random variable, with its corresponding
distribution that we will call sub-distribution in the context of
X[t]. Then, for each sub-distribution a pair including skewness
(Ski) and kurtosis (Kti) descriptors are computed.

For a sample of n values, a natural method of moments
estimator of the population skewness is:

Ski =
∑Mi

m=1

(
X ′

Si [m] − X̄ ′
Si

)3

σ3
Si

For a sample of n values the sample excess kurtosis is:

Kti =
∑Mi

m=1

(
X ′

Si [m] − X̄ ′
Si

)4

σ4
Si

− 3

where Mi is the length of the ith vector in X ′
S and σSi is the

standard deviation of X ′
Si .

With I being the number of sub-distributions that compose the
structured typing signal, the analysis described above generates
a total of I measures for each metric. These values are reduced
to four final features computed as the average and standard
deviation of the I skewness measurements (S̄k, σSk ) and the I
kurtosis measurements (K̄t, σK t).

b) Covariance: The typing signal structure (X ′
S ) is trans-

formed into a matrix (H) by applying Kernel Density Estima-
tion (KDE). A similar approach was presented in [20] to define
the Key Hold Time Evolution Matrix.

We apply KDE to estimate the probability density function
(PDF) that represents the underlying distribution of each ele-
ment in the typing structure. Given a typing sub-sample X ′

Si of
size Mi , its PDF fi is computed as follows:

fi(y, b) =
Mi∑

m=1

K((y − X ′
Si [m])/b)

where b is a bandwidth parameter that controls K, a Gaussian
kernel:

K(x, b) ∝ exp

(

− x2

2b2

)

Each function fi is quantizied using pre-defined mapping
levels�v. This allows a standardized I × L, matrix representation
of the typing signal as:

Hi,j = fi(�v[j])

We used our external dataset, not used for training or test-
ing, comprised by 27 healthy subjects, to adjust the value of
the bandwidth parameter b [22], as well as the number of quan-
tization levels (L = 10) and the limits of the mapping vector
(�v).

The corresponding covariance matrix (COVH ) is estimated
for the resulting NFT distribution matrix (H) as follows:

COVHi , j
= cov(Hi∗,Hj∗) =

=
1

L − 1

L∑

l=1

(
Hi,l − H̄i∗

) (
Hj,l − H̄j∗

)



1998 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 64, NO. 9, SEPTEMBER 2017

Fig. 3. The figure compares six signal examples from three people diagnosed with Parkinson’s (PD) and three healthy controls (CNT). The
normalized flight time series (NFT) is split into 15 second-length windows. Applying Kernel Density Estimation (KDE) we compute the sub-distribution
representing the information contained in each window. The mean and standard deviation of the skewness and kurtosis values measured on each
sub-distribution define four of the features (S̄k, σS k , K̄t, σK t ) that are included in the final 7-dimensional feature vector. The NFT covariance map
represents the correlation across the NFT sub-distributions. We define the covariance vector (Cv) as an array including the coefficients in the strict
upper triangle of the covariance matrix, i.e. above the matrix main diagonal. We extract three metrics from the covariance analysis that complete
the typing feature vector (C̄v, σC v ,

∑
|Cv|) Distributions show a higher uniformity of the NFT values for the CNT’s signals compared to PD’s.

Covariance maps for PD show stronger correlation and anti-correlation within sub-distributions while CNT’s maps present values nearer 0 for the
entire matrix.

TABLE II
RESULTS, UNIVARIATE ANALYSIS (INDEPENDENT TYPING FEATURES)

