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Abstract—Parallel magnetic resonance imaging (pMRI) techniques have gained a great importance both in research and clinical

communities recently since they considerably accelerate the image acquisition process. However, the image reconstruction algorithms

needed to correct the subsampling artifacts affect the nature of noise, i.e., it becomes non-stationary. Some methods have been

proposed in the literature dealing with the non-stationary noise in pMRI. However, their performance depends on information not

usually available such as multiple acquisitions, receiver noise matrices, sensitivity coil profiles, reconstruction coefficients, or even

biophysical models of the data. Besides, some methods show an undesirable granular pattern on the estimates as a side effect of local

estimation. Finally, some methods make strong assumptions that just hold in the case of high signal-to-noise ratio (SNR), which limits

their usability in real scenarios. We propose a new automatic noise estimation technique for non-stationary Rician noise that

overcomes the aforementioned drawbacks. Its effectiveness is due to the derivation of a variance-stabilizing transformation designed

to deal with any SNR. The method was compared to the main state-of-the-art methods in synthetic and real scenarios. Numerical

results confirm the robustness of the method and its better performance for the whole range of SNRs.

Index Terms—MRI, parallel MRI, spatially variant noise, noise estimation, variance-stabilizing transformation, Rician distribution
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1 INTRODUCTION

THE Johnson-Nyquist (thermal) noise, coming from the
stochastic motion of free electrons in a receiver coil, is

one of the most dominant sources of deterioration in mag-
netic resonance imaging (MRI). Apart from the image qual-
ity impoverishment, this noise also affects further stages of
the data processing pipeline, such as image segmentation or
registration procedures [1], accuracy of tensor estimation in
diffusion tensor imaging (DTI) [2], and fiber tracts recon-
structions in diffusion tensor tractography [3], and fMRI
analysis [4]. Moreover, noisy data might seriously affect the
diagnostic performance of the image-derived metrics like
signal-to-noise ratio (SNR) and contrast-to-noise ratio
(CNR), or the evaluation of tumor tissues [5]. Consequently,
an accurate modeling of the noise statistics is the keystone
for better processing and interpretation of MRI data.

The noise distribution of magnitude MRI depends on the
configuration of the acquisition system and the image

reconstruction algorithm [6]. In single-coil systems, the
noise component is assumed to be complex additive white
Gaussian noise (AWGN) in the k�space domain with con-
stant variance over the whole field of view (FOV) [7]. This
variance is proportional to the resistive impedance of the
receiver coil and it is pro rata transposed to the spatial
domain (x�space) of the image by means of the inverse dis-
crete Fourier transform (DFT). After the reconstruction pro-
cess, the envelope (magnitude) of the complex signal
follows a stationary Rician distribution [8], though in the
background areas it reduces to a stationary Rayleigh due to
the lack of water proton density.

Over the last decade, the use of phased array coil to
acquire MRI data is systematically displacing single-coil
devices. Multiple coil data requires an image reconstruction
algorithm to combine the complex signals from each individ-
ual coil into a single composite image. Depending on the
assumptions about the coil configuration and image model,
different algorithms can be applied for this reconstruction,
like those based on a spatial-matched-filter (SMF) [9] and on
the sums of squares (SoS) [10]. In the first case, the image can
be considered as non-stationary Rician, while in the second,
it follows a noncentral chi (nc-x) distribution [10]. However,
if the correlation between coils is taken into account, the nc-x
assumption becomes just an approximation of the real
distribution, and effective valuesmust be considered [11].

If the acquisition is accelerated via a subsampling of the
k�space, the aliasing artifacts must be corrected using
image reconstruction algorithms, known as parallel MRI
(pMRI). Many different methods have been defined to
reconstruct the final image from subsampled versions of the
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signals in each coil, being SENSitivity Encoding (SENSE)
[12] and GeneRalized Autocalibrating Partially Parallel
Acquisition (GRAPPA) [13] dominant in commercial scan-
ners. However, new reconstruction methods and modifica-
tions of the existing ones are continuously proposed. The
use of these correction algorithms changes the underlying
statistical model of the data. For SENSE imaging, the magni-
tude MRI signal is defined as non-stationary Rician [14] and
for GRAPPA it can also be approximated by a non-station-
ary nc-x distribution with an increased effective variance of
noise and decreased effective number of coils [15].

Although numerous dedicated noise estimation schemes
in MRI were proposed in the literature (an extensive review
can be found in [16]), a substantial majority of them require
multiple acquisitions, background identification or fore-
ground extraction. Even in the case of automatic estimation
based on a single image, like [16], [17], methods just esti-
mate a single value for the variance of noise without consid-
ering its local variation, making them useless for spatially
variant noisy patterns, such it is the case for modern acqui-
sition systems.

Some computational techniques dealing with non-statio-
narity have been suggested in the literature. However, in
most of the cases, their accuracy is limited due to the granu-
larity caused by local estimation. Moreover, some of them
require further information which is not always available in
conventional in vivo examinations: receiver noise matrix
[18], sensitivity coil profiles in SENSE and reconstruction
coefficients for GRAPPA [19], biophysical model of the data
[20] or repeated acquisitions [5], [20], [21], [22], [23].

In this paper, we propose an automatic method to esti-
mate the spatially variant Rician noise from MR imaging.
This kind of noise is particularly interesting since we can
find it in SENSE acquisitions and in multiple coil recon-
structions that use SMF. Compared to the state of the art,
the proposed method shows the following advantages:

1) It does not depend on repeated acquisitions and/or a
biophysical model of the data.

2) Any additional information like sensitivity profiles
or noise matrices in the receiver coils are also
unnecessary.

3) The noise map is estimated using only a single image
without background or foreground region extraction.

4) It supports different contrast type examinations:
T1-weighted, T2-weighted and PD-weightedMRdata.

5) The method is not affected by granular effects due to
local estimation.

6) The method is robust for the whole range of SNRs
(from very low SNRs—non-stationary Rayleigh—to
very high SNRs, non-stationary Gaussian noise).

The proposed method is developed by defining a suit-
able variance-stabilizing transformation (VST). This tech-
nique allows transforming the magnitude image from a
non-stationary variate to a stationary variate. The proposed
transformation provides a proper stabilization behavior
throughout the whole range of SNRs and it is designed to
provide Gaussian-like distributed variates. Afterward, the
spatial variability of noise is retrieved by a homomorphic
filtering. The proposal was compared to the most relevant
state-of-the-art methods for non-stationary Rician noise esti-
mation showing a remarkably better behavior.

2 BACKGROUND

2.1 Non-Stationary Noise Estimation in MRI

Traditionally, noise estimators proposed in the literature
determine a single value of s for the whole image (e.g., [16],
[44]). However, an increasing number of methods attempt to
estimate non-homogeneous maps of noise in several fields
related to imaging not strictly confined to theMRI context.

One of the first attempts for spatially variable noise esti-
mation in Rician distributed data was proposed by Marzetta
[24] and adapted by DeVore et al. [25] in the context of sin-
gle-polarization synthetic aperture radar (SAR) images.
Authors propose an expectation-maximization (EM) itera-
tive algorithm to find maximum likelihood (ML) estimates
of the parameters of a Rician distribution. To that end, mul-
tiple samples of the receiving signal are necessary.

In a more general context, Goossens et al. proposed in
[26] a method to estimate the spatially variant map of noise
in images assuming they are corrupted by a non-stationary
AWGN process. The wavelet transform was used to sepa-
rate the signal and the noise assuming that the high-high
subband is strictly noise.

