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ABSTRACT

Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and 
it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the 
computation of the optical flow, which is an approximation to the real image motion. This paper presents a new 
algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach, more specifically on the 
computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The later 
is a well-known line and shape detection method very robust against incomplete data and noise. The rationale of using 
the HT in this context is because it provides a value of the displacement field from the STF representation. In addition, a 
probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion 
detection. Experimental results in synthetic sequences are compared with an implementation of the variational technique 
for local and global motion estimation, where it is shown that the results are accurate and robust to noise degradations. 
Results obtained in real cardiac magnetic resonance images are presented. 
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1. INTRODUCTION 

Motion estimation is a key problem for the analysis of image sequences. Visual images and the dynamic evolutions of 
those images provide enormous amounts of information about our surrounding environment. By observing changes in a 
scene over time, 3D scene properties and motion parameters can be obtained. We can discover the three-dimensional 
structure of the scene, make predictions about collisions, and infer material properties of objects, such as their stiffness 
and transparency. Much of this information is revealed by the motion of the different parts of the scene. 

Because of the richness of motion as an information source, analysis of visual motion is essential for many practical 
applications. These range from image-processing problems such as efficient coding or enhancement of motion pictures, 
to passive machine vision problems such as determining the shape of a moving object or recovering the motion of the 
camera relative to the scene, to active perception applications in which an autonomous agent must explore its 
environment [1]. It is also useful for performing motion segmentation; for computing the focus of expansion and time-to-
collision; for performing motion-compensation image encoding and for measuring blood flow and heart-wall motion in 
medical imagery.  

The analysis of heart wall deformation has important clinical implications for the assessment of viability of the heart wall 
and provides quantitative estimates of the location and extent of ischemic myocardial injury. Quantifying the extent of 
regional wall motion abnormality can aid in determining the myocardial effects of coronary artery diseases. Among all 
available imaging methods, Cardiac Magnetic Resonance imaging (CMR) is recognized as the best imaging method for 



the dynamic exploration of the cardiac function, and it is used not only for the scientific purpose of understanding heart 
motion but also for the clinical need to diagnose heart disease. 

However, the estimation of optical flow is a challenging problem in this kind of image analysis because of a wide range 
of possible motions and presence of noise. In addition to this, the non-rigid motion of the heart makes cardiac motion 
estimation a complex problem.  

In this paper, an algorithm for computation the optical flow applied to CMR based on the computation of the Wigner-
Ville distribution and the Hough Transform is presented. The paper is organized as follows. Section 2 briefly reviews the 
problem of computing optical flow and explains the frequency-based methods. Section 3 provides an explanation of the 
new algorithm proposed. Section 4 evaluates the method with synthetic and real images and compares it with a 
variational approach and Section 5 concludes the paper. 

2. OPTICAL FLOW ESTIMATION 

From the information available from a sequence of images, it is only possible to derive an estimate of the motion field, 
which is called optical flow. Although optical flow is generally not equivalent to the true motion field, it is quite similar 
in most of the cases. 

Numerous theoretical and practical studies on the optical flow estimation from image sequences and on the useful 
information it contains have been performed. Despite this wide variety of approaches, algorithms for computing optical 
flow are usually divided into three categories [1]: 

Differential techniques: also known as “gradient” techniques, these estimate optical flow vectors from the 
derivatives of image intensity over space and time. These are typically derived directly by considering the total 
temporal derivative of a ’preserved’ quantity such as the brightness. 

Matching techniques: these operate by matching small regions of image intensity or specific “features” from 
one frame to the next. The matching criterion is usually a least squares or normalized correlation measure. 

Frequency-based or filter-based techniques: these techniques are based on spatio-temporally oriented filters 
(i.e., velocity-sensitive), and are typically motivated and analyzed by considering the motion problem in the 
Fourier domain. They fall into two categories, energy-based and phase-based. 

Each technique has several advantages and disadvantages. Numerical differentiation is sometimes impractical because of 
small temporal support or poor signal-to-noise ratio. In these cases, it is natural to consider correlation techniques. 
Among the advantages brought by the frequency-based methods, it is found that motion-sensitive mechanisms operating 
on spatiotemporally oriented energy in Fourier space can estimate motion in image signals for which matching 
approaches would fail [2]. One example can be the motion of random dot patterns. 