Avg. (std) Avg. (std)
Feature Parkinson’s Controls AUC [5%, 95%] Significance

S̄ k 0.955 (0.572) 1.742 (0.536) 0.85 [0.74, 0.95] p < 0.001
σS k 0.652 (0.135) 0.837 (0.210) 0.77 [0.64, 0.87] p < 0.01
K̄ t 0.767 (1.749) 3.587 (2.594) 0.87 [0.78, 0.95] p < 0.001
σK t 1.691 (0.977) 3.595 (1.593) 0.88 [0.78, 0.95] p < 0.001
C̄ v −0.019 (0.015) −0.018 (0.006) 0.46 [0.38, 0.69] p = 0.66
σC v 0.104 (0.030) 0.068 (0.029) 0.84 [0.72, 0.93] p < 0.001
∑ |C v | 3.290 (1.071) 1.839 (0.656) 0.91 [0.82, 0.97] p < 0.001

n (total n = 44) 21 23

The table shows the mean values and performance of the typing features and the reference
metrics, including the ROC AUC mean and confidence intervals achieved by each mea-
surement and the results of the Mann-Whitney U test to analyze if the null hypothesis, that
Parkinson’s disease (PD) and control (CNT) subjects come from the same population, can
be rejected. Covariance sum

∑ |C v | presents the best discrimination performance with an
AUC of 0.91 and significance p < 0.001.

where Hi∗ is a vector that contains the H matrix values for the
ith row:

Hi∗ = [Hi,1 ,Hi,2 , . . . , Hi,l ]T

Being Cv a covariance vector including the upper triangle
elements of COVH , i.e. the coefficients in the upper portion
above the main diagonal of the matrix, we define the covariance

typing features as follows: covariance mean (C̄v), covariance
standard deviation (σC v ) and the sum of the absolute values
of the covariance vector elements (

∑ |Cv|). A graphic repre-
sentation of the typing signal characterization is presented in
Fig. 3.

3) Evaluation Methodology

The proposed features are based on a limited set of parameters
that are estimated on an external dataset of 27 healthy subjects.
These parameters, shown in the previous sections, provide a
general description of the typing signal and are independent of
motor function status, i.e. they are not optimized to enhance the
separation between Parkinson’s participants and controls.

First, we assess the classification performance of the proposed
typing features with univariate methods. Next, we evaluate the
joint discriminatory power of the features in a multivariate
analysis framework.

The multivariate method assembles a feature selection trans-
form followed by a final estimator. We use a nested-cross val-
idation strategy for performance evaluation, i.e. a combination
of two embedded cross-validation loops. The inner k-fold cross-
validation loop is used to identify the relevant features and es-
timate the model hyperparameters based on the training folds
of the outer leave-one-out cross-validation fold. The outer loop
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TABLE III
RESULTS, MULTIVARIATE ANALYSIS (AGGREGATED TYPING FEATURES)

Avg. Score (std) Avg. Score (std)
Model Feature Selection Classifier Parkinson’s Controls AUC [5%,95%] Significance

1 L1 (Lasso) Logistic Regression 2.127 (2.883) −1.684 (2.127) 0.87 [0.75, 0.94] p < 0.001
2 L1 (Lasso) Linear SVM 0.825 (1.109) −0.663 (0.730) 0.88 [0.78, 0.95] p < 0.001
3 L1 (Lasso) AdaBoost 3.603 (6.612) −0.218 (1.591) 0.73 [0.58, 0.84] p < 0.01
4 L2 (Ridge) Logistic Regression 1.767 (2.870) −2.241 (2.293) 0.87 [0.77, 0.95] p < 0.001
5 L2 (Ridge) Linear SVM 0.736 (1.063) −0.709 (0.926) 0.86 [0.74, 0.95] p < 0.001
6 L2 (Ridge) AdaBoost 0.617 (1.599) −1.464 (1.734) 0.82 [0.69, 0.92] p < 0.001
7 Gini Impurity Logistic Regression 1.434 (2.350) −1.236 (1.850) 0.81 [0.67, 0.91] p < 0.001
8 Gini Impurity Linear SVM 0.650 (1.035) −0.588 (0.683) 0.86 [0.74, 0.95] p < 0.001
9 Gini Impurity AdaBoost 2.131 (5.123) −1.019 (1.972) 0.80 [0.66, 0.90] p < 0.05
n (total n = 44) 21 23

The table summarizes the results of the multivariate analysis. We evaluate the classification performance of different models that aggregate
the information of the proposed typing features. We tested a total of nine models, built as the possible combinations of three different feature
selection methods and three estimators. A nested cross validation framework was implemented to train and test the models. For each model,
we include the mean and confidence intervals of the AUC and the results of the Mann-Whitney U test to reject the null hypothesis that
Parkinson’s disease (PD) and control (CNT) subjects come from the same population. Model 2, a linear support vector classifier preceded by
L1-regularized linear model (Lasso) for feature selection, presents the best discrimination performance with an AUC of 0.88 and significance
p < 0.001.