In the MRI field, the pioneers of spatially variable noise
estimation were Samsonov and Johnson [18], defining a
method to calculate the noise map from the receiver coil
noise matrix, which, in fact, is not always available in a clini-
cal routine. Delakis et al. [27] proposed a method to estimate
spatially variant noise by suppressing the signal component
without the need of extra information. To that end, they
removed the low-low subband coefficients of the stationary
wavelet transform (SWT) of the magnitude image. The esti-
mation is done assuming that the signal component has
been completely removed and the resulting image is Ray-
leigh distributed noise.

An alternative technique was proposed by Landman
et al. [20], [28], based on a robust scale estimator followed
by a regularization procedure using a coil sensitivity model.
Although this method was proposed to cope with multiple
independent MR scans, in its basic scenario it can be used to
estimate the noise map from a single image.

Other significant estimation methods are the following:
Guo andHuang [29] proposed a local variance as a noise level
estimator after edges exclusion by means of local mutual
information and k-means segmentation; Aja-Fern�andez
et al. in [35] proposed a noise estimation approach for non-
accelerated SoS reconstructed MR images from correlated
multiple-coil; Maggioni and Foi [33] exploited the sparsity of
the representation of similar 2D patches in the non-local
scheme using Gaussian and Rician assumptions; Rajan et al.
[32] proposed another scheme employing ML estimator for
Rician distributed data; in Pan et al. [34] a blind local noise
estimation procedure was proposed assuming that the kurto-
sis of theMR image is constant across different discrete cosine
transformation (DCT) bands.

Unlike previously cited methodologies, there are some
estimation techniques that initially calculate noise maps
assuming a Gaussian distribution, and correct them to the
Rician/nc-x case for low SNRs. This correction is usually
achieved by using the celebrated Koay’s correction pro-
posed in [45]. Note that all these techniques require the esti-
mation of an extra measure, the SNR, which is also position
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dependent. Sharing this strategy, Manj�on et al. [31] modeled
noise variance as a minimal distance between local neigh-
borhood (patch) of the current pixel and the remaining
patches in the non-local means (NLM) scheme. This
approach uses the difference between noisy and the low-
pass filtered image to determine local noise estimates. In a
similar fashion, Borrelli et al. [37] use the difference between
noisy and an NLM pre-filtered image to obtain local sample
variances followed by median filtering and Rician adapta-
tion. Maximov et al. [21] generalized the median absolute
deviation (MAD) robust estimator, initially proposed for
stationary Rician case by Coup�e et al. [46], to estimate non-
stationary noise in DTI data sets.

All the approaches reviewed so far were intended for
general purpose MRI (although most of them were only
tested over brain data). However, some authors took advan-
tage of the specificity of particular acquisitions to extract the
noise information. Veraart et al. [22] proposed a method
very similar to the one in [21], where the MAD estimator is
calculated using the information of the signal along the dif-
ferent diffusion-weighted images (DWIs) in a diffusion MRI
acquisition. Glenn et al. [23] presented a simple estimation
scheme for diffusion kurtosis imaging (DKI) using a sample
variance over all the diffusion gradients followed by a bias
correction and Gaussian smoothing of the raw estimates. In
Ding et al. [30], a random noise in dynamic MR image series
such as cardiac function imaging or blood flow velocity
mapping was considered. This approach takes advantage of
the temporal redundancy between acquisitions and it does
not require any specific data distribution or image recon-
struction technique assumptions.

In the last two years, the number of proposals for non-
stationary noise estimators in literature has remarkably
increased. This is a clear sign of the awareness of the impor-
tance of this task by the MRI community.

Liu et al. [36] adapted the MAD estimator to single MR
images. In Dikaios et al. [5], the Koay’s correction was gen-
eralized for the approximation of the sum of the Rician
probability density functions (PDFs) providing the correc-
tions for MAD in averaged diffusion images. In [19], Aja-
Fern�andez et al. showed a comprehensive statistical noise
analysis for SENSE and GRAPPA providing closed-form
expressions for the non-stationary variance of noise for both
modalities. They propose some techniques to estimate
noise, but those methods need extra information for an
accurate estimation, like the sensitivity coil profiles and the
reconstruction coefficients. In a similar fashion, Hansen
et al. [38] developed another scheme to measure the noise
level of any linear combination of complex, magnitude, or
phase pixel values of a Cartesian MRI acquisition. The
method requires access to the raw MR data and additional
technical details about the acquisition process.

Tabelow et al. [39] adapted the propagation-separation
method to nc-x distributed data followed by a median filter
smoothing. This approach calculates spatially variant noise
maps by means of the weighted ML estimator which is
restricted to homogeneous regions. Aja-Fern�andez et al. [14]
proposed a homomorphic approach to separate spatially
variant noise into two terms: a stationary noise term and the
low-frequency component corresponding to the noise pat-
tern. This technique avoids the granular effect due to local

estimation and leads to a simple implementation based on
basic filtering—a great advantage when compared to the
other methods. The homomorphic filter was further
extended in [40] to blind noise estimation in GRAPPA. At
the same time, Manj�on et al. [41] proposed another noise
estimation technique using sparseness and self-similarity
properties of MR images. They utilize a principal compo-
nent analysis (PCA) decomposition in the NLM scheme to
extract the noisy component of the signal. The noise stan-
dard deviation is finally obtained as a median of the eigen-
values of the PCA decomposition and it is subsequently
corrected to deal with the Rician case. In [42], Poot and
Klein proposed a spatially regularized ML estimator to
simultaneously estimate the noise pattern and diffusion ten-
sor parameters. Finally, Veraart et al. [43] presented another
scheme to estimate the spatially variant noise maps in diffu-
sion MR imaging using the redundancy of the signal in
DWI data. The method identifies the noise level using the
combination of local PCA with randommatrix theory.

The methodologies of the state of the art dealing with
spatially variant noise are summarized in Table 1, where we
specify the context in which the method was designed
(image modality in the case of non-MRI images or the recon-
struction method in the case of MRI, where non-pMRI
accounts for single-coil MRI). Besides, although all methods
were defined for non-stationary noise, some of them take
advantage of the multidimensional nature of the acquisition
to get the spatial estimation of noise in each voxel. The
underlying noise model is described as well as the domain
where the estimation is performed. Finally, we include if
any repeated acquisition or additional data is required.

2.2 The Variance-Stabilizing Transformation

The variance-stabilizing transformation is a data transfor-
mation that has been historically applied to simplify the
analysis of variance of a certain random variable whose var-
iance is related to the mean level of the measurements [47].
The main goal of a VST is to compensate the change of the
variance with respect to the change of the mean value—
whenever this relationship is known—in order to provide a
constant variance.

The derivation of the VST is commonly associated to the
so-called delta method, which links the central limit theorem
with the convergence of the transformed random variable
Y ¼ fðXÞ by a differentiable function f . Formally speaking,
let Xn be a sequence of random variables that satisfiesffiffiffi
n

p ðXn � mÞ d! Nð0; s2Þ (i.e., convergence in distribution).