The differential method has a major drawback in the estimation of the first and second derivatives of the pixel intensity, 
mainly in the case of noisy images. To improve noise robustness, a common strategy is to use regularization methods 
based on variational integrals. On the contrary, frequency-based methods are in general more robust to noise [3]. Due to 
the fact that cardiac images are quite noisy, a frequency-based approach has been chosen for the implementation of our 
algorithm  

2.1 Optical flow 

The initial hypothesis for measuring image motion is that the intensity structures of local time-varying image regions are 
approximately constant under motion for at least a short duration [4]. That is, changes in the image intensity are due only 
to translation of the local image intensity and not due to changes in lighting, reflectance, etc. According to this 
assumption, the total derivative with respect to time of the image intensity function should be zero at each position in the 
image and at every time.  

Let ),( txi  denote the intensity function, where yxx ,  represents the pixel position and t  is the time. If the 

intensity remains constant, then 



),(),( ttxxitxi                      (1) 

where x is the displacement of the local image region at ),( tx after time t . Expanding the left-hand side of this 

equation in a Taylor series yields 

            0tivi             (2) 

where yx iii ,  is the spatial intensity gradient, ti  is the derivate of the intensity with respect to time, and 

yx vvv , is the image velocity.  

This equation is called the optical flow constraint equation (OFCE). Unfortunately, one scalar equation is not enough for 
finding both components of the velocity field. It gives only the component in the direction of the gradient, that is, the 
normal flow. This problem is usually called the aperture problem [5]. 

2.2 Frequency domain description 

Many important insights about the estimation of motion may be explained in a straightforward manner by considering 
the problem in the Fourier domain. This is easily appreciated by considering the motion of a one-dimensional signal. We 
can represent such a signal as an intensity image in which the intensity of each pixel corresponds to the value of the 
signal at a particular location and time. A translating one-dimensional signal has the appearance of a striped pattern, 

where the stripes are oriented at an angle of v/1arctan , where v  is the velocity of the signal [1]. Clearly, the 

Fourier decomposition of this signal is a set of sinusoids of this same orientation, and varying wave number (spatial 
frequency magnitude). Thus, the power spectrum of the Fourier transform will be located along a line that passes through 
the origin at angle , as illustrated in figure 1.  

Fig. 1. a) Sinc function translating (v=1 pixel/sec).  b) Fourier transform of the signal a).

The situation in two dimensions, although more difficult to illustrate, is analogous. A translating two-dimensional pattern 

has the appearance of oriented “bundles of fibers” in a 3D space-time tyx ,, . The Fourier transform spectrum of an 

image undergoing rigid translation lies in a plane in the spatio-temporal frequency domain. 

For analyzing a video sequence through a three-dimensional Fourier transform let us assume again that we can represent 

an image sequence through a function yxi ,0  such as 

tvytvxityxi yx ,,, 0       (3) 

where the main assumption here is that moving objects must move with a uniform velocity vector yx vv ,  and must 

have a constant illumination. Now, by calculating the spatial and temporal Fourier transform of the sequence tyxi ,, ,

we obtain 

             tyyxxyxtyx ffvfvffIfffI ,,, 0        (4) 
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where I0 represents spatial Fourier transform of i0 and  is the Dirac delta function. 

Thus, tyx fffI ,,  is nonzero only on a plane, which is called the motion plane [6]. This plane passes through the 

frequency origin. Its equation is given by 

0tyyxx ffvfv           (5) 

Estimating parameters of this plane leads to estimate the velocity vector components yx vv ,  of the moving object. 

Therefore, equation (5) can also be viewed as the Fourier transform of the OFCE 
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2.3 STF approach   

Among the different techniques for computing optical flow using frequency-based methods, the spatiotemporal-
frequency approach (STF) has been proposed, which gives a simultaneous representation of a signal in space and spatial 
frequency variables [7]. One implementation of the STF approach employs the Wigner-Ville distribution (WVD) as an 
underlying STF image representation. 

The major motivation for considering the use of STF image representation approach as a basis for computing optical 
flow comes from the literature on mammalian vision. In particular, some investigations have demonstrated that many 
neurons in various cortical areas of the brain behave as spatiotemporal-frequency bandpass filters [8]. In the field of non-
stationary signal analysis, the WVD has been used for the representation of speech and image. Jacobson and Wechsler 
[7,9] were the first to suggest the use of the WVD for the optical flow estimation. 