Fig. 4. Comparison of receiver operating characteristic (ROC) curves
showing the classification rate for the typing based metrics, including
raw flight time average (X̄ ) and best performing univariate (

∑
|Cv|) and

multivariate methods (Model2), with the alternating finger-tapping test
AF T . Statistical significance of the MannWhitney U test is estimated to
reject the null hypothesis that the two groups, PD and CNT, come from
the same population. Statistical significance noted as: p < 0.001(***), p
< 0.01(**) and p < 0.05(*).

is run using the best model settings estimated in the inner loop
and storing the score for the left-out sample.

We used two tests to evaluate the ability of each metric, typing
features and models’ scores, to correctly separate the referred
classes: the Receiver Operating Characteristic (ROC) analysis
and the Mann-Whitney U test to reject the null hypothesis that
the controls and the Parkinson’s samples come from the same
distribution.

The ROC analysis consists of an iterative process that mono-
tonically increases the value of the metric under study to define a
dynamic threshold. On each iteration the current threshold value
is evaluated as a binary classifier that separates Parkinson’s and
controls. The output is a set of sensitivity/(1-specificity) pairs
that are joined to draw the corresponding ROC curve. The Area
Under the Curve (AUC) can be interpreted as the probability
that the classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative one. Moreover, this
metric allows a reliable comparison of the performance even
when the number of cases and controls is not fully balanced,
as it is the case of our study dataset (48% PD, 52% CNT). A
sampling with replacement method (1,000 bootstraps) defines a
ROC distribution from which we compute the average and con-
fidence intervals of the AUC values to describe the classification
performance of each metric.

III. RESULTS

Table II shows the results obtained for the univariate feature
evaluation. The values presented for each typing metric include:
mean value and standard deviation grouped by condition, aver-
age Area Under the Curve (AUC) for the bootstrapped ROC dis-
tribution, AUC confidence interval computed as the [5th , 95th ]
percentiles on the resulting AUC values, and the Mann-Whitney
significance test outcome.

Table III summarizes the results of the multivariate analysis.
We evaluate nine different models defined as the possible com-
binations of three feature selectors and three classifiers. These
methods were selected to represent different families of common
machine learning approaches. Feature ranking methods used are
Lasso, Ridge regression and Gini impurity based random forests
used as estimators in a recursive feature elimination framework.
Classification methods considered are logistic regression, linear
kernel Support Vector Machines (SVM) and AdaBoost.

Alternating finger-tapping (AFT), a quantitative upper limb
motor test commonly used in clinical trials to monitor PD signs,
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TABLE IV
METHODS COMPARISON

Avg. (std) Avg. (std) Significance Significance
Method Parkinson’s Control AUC [5%,95%] Specificity Sensitivity Adjusted Unadjusted

Best Univariate (
∑ |C v |) 3.290 (1.071) 1.839 (0.656) 0.91 [0.82, 0.97] 0.81 0.81 p < 0.001 p = 0.002

Best Multivariate (M odel2) 0.825 (1.109) −0.663 (0.730) 0.88 [0.78, 0.95] 0.84 0.73 p < 0.001 p = 0.002
Raw Flight Time Average (X̄ ) (s) 0.870 (0.283) 0.566 (0.155) 0.83 [0.71, 0.91] 0.72 0.73 p < 0.001 p = 0.003
Alternating finger-tapping (AF T ) 49.17 (10.65) 67.54 (14.11) 0.85 [0.76, 0.94] 0.78 0.75 p < 0.001 p = 0.002

The table compares the performance of the touchscreen typing based metrics, including the raw flight time average (X̄ ) and best performing univariate
(
∑ |C v |) and multivariate methods (M odel2), with the alternating finger-tapping test AF T . The presented methods improve the discrimination ability

of the reference test (AF T : 0.85[0.76, 0.94] AUC and 0.75/0.78 sensitivity/specificity), with 0.91[0.82, 0.97] AUC and 0.81/0.81 sensitivity/specificity
for the best performing feature (