Then the first order Taylor expansion of fðXnÞ around m is
fðXnÞ ¼ fðmÞ þ f 0ðmÞðXn � mÞ, which reordering terms givesffiffiffi

n
p ðfðXnÞ � fðmÞÞ ¼ f 0ðmÞ ffiffiffi

n
p ðXn � mÞ:

Since Xn converges in distribution to a constant, Xn
d!m,

it also converges in probability and the Slutsky’s Theorem
[48] can be applied to ensure convergence in distribution as

f 0ðmÞ ffiffiffi
n

p ðXn � mÞ d! Nð0; s2ðf 0ðmÞÞ2Þ. Thus, we conclude

ffiffiffi
n

p ðfðXnÞ � fðmÞÞ d! Nð0; s2ðf 0ðmÞÞ2Þ: (1)
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Now, let us suppose that the variance depends on the
mean value, s2 ¼ VarðmÞ. We are interested in finding a

transformation fð�Þ such that s2ðf 0ðmÞÞ2 is a constant. For
that purpose, the following differential equation can be set:

s2ðf 0ðmÞÞ2 ¼ C2, whose solution provides the expression
commonly used to calculate the VST [47]

fðxÞ ¼
Z x Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðmÞp dm; (2)

where C is arbitrary constant.
The VST has lately gained importance in the image proc-

essing field. In the case of MRI, this methodology has
mainly focused on signal-dependent noise estimation and
removal procedures [49], [50]. In the case of Rician distrib-
uted data, the problem of stabilizing its variance stems from
its functional dependence with the mean. In [49], Foi
derived an asymptotic stabilizer for Rician data considering
the asymptotic approximation of the variance for large val-
ues of A in the following way.

Let M denote a Rician random variable (RV) with non-
centrality parameter A and scale parameter s (i.e.,
M � RiceðA; sÞ), whose PDF is defined as

pðMjA; sÞ ¼ M

s2
exp �M2 þA2

2s2

� �
I0

MA

s2

� �
; M � 0; (3)

where I0ð�Þ is the modified Bessel function of the first kind
and zeroth order.

The functional dependence of the variance of M for large

values of A is Var MjA; sf g � s2 � s4

2A2. Thus, by means of

Eq. (2), the asymptotic stabilizer of the Rician RV becomes

fstabðMjsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

s2
� 1

2

r
þ a; a 2 R; (4)

withM � sffiffi
2

p and a an arbitrary constant.

Due to the asymptotic derivation of Eq. (4), this result is
valid for high SNR areas, though it no longer applies for
lower ratios (SNR < 5). To properly handle low SNRs, Foi
proposed in [49] a numerical stabilization which accounts for
smoothness and asymptotic convergence of Eq. (4). During
the optimization procedure, the constraints are weighted
with different configurations giving two different stabilizers
that, for the sake of comparison, will be denoted as Foi’s
model A and Foi’s model B. The numerical optimization
applied requires the estimation of the s parameter to stabilize
the RV, which is iteratively refined by means of an algorithm
based on the fixed-point theorem (see [49] for more details).

Foi’s method proved its suitability for single-coil sys-
tems, where the noise is assumed to be stationary. However,
a problem arises in the case of non-stationary Rician data,
since the estimation of s must be done locally, i.e., sðxÞ. The

TABLE 1
Comparison of Spatially Variable Noise Estimation Techniques in MRI or Rician/nc-x Distributed Data
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direct implication is a considerable reduction of the number
of samples available for local estimation and, thus, the accu-
racy of the estimation is consequently reduced. This leads to
an inaccurate estimator of sðxÞ, especially near edges, which
results in a poor stabilization.

It is important to note that other transformations could be
proposed in order to transform a Rician distributed RV to a
Gaussian variate. For instance, in [51] Koay et al. used the
well-known inverse transform method also known as the
quantile-quantile transformation, which maps the quantiles
from the original data to the quantiles of a Gaussian RV.
This is achieved by using the cumulative distribution func-
tion (CDF) of the Rician RV, FMð�jA; sÞ, and then applying
the inverse CDF of a Gaussian RV as follows:

MG ¼ F�1
MG

�
FMðMjA; sÞ��A; s�; (5)

where F�1
MG

ð�jA; sÞ is the inverse CDF of a Gaussian RV with
the expectation A and the standard deviation s. This
approach requires the parameters of Rician signal to be
known in advance to apply the transformation. The result-
ing Gaussian distribution strongly depends on the estima-
tion of the mean and variance and becomes less robust than
the VST as we will see in the following sections.

2.3 Goals of the Proposed Methodology

Attending to the main characteristics of the aforementioned
techniques we propose a methodology that provides the
same advantages of them but also overcomes their limita-
tions. The methodology we pursue should show the follow-
ing features:

1) No Granularity. It should avoid granular patterns in
the estimation due to inaccurate estimates near the
edges or inhomogeneities in tissues.

2) Robustness for all SNRs. Some methods rely on the
asymptotic behavior of Rician RVs and are just appli-
cable for high SNRs. Others such as the inverse
transformation method strongly depend on accurate
estimates. These assumptions may cause an unde-
sired bias that may result in an inaccurate estimate
of noise when SNR is low.

3) No need of extra information. We want to keep the
methodology as simple as possible in order to avoid
information that is not usually available in conven-
tional acquisitions (repeated acquisitions, multiple
contrast images, biophysical models, background or
foreground region extraction).

3 NON-STATIONARY RICIAN NOISE ESTIMATION

In this section, we propose a methodology especially
designed to meet the aforementioned features by defining a
function that maps non-stationary Rice data to its stationary
Gaussian distributed counterpart. This function is inspired
by the VST theory already presented. Finally, the data can
be stabilized by performing a suitable homomorphic filter-
ing that estimates the non-stationary noise map without
granular patterns.

It is important to note that the proposed transformation
does not fall into the field of VST in the classical sense, in
which the transformation is obtained by considering the

differential equation resulting from the delta method.
Instead, we propose to extend the stabilization function
obtained by the classical VST equation, Eq. (2), to a more
general case in which low SNRs are also considered. This is
achieved by introducing two degrees of freedom by means
of a versatile parametric form derived from Eq. (4). This
way, the proposed formulation links the philosophy of the
inverse transform method, which is not subject to constraints
on the SNRs, to the asymptotic approach obtained with the
VST theory. This implies that an estimate of the SNR is
required and, though it could seem as an inconvenience, we
will show that both the initialization of s and the estimation
of the SNR per pixel can be efficiently achieved avoiding
the main problems of other estimators. Besides, this formu-
lation shows some important advantages: 1) It stabilizes the
whole range of SNRs; 2) Is a single-shot transformation that
does not need an iterative estimation of s.

3.1 Whole Range Variance-Stabilizer Transform

First, we propose the parametrization of the stabilization
transformation shown in Eq. (4) using a vector parameter
QQ ¼ ðu1; u2Þ as follows:

fstabðMjs;QQÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max u21

M2

s2
� u2; 0

� 	s
: (6)

Note that when ðu1; u2Þ ¼ ð1; 0:5Þ, Eq. (6) becomes the
asymptotic solution of Eq (4).

In order to cope with the different behaviors of the stabi-
lizer as a function of the SNR, the parameters should be
tuned conveniently. This can be efficiently achieved by
using a numerical optimization procedure with the follow-
ing optimization criterion

QQopt ¼ argmin
QQ

J fstabðMjs;QQÞð Þ; (7)

with QQopt ¼ ðu1opt; u2optÞ and J : R2 7! R being a cost func-
tion to be minimized

J fstabðMjs;QQÞð Þ ¼ �1 � ð1�Var fstabðMjs;QQÞf gÞ2

þ �2 � ðSkewnessffstabðMjs;QQÞgÞ2

þ �3 � ðExcessKurtosisffstabðMjs;QQÞgÞ2;
(8)

Note that the cost function favors a unitary variance, zero
skewness and zero excess of kurtosis,1 enforcing the desired
Gaussian behavior of the transformed RV.