The Wigner Distribution was introduced by Wigner as a phase space representation in Quantum Mechanics, and it gives 
a simultaneous representation of a signal in space and spatial frequency variables [10]. Later, in the area of signal 
processing, Ville derived the same distribution that Wigner proposed several years before [11]. The WVD can be 
considered as a particular occurrence of a complex spectrogram in which the shifting window function is the function 
itself [12]. 

The WVD distribution of a moving sequence is a 6-dimensional function defined by  

dddetyxRwwwtyxW tyx wwwj

ityxi ,,,,,,,,,,      (7) 

where

tyxityxityxRi ,,,,,,,,, *       (8) 

and where * denotes complex conjugation.  

Again, for the case where a time-varying image tyxi ,,  is uniformly translating at some constant velocity, the WVD 

of this image is 

     yxyxityyxxtyxi wwtvytvxWwwvwvwwwtyxW ,,,,,,,,     (9) 

From (9), the WVD of a linearly translating image with velocity yx vv ,  is everywhere zero except in the plane defined 

by  

0:,,,,, tyyxxtyx wwvwvwwwtyx         (10) 

Equivalently, for an arbitrary pixel at tyx ,, , each local STF spectrum of the WVD is zero everywhere except on the 

plane defined in (10). For this reason, if a procedure for estimating the velocity associated with a given STF spectrum is 



found, we will obtain a space and time varying optical flow function. In the next sections we will describe how the 
Hough Transform can be used for computing the optical flow together with the WVD. 

3. IMPLEMENTATION ISSUES 

In section 2 details about the frequency description on motion estimation, specifically on a spatio-temporal approach, 
have been presented. In this section, this background is used to make a description about the method proposed. As 
mentioned before, it is necessary to choose a procedure for estimating the slope of the plane found in the spectrum. In 
our algorithm, the technique proposed is the HT due to the ability to discard outliers induced by the WVD. In the next 
section, a short explanation of the HT is made, followed by the description of the algorithm proposed.  

3.1 Hough Transform 

The problem of determining the location and orientation of straight lines in images is of great importance in the fields of 
computer vision and image processing. One approach used for the detection of lines is the Hough Transform (HT), a 
nonlinear filtering technique to estimate the position and direction of certain curves in a discrete image [13]. Despite its 
name, it is not an invertible transform in the sense of Fourier transform or the like. Another pose estimation method 
commonly used is the least squares (LS) algorithm, which is based on the minimization of an objective function: the sum 
of squared distances between image features and the model. The HT is the classical approach for finding the parameters 
of lines in a binary image, and maps each image point to all points in the parameter space, which could have possibly 
produced the image point. Thus, each image point votes for the shape parameters that could have produced it. The points 
in the parameter space that accumulate the greatest number of votes, which appear as peaks, are the most likely to have 
produced the shapes in the true image. Therefore, the HT reduces the problem of detecting spatially spread patterns in 
the image space to that of finding localized peaks in a dual parameter space [14]. Its main advantages are the ability to 
discard features belonging to other objects and the robustness against incomplete data and noise [15]. These 
characteristics are very important in our problem due to the fact of the presence of cross-terms of the Wigner-Ville 
distribution, so we can use a more efficient method for determining the motion plane.  

The parameterization specifies a straight line by the angle  of its normal and its perpendicular distance  from the 
origin. If we restrict  to the interval [0, ], then the normal parameters for a line are unique. With this restriction, every 
line in the x-y plane corresponds to a unique point in the -  plane [16]. 

3.2 Algorithm proposed 

As seen in the previous section, a line can be completely characterized in the Hough plane, as well as a line and also a 
plane. This feature has been used to determine the velocity by means of the HT applied to the STF spectrum. 

Our first approach was based on the use of the HT on the whole spectrum in order to find the plane. In this way, each 
pixel of the spectrum with a nonzero value was represented in the Hough plane. However, those pixels of the WVD 
belonging to cross-terms influenced on the final result, and sometimes can produce incorrect solutions. For this reason, 
we have used another approach based on the HT computation for each of the frames of the spectrum in order to detect a 
line on each of them and in this way discarding the information from cross-terms pixels. Furthermore, this 
implementation is computationally less demanding. 