∑ |C v |) and 0.88[0.78, 0.95] AUC and 0.73/0.84 sensitivity/specificity for the best multivariate model (M odel2). The
adequacy of the proposed methods to enhance the differences of the typing patterns between Parkinson’s subjects and controls is stressed by the comparison
with the raw signal based metric (X̄ : 0.83[0.71, 0.91] AUC and 0.73/0.72 sensitivity/specificity). The presented sensitivity/specificity pairs correspond to
the closest-to-(0,1) cut-off point. The unadjusted statistical significance is computed with two-sided Mann-Whitney U test. The adjusted significance tests
were computed with logistic regression models including gender and age as co-variates. For the developed methods none of the co-variates reached statistical
significance.

is used as the reference metric to evaluate the performance of
the proposed method. Also, we include the average of the un-
processed flight time signal (X̄) as a starting point to show
the improvement introduced by our solution to the discrimi-
nation ability measured on the raw typing data. We replicate
the evaluation framework used in our methods to test the clas-
sification performance of these two reference metrics in our
cohort.

Fig. 4 and Table IV show the performance comparison of the
touchscreen typing based metrics, i.e. raw flight time average
and the developed methods, with the AFT test reference. Raw
flight time average (X̄) presents an AUC of 0.83 [0.71-0.91].
The best performing typing feature, covariance sum (

∑ |Cv|),
presents an AUC of 0.91 [0.82-0.97]. The best multivariate
method (Model2), a combination of L1-regularized feature se-
lection plus a linear SVM as the final estimator, scores an AUC of
0.88 [0.78-0.95]. AFT test performance measured in our cohort
achieves an AUC of 0.85 [0.76-0.94]. Sensitivity and specificity
values shown in Table IV are estimated using the closest-to-(0,1)
criterion to define the cut-off point [23]. Unadjusted p-values
present the results of the Mann-Whitney U test to reject the
null hypothesis that PD and CNT subjects come from the same
population. Adjusted significance tests the null hypothesis that
the metric under scrutiny does not contribute to the separation
between PD and control groups in a logistic regression model
accounting for sex and age.

Finally, we evaluated the classification performance of the
proposed methods for different signal lengths, in order to ana-
lyze the appropriate duration of continuous typing that would be
necessary to achieve significant results. In Fig. 5 we illustrate the
results of this analysis for our best univariate and multivariate
methods.

IV. DISCUSSION

In this work we propose an algorithm to identify PD motor
signs by analyzing the typing activity on smartphones indepen-
dently of the typed text. Users do not need to wear any sensor
or remember to perform a structured test. Compliance depends
only on the act of installing the software. Once installed, data

Fig. 5. The figure shows the evolution of the area under the ROC curve
(AUC) for the best performing feature (

∑
|Cv|) and best multivariate

model (Model2) as we increment the amount of typing data used to per-
form the analysis. We observe a clear improvement of the classification
performance as the duration of the analyzed typing series increases.

collection happens automatically without interfering with the
normal use of the device.

The current clinical standard used to quantify PD stage and
progress present some limitations that define a clear need in the
treatment and control of the disease. This scenario has led to the
study and development of different alternatives in attempting to
complete and complement UPDRS information.

In our cohort, a commonly used quantitative method that eval-
uates upper limbs dexterity, alternating finger-tapping (AFT),
discriminated both populations with an AUC of 0.85 with
0.75/0.78 sensitivity/specificity. The proposed methods outper-
form this clinical reference, achieving an AUC of 0.91 with
0.81/0.81 for the best performing typing feature, the covariance
sum (

∑ |Cv|), and an AUC of 0.88 with 0.73/0.84 for the best
multivariate method, a pipeline comprised of L1-regularized
feature selection and a linear SVM as the final classifier.