The selection of parameter L 2 LLfð�1; �2; �3Þ 2 ½0; 1�3 :
�1 þ �2 þ �3 ¼ 1g was done empirically by following the
minimum distance estimation criterion, where the distance d
was induced from the supremum norm as

bL ¼ arg inf
L

fd ¼ jjFN � bF ðJðfstabðxjs;QQoptÞ;LÞÞjj1 : L 2 LLg;

(9)

where x ¼ ½x1; . . . ; xn� are Rician distributed samples; FN is
the CDF of a standardized Gaussian distribution, Nð0; 1Þ;bF ðyÞ is the empirical CDF of samples in y. The values for �2

and �3 were set equal but smaller than �1 to ensure the

1. The Kurtosis of a Gaussian random variable is 3.
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stabilization. Eventually, the configuration was set to
�1 ¼ 0:998, �2 ¼ �3 ¼ 0:001.

The numerical optimization of Eq. (7) is carried out for
each SNR step, s ¼ 1 and A between 0.001 and 20 (logarith-
mically increasing) by means of the Nelder-Mead method.
Variance, skewness and kurtosis are calculated in terms of
the rth raw moments of the transformed RV

Var fstabðMjs;QQÞf g ¼ m2 �m2
1;

Skew fstabðMjs;QQÞf g ¼ m3 � 3m1m2 þ 2m3
1

ðm2 �m2
1Þ

3
2

;

Kurt fstabðMjs;QQÞf g ¼ m4 � 4m1m3 þ 6m2
1m2 � 3m4

1

ðm2 �m2
1Þ2

;

where

mr ¼
Z 1

0

fr
stabðMjs;QQÞpðMjA; sÞdM;

is calculated by means of the adaptive Gauss-Kronrod
quadrature in the intervalM 2 ½0; 30�.

The optimal values of u1 and u2 obtained according to
Eq. (7) for different SNRs (with SNR ¼ A=s) are shown in
Fig. 1a jointly to their closed-form approximations. Besides,
in Fig. 1b we show the standard deviations of non-stabilized
and stabilized data for different sets of optimized parame-
ters. Note that the stabilization obtained with the asymptotic
solution, ðu1; u2Þ ¼ ð1; 0:5Þ, slightly improves when the opti-
mal value u2opt is considered, though it still lacks of good sta-
bilization for small SNR (where the Rayleigh assumption
holds). Conversely, the optimal set of parameters (u1opt; u2opt)
show an outstanding stabilization through the whole SNR
range as was desired. In Fig. 1c, the proposed parametric
form of VST is compared to Foi’s models [49].

3.2 Spatially Variant Noise Estimation

We propose a newmethodology to estimate the non-station-
ary noise out of Rician data, following the pipeline summa-
rized in Fig. 2. The strength of this methodology lies in a
proper stabilization of the Rician image for all SNRs that

allows the subsequent processing of the data as Gaussian.
The first step of the process is the application of the
parametric VST to the magnitude MR image, which trans-
forms the non-stationary Rician data to a stationary Gauss-
ian-like distributed data. A prior estimation of the SNR and
the variance of noise will be needed as input parameters.
Once the data is stabilized, we can use a non-stationary
Gaussian noise estimator to extract the variance of noise
from the image. In this work, we will make use of the
Gaussian homomorphic approach proposed in [14], since it
has proved its accuracy and robustness. In what follows, we
analyze each step separately.

First, the aforementioned parametric VST is applied to
the noisy magnitude MR image IðxÞ

eIðxÞ ¼ ds0ðxÞ � fstab IðxÞj ds0ðxÞ; u1optðxÞ; u2optðxÞ

 �

; (10)

where ds0ðxÞ is the prior noise map, u1optðxÞ and u2optðxÞ are
the optimized to local SNR transformation parameters

u1optðxÞ ¼ ðu1 	 SNRÞðxÞ; u2optðxÞ ¼ ðu2 	 SNRÞðxÞ; (11)

with pointwise SNR defined as SNRðxÞ ¼ AðxÞ
sðxÞ. Note that the

stabilization needs an estimate of both the SNR and s for

each location. Many of the methods in literature can be used

for that purpose. In this work, we use the local mean of the

image IðxÞ as the estimate of the underlying signal dAðxÞ in a

square window and the noise estimate provided in [14].

This simple strategy avoids granularities of the SNR map

usually provided by other methods. However, any method

discussed in Section 2.1 can be used to calculate dsðxÞ. In the

Fig. 1. (a) Optimized parameters u1opt and u2opt in terms of SNR and their closed-form approximations, (b) comparison of standard deviations
between Rician distributed data and different stabilizing transforms, (c) standard deviation of the variance-stabilizing parametric approach
fstabðMjs;QQoptÞ compared to Foi’s stabilizers.

Fig. 2. General scheme of the proposed non-stationary Rician noise
estimation algorithm. The red rectangles indicate interchangeable
modules of the algorithm.
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experimental section, we will show the performance of each
initialization and we will justify our choice.

Using the proposed parametric VST, Eq. (10) reads

eIðxÞ ¼ ds0ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max u21optðxÞ

I2ðxÞds2
0ðxÞ

� u2optðxÞ; 0

( )vuut ; (12)

where eIðxÞ is the stabilized image multiplied by the initial

noise map estimate ds0ðxÞ. After the stabilization, this image
is assumed to be a noise-free component AðxÞ corrupted

with additive Gaussian distributed noise Nðx; 0; s2ðxÞÞ with

zero mean and spatially variable variance s2ðxÞ

eIðxÞ � AðxÞ þNðx; 0; s2ðxÞÞ ¼ AðxÞ þ sðxÞ �Nðx; 0; 1Þ: (13)

This is the same assumption considered in [49], [52]. In the
experiments section, we will show that it perfectly holds for
the whole range of SNRs.

In the second stage, we need to separate the low-fre-
quency noise map sðxÞ from Eq. (13). To do so we adopt the
homomorphic approach proposed in [14], where a log trans-
formation is first applied to the centered data. To center the
data, we remove the mean to the signal

eICðxÞ ¼ eIðxÞ � EfeIðxÞg ¼ sðxÞ �Nðx; 0; 1Þ; (14)

where E �f g is the (local) expectation operator applied to the
variance-stabilized image. E �f g must be approximated for
practical implementation. One straight forward approxima-
tion would be the local average in a neighborhood as was
done in [14]. However, this method is prone to provide inac-
curate estimates due to the presence of different tissues
within the local window. Once more, different methods
from literature could be used here. In this paper, we con-
sider two edge-preserving algorithms: the bilateral filter for
grayscale images proposed in [53] and the SWT [22].