At the end, our problem can be reduced to find one straight line in each temporal frame. Furthermore, we already know 
that the spectrum contains the frequency origin, and we can observe that the lines in different temporal frames are 
parallel. Taking into account these facts and by means of applying the HT the plane will be detected.

We will illustrate our algorithm with an example. Given a sequence composed of a circular object moving with a oblique 
velocity in the coordinates X and Y, performing the WVD we will find a plane which is represented in each temporal-
frequency frame by a line. Some of these frames are shown in Figure 2. 



Fig. 2. Several frames of the WVD of the sequence 

With our method, we perform the HT for each of the frame of the spectrum (represented in Fig. 2). The result of the HT 
applied to the first three frames is shown in Fig. 3, where the maximum point of each HT gives the position of the line by 
means of  and .

Fig. 3. HT of the first three frames shown in Fig. 2. 

Taking the maximum value of this HT, the information of the position for each line is provided. As every straight line 
found in one frame is parallel to the others, the maxima found in all the HT lie all in a line, which means that every line 
of the spectrum has the same angle . Summing up all the HT transform of the frames of the spectrum, it is easily found 
that all these maxima belong to one line (see Fig.4-a).  

Actually, the information provided by the angle of one of the peaks would be enough for estimating the direction of the 
velocity. But most of the times, ideal conditions are not met (we must remember, for example, the presence of cross-
terms induced by the WVD), and in some cases, by considering only one of the frames we can end up with an erroneous 
solution, due to noise or other external factors. We propose to use the redundant information of all the frames and the 
property shown in the Fig. 4-b), which is that all the maxima form a straight line and by applying the HT to the 
summation of all the peaks, erroneous peaks can be easily discarded. 

In order to estimate the magnitude of the velocity, the values of the different  obtained have been used (i.e. the distance 
from the lines to the origin), so as to estimate the slope of the plane. As Fig. 4-b shows, the values of  lie along a line, 
whose slope can be measured by means of another HT.  

Fig. 4. a) Summation of all maxima of the HT of all the frames of the WVD. b) Values of  of the HT for the different 
frames of the WVD 

Temporal frequency



3.3 Implementation of the algorithm for local estimation of motion 

This implementation should be used when the a priori information of assuming only one object in the sequence is 
unknown. Thus, a small window is assigned to each pixel of the sequence, and the algorithm presented in the previous 
section is executed for each of the windows. However, using only one fixed size of window can lead to several problems 
such as aliasing effects. For this reason, the technique above described has been modified in a hierarchical coarse-to-fine 
framework.  

A hierarchical scheme allows the images to be decomposed in different scales of resolution in the form of Gaussian or 
Laplacian pyramids. Because of a low-frequency representation at coarser resolutions, the optical flow constraint 
equation becomes applicable in the case of large image motions. In addition to handling fast motions, hierarchical 
processing also offers increased computational efficiency [2]. With only one scale of resolution, because of low sampling 
rates and aliasing effects, the OFCE becomes inappropriate. 

In the case of our implementation, the problems which have being solved with the hierarchical implementation are the 
aliasing effect, the apperture efect and the problem of measuring large or too small image motions. Considering again the 
example shown in Fig. 1, let us suppose a decrease in the velocity to 0.5 pixels per second (see Fig. 5-a). Its spectrum is 
shown in Fig. 5-b), where the aliasing is clearly visible. With a coarse resolution in space, taking only one pixel out of 
two, the velocity is increased a factor of two (Fig.5-c), and consequently, the aliasing is eliminated (Fig. 5-d). With this 
hierarchical implementation, the most accurate velocity is chosen after having obtained the results for all the scales of 
resolution. The decision about the velocity measurement is made taking into account the accuracy of the HT.
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Fig. 5. a) Sinc function translating (v=0.5 pixel/sec). b) Spectrum of the signal. c) Signal downsampled in space. d) 
Spectrum of the signal c). 

4. RESULTS 

4.1 Results under synthetic sequences 

The new methodology proposed here was applied for evaluation purposes to synthetic images of a moving circular object 
with constant intensity, which can be described as: 

y

x

vtyty

vtxtx

0

0

sin

cos
     (15) 

where  represents the radius of the circle with a constant gray level,  varies from 0 to 2 , [x0, y0] is the initial point, t
corresponds to the variation of the position with the time and finally, vx and vy are the velocity components of the circle. 
Fig. 8 shows three images of the sequence, for vx =1 and vx =-1. 

