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Abstract 
Dynamic 18F-fluorodeoxyglucose positron emission 
tomography (PET) studies can successfully be used 
for diagnosis, therapy planning and monitoring in 
oncology. Using similarity mapping, we assessed the 
accuracy of anatomical localization of lesions and 
the detectability of metastases. 17 patients with co-
lorectal cancer and 3 patients with plasmocytoma 
were included in the study. All dynamic 18F-FDG 
PET data sets were iteratively reconstructed and the 
55-60 min SUV (standardized uptake values) were 
estimated. Similarity maps were calculated using 
reference tumor volumes of interest according to 
four similarity measures (correlation coefficient, 
normalized correlation coefficient, sum of squares 
normalized correlation coefficient, squared sum 
normalized correlation coefficient). The latter pro-
vided the best similarity maps in all cases delineat-
ing malignant lesions and enhancing the detectabil-
ity of metastases. We show that similarity mapping 
has a significant clinical value in identifying image 
structures in dynamic PET studies. 

1. Introduction 
Positron emission tomography provides physicians 
with unique diagnostic information which may im-
prove patient management and reduce the total cost 
of patient care. It produces images of molecular-
level physiological function, which can be used to 
measure many vital processes, such as glucose me-
tabolism, blood flow and oxygen utilization. 

PET permits the assessment of chemical and 
physiological changes related to metabolism. This is 
important because functional change often predates 
structural changes in tissues. PET images may there-
fore demonstrate pathological changes long before 
they would be revealed by modalities like computer-

ized tomography (CT) and magnetic resonance im-
aging (MRI). Unlike traditional nuclear medicine, 
PET uses unique radiopharmaceuticals that are the 
basic elements of biological substrates. These iso-
topes mimic natural substrates such as sugars, water, 
proteins, and oxygen. As a result, PET will often 
reveal more about the cellular-level metabolic status 
of a disease than other types of imaging modalities.  

After extensive investigation in experimental 
and clinical oncology, 18F-fluorodeoxyglucose (18F-
FDG) PET has been proved to be a valuable imag-
ing technique for the evaluation of a variety of tu-
mors. Dynamic 18F-FDG PET studies (temporal se-
quences of images at the same bed position) offer 
differential diagnostic information and has increas-
ingly been used for diagnosis, therapy management 
and evaluation. Several methods have been proposed 
for the analysis of such studies, in order to increase 
the accuracy of localizing primary tumors and me-
tastases and to improve the prognosis of patients 
[1,2]. In this context, we have investigated the per-
formance of similarity mapping (SM). 

In SM, the similarity between the time activity 
curve (TAC) of each pixel and the TAC of a refer-
ence region of interest (ROI) is calculated and dis-
played as an image (similarity map). The similarity 
map segments the image into regions according to 
their temporal rather than spatial properties [3]. SM 
images therefore provide spatially differentiated 
quantitative information describing the physiologi-
cal behavior of the images structure, which often 
can not be extracted from the visual inspection of 
dynamic PET image sequences. Several measures 
can describe the similarity [4]: covariance function, 
cross-correlation, difference, Tanimoto similarity 
coefficient.  

In this work we present the application of the 
similarity mapping method in dynamic PET images 
of cancer patients. 
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2. Materials and Methods 
The study included 17 patients with colorectal tumor 
recurrences and 3 patients with plasmocytoma. The 
final diagnosis was confirmed by histopathology. 
After intravenous injection of 300-370 MBq 18F-
FDG, 23 frames were acquired for 60 min (10 
frames of 1 min, 5 frames of 2 min, and 8 frames of 
5 min) using an ECAT EXACT HR+ tomograph 
[5,6]. After scatter and attenuation correction, the 
data were iteratively reconstructed [7] (weighted 
least-square method, ordered subsets, four subsets, 
six iterations, image matrix: 128×128 pixels) and the 
55-60 min SUV [8] were calculated. 

Four similarity measures were used for the cal-
culation of similarity maps: Correlation coefficient 
COR, normalized correlation coefficient NCOR, 
sum of squares normalized correlation SSQNCOR, 
and squared sum normalized correlation SQSNCOR: 

∑∑

∑

==

==
N

n
n

N

n
ijn

N

n
nijn

ij

RA

RA
COR

1

2

1

2

1
 (1)

∑ ∑

∑

= =

=

−−

−−
=

N

n

N

n
RnAijijn

N

n
RnAijijn

ij

RA

RA
NCOR

1 1

22

1

)()(

))((

µµ

µµ

 (2)

∑ ∑

∑

= =

=

−−

−−
=

N

n

N

n
RnAijijn

N

n
RnAijijn

ij

RA

RA
SSQNCOR

1 1

22

1

22

)()(

)()(

µµ

µµ

(3)