The bilateral filter is applied to the magnitude of vari-

ance-stabilized MR image eIðxÞ as follows:

CðxÞ ¼
P

p2hðxÞ csg
ðkp� xkÞcsr

ðjeIðpÞ � eIðxÞjÞeIðpÞP
p2hðxÞ csg

ðkp� xkÞcsr
ðjeIðpÞ � eIðxÞjÞ ; (15)

where hðxÞ is a neighborhood of pixel x, csg
and csr

are geo-
metric and radiometric distances [53]. In our case, csg

and

csr
are defined as csr

¼ csg
ðxÞ ¼ expð� x2

2s2g
Þ. Therefore, the

centered data can be calculated by eICðxÞ ¼ eIðxÞ �CðxÞ:
Alternatively, this task can be done by an SWT, which

directly centers the data, since it extracts the noise compo-
nent from eIðxÞ using the high-high (HH) subband of SWT
algorithm at scale s ¼ 1. Specifically, the noise component
corresponds to the diagonal detail coefficients

eICðxÞ ¼ ððeI
� gðrÞÞ
� gðcÞÞðxÞ; (16)

where the convolution procedure is performed with a sepa-
rable one-dimensional high-pass filter g (i.e., gðrÞ convolves
along the rows and gðcÞ along the columns).

Once the data is centered, the logarithm is applied

log j eICðxÞj ¼ log sðxÞ|fflfflfflffl{zfflfflfflffl}
low frequency

þ log jNðx; 0; 1Þj|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
high frequency

:

Since the multiplicative character of the noise can be rep-
resented as two additive components, we can separate the
low-frequency component by simple low-pass filtering

LPF log eICðxÞ��� ���n o
� log sðxÞ � LPF log jNðx; 0; 1Þjf g; (17)

where LPF is a low-pass filter. Thus, considering that
jNðx; 0; 1Þj follows a half-Gaussian distribution and assum-
ing that we can consider the LPF as a good approximation
of the mean, we can write

LPF log eICðxÞ��� ���n o
� log sðxÞ � log

ffiffiffi
2

p
� g

2
; (18)

with g being the Euler-Mascheroni constant.
Finally, Eq. (18) leads to a spatially variant noise estima-

tor defined as follows:

dsðxÞ � ffiffiffi
2

p
eLPF log eICðxÞ�� �� �

þg
2: (19)

4 MATERIALS AND METHODS

In this section, we introduce the MR data used in the valida-
tion process of the proposal and the characterization of extra
parameters used by evaluated state-of-the-art techniques in
non-stationary Rician noise estimation.

4.1 Materials

The following data sets are used for comparison:

� Synthetic MRI: three MR slices from BrainWeb simu-
lated database [54] at different transverse planes
(T1-, T2- and PD-weighted MR data) all with inten-
sity non-uniformity INU ¼ 0 percent. The data is
free of noise, the background areas are set to zero,
the slice thickness is 1 mm and the intensity range
normalized to [0–255] (Figs. 3a, 3b, and 3c).

� Artificial noise patterns: four different spatially variant
noise maps normally observed in real pMRI acquisi-
tions of the brain [19], [20], [31] (Fig. 4).

Fig. 3. Data sets used in the experiments: (a) synthetic noise-free T1-,
(b) T2- and (c) PD-weighted MR data, (d) synthetic noisy T1-weighted
SENSE simulated image, (e) real noisy T1-weighted SENSE phantom
and (f) in vivo T2-weighted FFE SENSE brain data.
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� Synthetic SENSE MRI: a synthetic T1-weighted image
from BrainWeb database is used to simulate the Car-
tesian SENSE data reconstructed from eight receiver
coils (L ¼ 8), reduction factor r ¼ 2, correlations
ri;j ¼ 0:2 between coils and variance of the noise

s2
l ðxÞ ¼ 75 per coil (Fig. 3d).

� Real SENSE MR phantom: twenty repetitions of
T1-weighted scan of a doped ball phantom were per-
formed using Philips Achieva 3.0T TX device pro-
vided with a 32-channel coil system using Turbo Field
Echo (TFE) sequence, volume size 224� 224� 59,
TR ¼ 5.264 ms/TE ¼ 2.569 ms, slice thickness 3.20
mm, and reduction factor r ¼ 2 (Fig. 3e).

� In vivo SENSE MR brain data: T2-weighted scan of
the brain in transverse plane was acquired using
Fast Field Echo (FFE) sequence.2 The volume size
equals 240� 180� 161, TR ¼ 3,000 ms/TE ¼
80 ms, slice thickness 3.20 mm and the reduction
factor r ¼ 4 (Fig. 3f).

The noise patterns are adapted to the synthetic images by
adding complex Gaussian noise to the x-space domain of
the phantom and then the final noisy image is given by

IðxÞ ¼ AðxÞ þNreðxÞ þ j �NimðxÞj j; (20)

where AðxÞ is a noise-free MRI and NreðxÞ; NimðxÞ �
N 0; s2ðxÞð Þ are uncorrelated Gaussian distributed noise

with scale parameter s2ðxÞ varying across the image.
The accuracy of noise estimators in synthetic experi-

ments is evaluated using the pointwise relative error (RE) of
an estimate dsiðxÞ for ith repetition of the experiment,
REiðxÞ, and then averaged along R repetitions

REiðxÞ ¼
dsiðxÞ � sðxÞ

��� ���
sðxÞ ; REðxÞ ¼ 1

R

XR
i¼1

REiðxÞ: (21)

For quantitative numerical evaluations, the parameter
REðxÞ is averaged across the foreground area of the image
to get one single value for a given SNR level.

Furthermore, we define the variance (VAR) of the param-
eter REðxÞ as follows:

VARðxÞ ¼ 1

R� 1

XR
i¼1

REiðxÞ � REðxÞð Þ2: (22)

Similarly, we spatially average VARðxÞ in the foreground
area of the image to get the variance of the estimator.3

4.2 Methods

For the sake of comparison, we used the 14 noise estimation
techniques included in Table 1 and described in Section 2.1.
All these methods can be directly applied to retrospectively
reconstructed single MR slices. The implementation was
done in MATLAB, except Tabelow’s method [39], whose
source code in GNU R was provided by authors.4 For
Maggioni and Foi [33] and Aja-Fern�andez et al. [14] we
used the code downloaded from the their websites.5;6 The
code of our proposed method is available at.7

Below, we give a brief description of the parameters used
by the state-of-the-art methods:

� DeVore et al. [25]: 10 iterations.
� Delakis et al. [27]: the Daubechies 7 (db7) wavelet

was used for SWT decomposition.
� Maximov et al. [21]: the Koay correction uses 5� 5

window size for local SNR estimation.
� Liu et al. [36]: the db7 wavelet was used for SWT and

Koay correction with 5� 5windows.
� Goossens et al. [26]: db7 wavelet was used for SWT.
� Landman et al. [20]: the biophysical model is

obtained as the NLM pre-filtered image for size
5� 5 and 11� 11 (local and search windows).

� Manj�on et al. (2010) [31]: data is smoothed in 3� 3
windows, the NLM filter uses 5� 5 and 11� 11 win-
dows, the Koay correction uses 5� 5.

� Rajan et al. [32]: It uses a 11� 11 windows for ML
and the threshold for tissue classification is obtained
from a histogram with 1,000 bins.

� Pan et al. [34]: It uses 8� 8 DCT basis and local
moments are calculated in 5� 5windows.

� Maggioni and Foi [33]: algorithm uses standard
parameters recommended by the authors.

� Borrelli et al. [37]: NLM filter uses 5� 5 and 11� 11
windows, the Koay correction and median smooth-
ing are obtained with 5� 5windows.

� Tabelow et al. [39]: 10 iterations were applied and
parameters recommended by the authors.

� Manj�on et al. (2015) [41]: NLM scheme uses 5� 5 and
11� 11windows, trimmed median as a noise estima-
tor, and smoothing of the raw estimates with 11� 11
windows.