We believe that our approach is able to achieve such perfor-
mance because of bradykinesia, bimanual coordination prob-
lems and other PD signs that may alter typing kinetics in a way
detectable through a keystroke timing data analysis. PD motor
impairment, in the particular case of the FT signal, may impede
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PD patients to press and release the keys in a consistent man-
ner, which we hypothesize would induce irregular flight times
(similar to what may be seen in finger tapping tests). Our re-
sults are consistent with that hypothesis in that the typing signal
distribution for PD patients has a greater dispersion and tempo-
ral variability, i.e. the heteroscedasticity measured using those
features. The improvement achieved in the classification rate,
compared to the alternating finger-tapping test, may be due to
the fact that our features (i.e. skewness, kurtosis and covariance
of the FT distribution) have been carefully defined to specifically
capture these motor abnormalities that are a direct representa-
tion of PD signs. The approach of constructing the typing signal
as a sequence of consecutive signal segments allows an intra-
subject analysis, which optimizes the detection of the internal
variability introduced by PD signs.

One of the main difficulties when using the typing signal
as the unique source of information is the risk of measuring
variables that are representative of the typing style but do not
capture the effect of PD signs. We limit this effect by applying
a normalization phase that forces a zero mean. This focuses
the analysis on the FT distribution shape and variability. An-
other external factor that has to be taken into account when
studying the potential limitations of the proposed method is the
requirement of a minimal number of signal samples to make
the sub-distribution analysis consistent. To collect enough in-
formation from the natural typing signal, a minimum level of
skills in touchscreen typing is demanded in order to meet the
established criteria. We consider that, taking into account the
rapid growing rate of smartphone users, typing skills will not
limit the application of this method.

Our methods were validated in a controlled environment.
Participants were asked to type for 5 minutes to complete the
touchscreen test. Although they were instructed to type as they
would normally do in order to reflect actual routine use of the
device, further analysis will be necessary to discard a signif-
icant influence of the controlled test on their typing behavior.
Regarding the 5-minute duration of the test, we understand that
not all the smartphone users are likely to continuously type for
this amount of time, however, the proposed methodology can be
applied on natural typing signals collected for longer periods of
time whose aggregate active typing time is 5 minutes or more.

This study is a step towards the final goal of developing an au-
tomated biometric tool for diagnostic and therapeutic decision
support in PD. The presented methodology compares well to
standard clinically-used methods in terms of its ability to differ-
entiate PD participants from controls, and is able to do so from
information collected from touchscreen typing activity. In our
cohort, PD population presented mild signs (average UPDRS-
III score of 17.76 ± 7.92 and range [6, 41]), this suggests that
the proposed features are able to discriminate PD from controls
even at early disease stages. However, as a pilot study, the find-
ings of this research must be considered with caution. A further
validation of this methodology would require a larger and better
balanced cohort that enables a comprehensive review of the in-
fluence of the potential confounding variables mentioned in this
work and others, such as medication state and cognitive deficits.
Future work will include new studies to collect subjects’ daily

interaction with their smartphones in order to validate the ap-
plicability of the presented methods in a passively-monitored
environment. Additional information from user’s daily inter-
action with smartphones, such as pressure, gesture typing and
accelerometer data, could be used to complement our keystroke
based analysis. Method functionality could also be improved
with the appropriate algorithms. Turning from a classification
to a regression model, it may be possible to quantify a con-
tinuous metric for the natural progression of the disease over
continuous motor function evaluations.

V. CONCLUSION

An approach to a more continuous, objective, and convenient
tool to quantify PD related motor impairment is presented in
this paper. The method suggests that motor anomalies in PD can
be detected through analysis of keystroke dynamics during typ-
ing on smartphone touchscreens. The computed typing metrics
show significant changes across the different studied groups: PD
participants and healthy controls. In terms of classification, the
best performing typing feature presents a 0.91 AUC rate, and
sensitivity/specificity 0.81/0.81. The best multivariate model
scores 0.88 AUC and 0.73/0.84 sensitivity/specificity. The pro-
posed methods are comparable or improve the performance of
the a reference motor test (AFT) measured in our cohort, 0.85
AUC and 0.75/0.78 sensitivity/specificity. Based on the analysis
of the routine typing signal, the proposed approach introduces a
transparent way to evaluate the motor function. In future work,
a clinical study will validate our technique in a larger cohort of
patients and controls and for an extended period of time that
captures additional potential confounding variables.
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