Fig. 6. Images of the synthetic sequence for vx = 1 and vy = -1 

In order to estimate the global motion, we have obtained a smoothed 3D frequency spectrum by means of a Hanning 
filter which has been previously introduced [3]. 
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The method was applied to distinct values of , [x0, y0] and [vx, vy]. Some results are shown on Table 1. For these simple 
sequences, when we consider a moving object with a uniform velocity and we calculate a global motion, an accurate 
information about the optical flow can be obtained by means of the method based on WVD-HT.  

Table 1. Translations in pixels/frame for several examples. 

A further step on the analysis has been done, estimating the motion locally by means of the hierarchical implementation 
above explained. An example with two hierarchical levels will be discussed later in Fig. 7-a, where the image size is 
128x128x25 pixels, and window sizes are 25 and 50 pixels. For these sizes of window, we can observe that the optical 
flow estimated in the regions near to the border of the circle is very accurate (compare with the results obtained with the 
variational method in Fig. 7-b). Only regions inside the circle provide uncertainty due to the apperture problem, and 
therefore values for optical flow are less accurate.

We have applied the variational method to the same simple sequence used before. We can observe the results for an 
arbitrary frame obtained for vx=1 and vy=0 in the Fig. 7-b, where it is shown the optical flow obtained after 
regularization. We can see that the values of optical flow are about 1 pixel per frame, but the optical flow doesn’t always 
fit the right positions. The uncertainty of the optical flow obtained in regions inside the circle, which is due to the 
apperture problem, has been partially corrected by means of the regularization. 

Fig. 7. a) Optical flow with local estimation using the method based on WVD-HT; b) Optical flow obtained using variational 
methods.

Differential methods provide an optical flow for each pixel of the sequence, so it can be a tough task to perform a direct 
comparison with the global motion estimation method based on WVD-HT, but we can make a comparison through the 
local motion estimation. Fig. 7-a and 7-b show that results obtained with our method are comparable with the variational 
technique and the motion field obtained with our method fits better the right positions.

Finally, to test the robustness against noise of the new algorithm proposed, several experiments have been conducted 
adding different types of noise to the sequence. Table 2 shows results of estimated translation for our sequence with 
added noise, when the actual translation is Vx = 1 pixel/frame and  Vy = -1 pixel/frame. The Gaussian and Speckle added 
noise are characterized by its variance and the Salt & Pepper noise by its density.  

Actual translation Estimated translation 

Vx Vy vx vy

1 0 1.0000 -9.4941e-016
1 -1 0.9717 -0.9748 

-0.7 0.5 -0.6773 0.5203 
0.7 -1 0.6935 -0.9434 
-1.2 -0.7 -1.1973 -0.6790 

a) b)



Table 2. Estimated translations provided by WVD-HT method in pixels/frame for actual translation Vx=1 and Vy=-1 for 
different additive noise variances. 

Gaussian Speckle Salt&Pepper 

Noise
Variance/Density vx vy vx vy vx vy

0.05 0.97 -0.97 0.97 -0.97 0.96 -0.98 
0.1 0.98 -0.95 0.97 -0.97 0.96 -0.98 
0.2 0.95 -0.95 0.98 -0.96 0.98 -0.97 
0.4 1 0 0.97 -0.98 0 -1 

In the case of the variational method, the added noise of each pixel has influence on the estimation of first and second 
derivatives of the pixel intensity. The optical flow obtained, obviously, gets worse as the noise increases.  

4.2 Motion estimation for CMR sequences 

The method proposed has been applied to real CMR sequences in order to estimate the myocardial deformation, and its 
performance has been evaluated under these non ideal cases. A local analysis of motion has been carried out, asigning a 
small window to each pixel of the sequence, and executing the algorithm for each of the windows. Thus, an optical flow 
for all the pixels of the sequence is obtained when the algorithm is executed for each of the pixels of the sequence. 