� Aja-Fern�andez et al. [14]: the EM algorithm is used to
extract a noise component for T1-weighted MR data
and the SWT with db7 wavelet is applied for T2- and
PD-weighted MR data, the low pass filter is set to
sf ¼ 3:4,

� The proposal: the SWT uses db7 wavelet and the
edge-preserving bilateral filter with 5� 5 windows,
the low pass filter is implemented as a Gaussian filter
in the frequency domain with a variance of sf ¼ 3:4.

The selection of parameters was done by using those sug-
gested in the original papers and, whenever those parame-
ters have the same meaning (local and search windows,
estimation windows) we use the same parameters.

Fig. 4. Spatially variant noise patterns used in the experiments for syn-
thetic MRI.

2. FFE is the vendor acronym for Gradient Echo sequence (Philips).
3. The foreground area of the image was detected by simple thresh-

olding followed by a morphological closing operator with a structuring
element of size 5� 5.

4. http://cran.r-project.org/web/packages/dti/index.html
5. http://www.cs.tut.fi/�foi/GCF-BM3D/
6. http://www.mathworks.com/matlabcentral/fileexchange/

48762-noise-estimator-for-sense-mri
7. http://www.lpi.tel.uva.es/software
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5 EXPERIMENTAL RESULTS AND DISCUSSION

In this section we compare our proposal with the aforemen-
tioned state-of-the-art techniques for non-stationary Rician
noise estimation. We carry out several experiments in the
synthetic and real MRI datasets.

5.1 Statistical Analysis of the Underlying
Assumption

Before testing the quantitative and qualitative perfor-
mance of the method, we verify the underlying assump-
tion of Gaussianity of the stabilized noise with an
Anderson-Darling test. To extract the noise component
from the stabilized signal, we apply the SWT decomposi-
tion using a high-pass filter with the db7 wavelet. We
perform 104 independent trials of the Anderson-Darling
test for each SNR step with sample size N ¼ 256 and a
significance level a ¼ 0:05. The comparison is performed
with Foi’s model B since it has better performance than
Foi’s model A. Results are depicted in Fig. 5 where one
can see that the proposal overcomes Foi’s model B for
low SNR and it obtains at least 99:1 percent of the null
hypothesis (being Gaussian) acceptances.

Finally, we visually compare the noise components
extracted from stabilized and non-stabilized T1-weighted
brain MRI. For this purpose, the noise-free image was cor-
rupted with the first pattern of Fig. 4 by means of Eq. (20)
with maximum value of SNR in foreground area of the
image given by SNRmax ¼ 7:68. Now, following the underly-
ing assumptions, the proposed VST should change the char-
acter of the noise component to AWGN and therefore it
allows applying Gaussian-dedicated noise extraction proce-
dures such as SWT decomposition. In Fig. 6, we show the
noise extraction with and without VST. The presence of
brain edges confirms that the methods applied to the non-
stabilized image cannot successfully extract the noise from
the signal (Figs. 6a and 6b shows the noise extraction from
[14] and Fig. 6d from [40]), whereas the proposed methods
applied to stabilized image retrieve a noise estimate without
interactions of the signal (Figs. 6e and 6f).

The results obtained from these experiments evidence:
1) the assumption of Gaussianity after stabilizing the
Rician data by the proposed VST still holds for low SNRs,
2) Gaussian-driven methods can be used to recover the
noise component from variance-stabilized Rician data,

3) With this stabilization, post-correction factors like [14],
[41], [45] are no longer required for Rician RVs.

5.2 Robustness Analysis

The sensitivity to SNR mismatch was studied in a set of
Rician distributed images of size 256� 256with SNRs in the
range ½0; 8�, which were conveniently stabilized with the
proposed VST. The SNR mismatch was intentionally intro-
duced between �100 and þ100 percent.

The resulting standard deviation of the stabilized data is
shown in Fig. 7 for each SNR andmismatch. The contour lines
describe the over/underestimation of the stabilized standard
deviation. Note that this picture shows that a 25 percent of
SNR mismatch produces around 7 percent of error in the sta-
bilized standard deviation. This means that any estimation
methodology proposed in the state of the art can be effectively

used as the initial guess, ds0ðxÞ, and we expect to remarkably
improve the accuracywith ourmethodology.

Now, we extend this experiment to check the improve-
ment of the proposed methodology when the 14 methods
described in Section 4.2 are used as the initialization. We
considered a synthetic T1-weighted brain MR image with
the noise pattern shown in Fig. 4a. Four SNRmax levels and
100 repetitions for each SNRmax level were used.

The averaged relative errors of the proposed noise
estimation scheme are shown in Table 2 with respect to

Fig. 5. Anderson-Darling test of Gaussianity for the noise component in
variance-stabilized MR signal.

Fig. 6. Noise component extracted with different techniques: (a) local
mean, (b) local EM algorithm, (c) bilateral filter, (d) HH subband of
SWT, (e) VST + bilateral filter (proposed), (f) VST + HH subband of
SWT (proposed).

Fig. 7. Influence of SNRmismatch on standard deviation of variance-sta-
bilized Rician data for QQopt. The red dashed line indicates the breakdown
point of the parameter u2opt.
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the results obtained from the method used for the ini-
tialization (shown in parentheses). Note that the pro-
posal is able to estimate the final noise map even if the
prior estimation provides inaccurate results (around 15
percent of SNR mismatch). Moreover, the average rela-
tive error is nearly constant among all verified methods
and SNRmax levels, obtaining an accuracy about 5 per-
cent, close to the error that would be obtained with an

ideal estimate ds0ðxÞ ¼ sðxÞ. Note that the highest Relative
Error obtained with the VST method is always lower
than the best result obtained with any of the state-of-the-
art methods. These results confirm the robustness of the
method for s0ðxÞ mismatch and its better behavior when
compared to the rest methods.

According to the results obtained in Table 2, it seems that
the best option for a suitable initialization is the one pro-
vided by Aja-Fern�andez’s [14]. This is mainly because the
proposed methodology takes advantage of the smooth
solution and the better estimate of the SNR provided in
[14]. Thus, in what follows, we adopt the Aja-Fern�andez’s
method as the initialization step for our proposed meth-
odology. However, our method is not confined to this ini-
tialization and any other method could be used with
good results.

We finally evaluate the propagation of the mismatch
error in s throughout the proposed transformation against
the inverse transform method (QQ mapping) of Eq. (5). We
show in Fig. 8 the relative error calculated as the average of
2,000 independent experiments. Note that the proposed
VST is systematically more robust than the inverse trans-
form method. Both curves converge to the same values as
the Rician RV converges to a Gaussian RV, i.e., SNR! 1.

5.3 Synthetic MRI Experiments

As a first experiment, we compare quantitatively the pro-
posed variance-stabilizing homomorphic filter with
the aforementioned methods using synthetic T1-, T2- and

PD-weighted MR images (Figs. 3a, 3b, and 3c). The syn-
thetic images were corrupted following Eq. (20). All noise
patterns from Fig. 4 were used to evaluate the perfor-
mance in the foreground region (the background was
intentionally avoided to provide more reliable compari-
sons in the region of interest). The upper bounds of the
noise patterns were conveniently scaled to provide a cor-
rect comparison for the SNRmax levels in the foreground
regions. A set of 100 independent trials were used for the
calculations. The spatial correlations of the noise were not
considered in this experiment.