∑ ∑

∑

= =

=

−−

−−
=

N

n

N

n
RnAijijn

N

n
RnAijijn

ij

RA

RA
SQSNCOR

1 1

22

1

2

)()(

)))(((

µµ

µµ

(4)

where N is the number of frames, M is the number 
of slices, Aijn is the value of pixel (i, j) in frame n, Rn 
is the value of the reference ROI TAC, µR is the 
mean value of the reference TAC and µAij is the 
mean value of the pixel (i, j) TAC. A reference vol-

ume of interest (VOI) over the tumor instead of a 
reference ROI was used, in order to improve the sta-
tistical properties of the TAC. 

Both correlation and normalized correlation 
maps have values ranging from –1 (for regions that 
are perfect “negatives” of Rn) to +1 (for regions 
which are identical to the reference TAC). While 
both measures are normalized for proportional dif-
ferences, only the NCOR is normalized for additive 
differences [3]. SSQNCOR and SQSNCOR provide a 
similarity measure normalized for additive differ-
ences and perfect negatives and have values ranging 
from 0 (for totally uncorrelated regions) to a maxi-
mum value different in each case. 
 

3. Results 
The time required for the analysis of a complete data 
set (23 frames, 32 slices per frame, 128×128 pixels 
per slice) was 40 sec for the calculation of the SM. 
Figure 1 shows an example of four similarity maps 
calculated according to equations (1)-(4) for the 
same transaxial image slice of one data set. In all 20 
patient studies, similarity maps based on the correla-
tion coefficient and the normalized correlation coef-
ficient were very noisy and the tumors could not be 
separated from the other structures.  

Figure 1: Similarity Maps of the same image slice 
calculated using the tumor VOI according to the 
COR (upper left), NCOR (upper right), SSQNCOR 
(lower left) and SQSNCOR (lower right) formulas 
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Figure 2. Similarity maps (upper row) and SUV images (lower row) from three transaxial slices from dy-
namic PET studies of patients with a plasmocytoma of the right tibia (left column) and recurrent colorectal 
tumor (middle and right columns) 

In the sum of squares normalized correlation 
coefficient similarity map, both the tumor and the 
vessels were present, whereas in the squared sum 
normalized correlation coefficient similarity map 
the tumor was the only predominant structure. 
Since both measures are normalized for “negative” 
differences, regions with almost opposite time ac-
tivity curves such as the tumor and the vessels have 
similar values and are visible in the resulting map. 
However, the SQSNCOR enhance the differences 
and provides better results in revealing the struc-
tures of interest.  

Figure 2 shows a comparison of SM images 
(SQSNCOR, upper row) vs. SUV images of the 
same studies (lower row). The left column shows a 
transaxial slice from a dynamic PET study of a pa-
tient with a plasmocytoma of the right tibia. SUV 
images show an enhanced FDG uptake in the center 
of the lesion, while the peripheral parts of the tumor 
show a more diffused enhanced FDG uptake. The 
SM image demonstrates two parts of the giant cell 
tumor with enhanced FDG uptake with a different 
distribution pattern than conventional SUV image. 
Furthermore, the vessels are well delineated. The 

middle and right columns show two transaxial 
slices from dynamic PET studies of two patients 
with recurrent colorectal tumor. The lesions are 
well delineated in the SUV image (presacral). In the 
SM image the tumors show better contrast than in 
the SUV images and the vessels are clearly deline-
ated. 

Prior to the calculation of similarity maps, the 
dynamic images should be checked for proper spa-
tial registration [3]. Another consideration is the 
need of manual selection of the reference VOI by 
an operator according to the clinical question being 
asked. This procedure can be time consuming, sub-
jective and prone to operator bias. Research is on-
going for the development of a semi-automatic 
technique for the optimum selection of reference 
ROI by testing many possible reference pixels us-
ing a maximum entropy method [11].  

4. Conclusions 
Although similarity mapping has successfully iden-
tified various structures in dynamic MRI data sets 
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[3, 4, 9, 10], it has not yet been applied to dynamic 
PET data sets.  

Our study showed that the SQSNCOR similar-
ity map rapidly identifies structures with similar to 
the tumor temporal properties and enhances the 
detection of metastases that are not easily discrimi-
nated in the SUV images due to poor image quality 
or lesions characteristics (size, location etc). There-
fore, similarity mapping based on the squared-sum 
normalized correlation coefficient measure could 
successfully be used in the analysis of dynamic 18F-
FDG PET data sets in oncology to support the vis-
ual interpretation of the studies. 
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