In this case, the analysis is more complex because the initial conditions are not the ideal ones. The first condition is that 
objects must move under a uniform velocity. In a real sequence, a uniform velocity cannot be guaranteed. So the size of 
the sequence in the temporal axis must be small enough to suppose uniform movements. However, the number or images 
must be enough to obtain useful information on the slope of the plane contained on the 3D Wigner-Ville distribution. 

On the other hand, the main problem of these sequences is the presence of a deformable cardiac wall instead of a rigid 
moving object. Because of this reason, some cross-terms are found in the spectrum and in some cases, these terms can 
mask the plane. In order to try to make uniform these small changes between the images of the sequence, a preprocessing 
stage has been performed, filtering and thresholding the image. Nevertheless, the problem of the presence of a 
deformable object is going to be the main one.  

Fig. 8-a presents several frames of one of the windows of the original sequence (extracted from a cardiac magnetic 
resonance), where it is shown how the object doesn’t preserve the form. The correlation of this sequence (Fig. 8-b), 
therefore, is variable with time. For that reason, as seen in Fig. 8-c, the spectrum doesn’t have a clear plane detectable for 
the HT. This fact is due to the non-uniformity of this correlation. Thus, it is necessary to have a uniform correlation in 
order to obtain a better plane. A probabilistic approach based on Gaussian mixtures has been implemented. Information 
about the position and shape of each frame of correlation is extracted and processed so as to get a uniform correlation 
where the main information from the original one is preserved. Thus, the plane is detectable (Fig. 8-d) and the accuracy 
of the motion detection is improved. 

Fig. 9 shows the results of the HT applied to the spectrum of figure 8-d. The first figure represents the summation of all 
the maxima of the HT. As mentioned before, almost all of them belong to the same angle and therefore, the direction of 
the movement is easily estimated. In the second figure are represented the values of , information needed to evaluate the 
slope of the plane. The green line is an approximation by least squares, and the red line is the HT result. As seen, the LS 
gives a worse result because it doesn’t eliminate outliers. 



Fig. 8. a) Frames of a cropped region of a cardiac magnetic resonance. b) Correlation of the sequence. c) Spectrum obtained. 
d)  Spectrum after processing the correlation.

Fig. 9. a) Summation of all HT maxima. b) Values of  and estimation by LS (green line) and HT (red line). 

a)

b)

c)

d)



Unfortunately, the ground truth is not provided in these real sequences, so it is not possible to achieve a quantitative 
result. In the example shown in Fig. 8 a velocity of vx=0.38 pixels per frame and vy=-0.5 pixels per frame has been 
obtained (where the window size was 20x20x20 pixels). Looking at the first and last image (Fig. 10), it is possible to 
make a qualitative evaluation of the result, which confirms its feasibility. 

Fig. 10. a) First image of the selected region. b) Last image of the selected region. c) Qualitative movement. 

The optical flow obtained for another sequence, taking frames of a systolic period is shown in Fig.11. Although the 
ground truth is not provided as it was mentioned before, a qualitatively assessment of the direction of the optical flow 
obtained confirms the movement of the myocardium. 

Fig. 11-a). Optical flow obtained during a period of systole superimposed on the first image of the sequence-  b) Same 
optical flow obtained 

5. CONCLUSIONS 

In this paper, a frequency-based method for motion estimation based on the computation of the Wigner-Ville distribution 
together with the Hough Transform has been presented. Results from synthetic sequences have been shown, evaluated 
and compared with an implementation based on the variational method.  The validated method has been applied also in 
real sequences of CMR. 

The estimation of global motion gives values of optical flow very close to the actual ones. In this case, we can say that 
the solution is more accurate and robust to noise than the one obtained with the variational method. Nevertheless, a more 
fair comparison between both methods has been performed with a local estimation of motion. Selecting an appropriate 
size of window and using a hierarchical approach, the proposed method gives similar results to the variational approach. 

The advantages brought by the WVD-HT method are the robustness to noise and the accuracy in global estimation of 
motion. In both methods, WVD-HT’s and variational’s, one of the major drawbacks is the selection of the optimum 
parameters for the algorithms.  

The algorithm has been applied to real cardiac magnetic resonance sequences. Motion estimation in these sequences is 
very important for a fast a better diagnosis of cardiac diseases. Results obtained have been evaluated qualitatively. 
Further evaluation in clinical data should be addressed to confirm current promising results.  
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