The results are depicted in Fig. 9 where it is clear that
local methods (DeVore, Delakis, Maximov and Liu) give
poor results in terms of averaged RE and VAR for all modal-
ities: the RE of the methods exceeds 20 percent for
SNRmax > 10. On the other hand, Goossens yields almost
fixed RE and VAR parameters for SNRmax > 10 as a conse-
quence of AWGN assumptions of the estimator, though still
too high (around 20 percent). Note that the Liu’s estimator
is clearly outperformed by the proposed methodology, even
though both Liu’s and the proposed methodologies make
use of the HH subband of the SWT of the image. This con-
firms the importance of the stabilization step in our method.

The highest accuracy among all local methods is
achieved by the Landman’s approach. We remind here that
Maximov’s and Landman’s methods were initially pro-
posed to deal with repeated acquisitions and they do not
show their considerable potential in a voxelwise estimation.

The second group of the tested algorithms comprises the
non-local estimators based on patch-based calculations. The
leading method in this group is Manj�on (2015), though it
has a poorer performance for low SNRmax values. These
results could be improved by using stacked MR data as sug-
gested in [41], but it assumes the same underlying noise pat-
tern in all the acquired images, which is not a realistic
assumption. Borrelli’s method shows a robust response for
RE and VAR measures regardless of SNRmax level though it
is always over 10 percent. Other non-local methods
(Maggioni and Foi, Manj�on (2010)) along with Tabelow and
Pan are characterized by an extremely low VAR parameter
and consequently they are preferred for image denoising
procedures among non-local estimators.

Regarding the proposed method, the results show its out-
standing robustness for the whole SNR range (the average
RE is almost constant around 5 percent, considerably lower
than any other state-of-the-art method). This behavior is of
special interest when low SNR values are considered.
Besides, it offers a much lower variance in the estimate,
which results in a more reliable estimate.

TABLE 2
Averaged Relative Errors of the Proposed Scheme Using
Different State-of-the-Art Techniques to Initialize s0ðxÞ

Method to
estimate s0ðxÞ

SNRmax

5.63 8.71 11.79 14.87

DeVore 4.77 (17.6) 4.41 (19.1) 4.46 (23.3) 4.53 (29.6)
Delakis 4.53 (16.8) 4.59 (21.2) 4.48 (23.9) 4.41 (26.2)
Maximov 4.60 (19.7) 4.48 (20.8) 4.45 (22.1) 4.36 (23.7)
Liu 4.62 (27.0) 4.64 (27.1) 4.41 (26.9) 4.35 (26.7)
Goossens 5.52 (22.8) 4.93 (20.7) 4.81 (20.0) 4.51 (19.7)
Landman 5.23 (18.5) 4.80 (16.4) 4.68 (15.5) 4.37 (15.4)
Manj�on (2010) 4.56 (13.3) 4.20 (12.9) 4.23 (12.5) 4.03 (12.2)
Rajan 5.83 (20.0) 5.07 (16.9) 4.60 (15.8) 4.57 (17.7)
Pan 6.09 (25.1) 5.16 (18.6) 4.93 (15.2) 4.54 (13.0)
Maggioni/Foi 5.57 (19.2) 4.81 (12.2) 4.66 (9.2) 4.35 (8.2)
Borrelli 4.53 (11.3) 4.19 (11.6) 4.25 (11.9) 4.03 (12.1)
Tabelow 6.18 (15.7) 5.56 (10.8) 5.42 (9.9) 5.03 (10.2)
Manj�on (2015) 4.64 (9.2) 4.31 (7.4) 4.37 (6.9) 4.13 (6.7)
Aja-Fern�andez 4.51 (12.5) 4.1 (10.9) 4.15 (9.3) 3.9 (7.7)ds0ðxÞ ¼ sðxÞ 4.17 3.95 4.11 3.87

Notation: VST (w/o VST) %. The best performance for each SNRmax is in
bold letters.

Fig. 8. Analysis of the error propagation in both the Quantile-Quantile
transformation and the proposed methodology.
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We carried out a second experiment focused on the qualita-
tive behavior of estimators on a synthetic T1-weighted
image contaminated by spatially variable noise following
Eq. (20) and the first pattern from Fig. 4. The noise pattern is
scaled to the range ½5-20�, the exact SNR map is a priori
known, and its maximum value equals SNRmax ¼ 8:73. The
spatial correlations of the noise component were not consid-
ered in this experiment.

The estimated noise maps and relative errors in fore-
ground areas are shown in Fig. 10. Note that the spatial
granularity shown with several techniques like DeVore,
Delakis, Maximov, Liu, Goossens and Landman are due to
the calculation of noise levels in fixed neighborhoods
(i.e., 5� 5 windows) resulting in inaccurate spatial estima-
tions (Figs. 10a, 10b, 10c, 10d, 10e, and 10f). On the other
hand, Manj�on (2010), Rajan, Maggioni and Foi show a less

Fig. 9. Comparison of noise estimators for synthetic MR data contaminated by non-stationary Rician noise. First column: Spatially averaged relative
error REðxÞ of the estimators; Second column: Spatially averaged variance VARðxÞ of the estimators; Third column: Zoomed VARðxÞ parameter to
the range ½0-0:01� from the second column. The first row corresponds to T1-, the second row to T2- and the third one to PD-weighted MRI.

Fig. 10. Visual inspection of the methods for synthetic T1-weighted MR brain data distorted by spatially variable noise (left figure) and corresponding
relative errors of the estimators (right figure).
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granular pattern as a result of the patch-based estimation
(Figs. 10g, 10h, and 10j). A similar result was obtained from
Pan’s method (Fig. 10i) with the advantage of a much less
computationally cost than the patch-based methods. The
last advances in spatially variable noise estimation (Borrelli,
Tabelow, Manj�on (2015)) include an additional post-relaxa-
tion step of the raw estimates (Figs. 10k, 10l, and 10m) pro-
viding fairly smoothed and reliable noise maps, though the
high-frequency components of the image (skull edges) are
still observed (Fig. 10l).

Finally, Aja-Fern�andez and our proposal provide granu-
lar-free noise estimates without the presence of high-
frequency components from the image (Figs. 10n and 10o).
Some underestimation can be observed in Aja-Fern�andez,
especially in low SNR areas, though the global pattern of
the noise map is reproduced properly. In contrast, our pro-
posal compensates these underestimations and it provides
the most accurate representation of the underlying noise
pattern (Fig. 10o). Moreover, our method can estimate noise
levels in background regions as well, where the data follows
Rayleigh distribution.

In a third experiment, we analyze the performance for
SENSE. We considered a T1-weighted image acquired with
eight coils (L ¼ 8) and subsampling rate r ¼ 2 (Fig. 3d). The
data coming from each coil is contaminated by AWGN with

s2
l ðxÞ ¼ 75 and correlation ri;j ¼ 0:2 between ith and jth

coil. The image is reconstructed following the Cartesian
SENSE reconstruction algorithm, which leads to a magni-
tude MR image affected by spatially variable, correlated
and signal-dependent noise component.

Different references were considered in this experiment:
the ground truth derivation in Aja-Fern�andez et al. [19] for
SENSE reconstruction (Fig. 11 I) and the estimates obtained
by DeVore, Maximov, Landman and Glenn methods for 500
independent replicas of the image pointwise estimated along
all repetitions to provide pseudo-reference maps as silver
standard references (Figs. 11II, 11III, 11IV, and 11V). These sil-
ver standard references will serve us to evaluate the methods
in real images. The results shown in Figs. 11a, 11b, 11c, 11d,
11e, 11f, 11g, 11h, 11i, 11j, 11k, 11l, 11m, 11n, and 11o

evidence the difficulties of estimating the spatially correlated
noise. Note that local methods provide poor results and the
patch-based methods do not perform better. The homomor-
phic approaches provide themost suitable estimates.

5.4 Real MRI Experiments

In this section we estimate the noise maps of real SENSE
MRI data with two real datasets. First, a T1-weighted TFE
SENSE phantom reconstructed from L ¼ 32 coils with sub-
sampling rate r ¼ 2 (Fig. 3e) is considered. Since the gold
standard or ground truth is not available in this case, we use
the aforementioned silver standard references (DeVore, Max-
imov, Landman and Glenn) obtained from the twenty
acquisitions (Figs. 12I, 12II, 12III, and 12IV).

Results are depicted in Figs. 12a, 12b, 12c, 12d, 12e, 12f,
12g, 12h, 12i, 12j, 12k, 12l, 12m, 12n, and 12o, where one can
see that some of the local techniques (DeVore, Maximov
and Landman) perform well enough due to the local homo-
geneity of the source (see Figs. 12a, 12c, and 12f). The granu-
larity of the maps comes from the small number of samples
used in the estimation process (typically 5� 5 windows). In
comparison with the second experiment, the wavelet-based
methods (Delakis, Liu, Goossens shown in Figs. 12b, 12d
and 12e respectively) failed in this case. This is due to the
extraction of high-frequency components using an already
smooth MR image.

Maggioni and Foi’s method (Fig. 12j) provides quite rea-
sonable results, though the noise map is significantly over-
estimated near edges. Manj�on (2010), Borrelli and Tabelow
(Figs. 12g, 12k and 12l) provide highly underestimated
noise patterns, but the structure of the map is still pre-
served. We note that Landman’s and Rajan’s methods
(Figs. 12f and 12h) show a good behavior in the boundaries
of the phantom, though the granularity is still a problem.
Surprisingly, Manj�on (2015) failed in this experiment, prob-
ably due to the differences in eigenvalues distribution in
non-local PCA decomposition between synthetic and real
MR data (Fig. 12m). Finally, Aja-Fern�andez (Fig. 12n) pro-
vides smooth and nongranular results but nevertheless
slightly underestimated compared to the silver standards.

The proposed method (Fig. 12o) retrieves smooth and
granularity-free results and it does not underestimate noise
levels in foreground areas. Some overestimations can be still

Fig. 11. Visual inspection for simulated T1-weighted SENSE MR brain
data. (I) Ground truth and silver standard methods for 500 repetitions:
(II) DeVore, (III) Maximov, (IV) Landman and (V) Glenn (the methods fol-
low the notation of Fig. 10).

Fig. 12. Visual inspection for real T1-weighted SENSE MRI. Silver stan-
dard methods for 20 acquisitions: (I) DeVore, (II) Maximov, (III) Landman
and (IV) Glenn (the methods follow the notation of Fig. 10).
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observed near edges of the phantom. These overestimations
predominantly depend on the selected noise extraction
procedure (bilateral filter in this example), and could be
mitigated choosing other edge-preserving and AWGN-ded-
icated image filtering method.

As a second experiment, we examine in vivo T2-weighted
FFE SENSE MRI brain data with subsampling rate r ¼ 4
(Fig. 3f). In this case, we can only check the consistency-by
visual inspection—with previous experiments due to the
lack of a ground truth or pseudo-reference map.

Some local methods (DeVore, Delakis and Maximov)
provide highly granular and overestimated noise maps
especially near skull edges (Figs. 12a, 12b, and 12c). These
results are consistent with the second and the third visual
experiment in synthetic data. On the other hand, the meth-
ods by Liu, Goossens, Pan and Manj�on (2015) show signifi-
cant underestimations of the noise for in vivo SENSE MRI
acquisition (Figs. 13d, 13e, 13i, and 13m). These results are
also fully consistent with results on real phantom data
shown in Fig. 12.

Maggioni/Foi and Tabelow generate consistent results
with DeVore, Delakis and Maximov in the foreground area
of the brain (as they did with synthetic data), although they
show some overestimations in the skull edges.

Finally, the results from the method by Aja-Fern�andez
and our proposal (Figs. 13n and 13o) are consistent with the
behavior observed with synthetic data. They both provide
no granular patterns, with a higher variance in the central
region of the brain that was glimpsed in the other methods.
No outliers are appreciated in the edges of the skull.

6 CONCLUSION

The spatially variable noise models have become a neces-
sary ingredient for post-processing MR data acquired with
parallel techniques. Thus, the need for suitable methods to
estimate the spatially variant noise has motivated an
increasing number of algorithms during the last years. In
the first part of the paper, we provide an extensive analysis
of the recent techniques proposed to retrieve the spatial var-
iant noise. As we saw, most of them followed a patch-driven
way to estimate the noise, leading to a granular pattern
because of inaccuracies in non-homogeneous regions. The
homomorphic approach of Aja-Fern�andez et al. [19] over-
comes this limitation by assuming a high SNR, where the

Gaussian assumption could hold, though it would provide
important deviations in lower SNR parts of the image.

In our proposal, we suggest adopting a variance-stabili-
zation strategy to transform the signal-dependence of noise
into a signal independent noise map. To do so, we propose
a parametric version of the formulation of the asymptotic
Rician stabilizer proposed by Foi [49] whose parameters
are efficiently estimated for different SNRs. In order to pro-
vide a Gaussian-like behavior of the transformed noise, we
impose constraints on the kurtosis and skewness as well as
Gaussian-like resulting distribution. The transformation
was tested for both low SNRs and asymptotic SNRs show-
ing an outstanding behavior in the whole range. Addition-
ally, the statistical tests confirm the Gaussian-like behavior
of noise which results in an efficient extraction of noise per-
formed by a homomorphic transformation, which avoids
the granular effect of pixelwise and patch-driven methods.
The unbiased estimation under the Gaussian assumption
can be efficiently calculated due to the results of [14].

The limitations of our method are the need of an initialds0ðxÞ and the SNR. However, the method has proven to be
robust to this initialization showing important improve-
ments when initialized with the state-of-the-art methods.
This fact was confirmed when the worst case obtained with
the proposed method was compared to the best case of the
methods of literature, showing its suitability and robustness.

The performance of our method in synthetic and real
images show that both the stabilization process and the
homomorphic estimation eliminate the granularity, reduce
the under/overestimation of noise and lead to more reliable
estimates (low relative error and very low spatial variance).

The main contributions of the proposed method, when
compared to the state of the art, are: 1) It does not depend
on repeated acquisitions and/or a biophysical model of the
data. 2) Any additional information like sensitivity profiles
or noise matrices in the receiver coils is also unnecessary.
3) Just one single image without background or foreground
region extraction is required. 4) The method works for dif-
ferent MR modalities: T1-weighted, T2-weighted and PD-
weighted MR data. 5) It is not affected by granular effect
due to local estimation. 6) It works for the whole range of
SNRs from the very low to the asymptotically Gaussian.

Our estimation methodology serves as an initial phase of
further MR image processing pipeline as could be image
denoising in the MRI field requiring an estimate of the vari-
ant noise. Additionally, note that although the proposed
VST homomorphic filter is designed for non-stationary
Rician noise, it can be easily extended to other distributions
presented in MRI, like the non-stationary nc-x.
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