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Currentmethods for processing diffusionMRI (dMRI) tomap the connectivity of the human brain require precise
delineations of anatomical structures. This requirement has been approached by either segmenting the data in
native dMRI space ormapping the structural information fromT1-weighted (T1w) images. The characteristic fea-
tures of diffusion data in termsof signal-to-noise ratio, resolution, aswell as the geometrical distortions caused by
the inhomogeneity of magnetic susceptibility across tissues hinder both solutions. Unifying the two approaches,
we propose regseg, a surface-to-volume nonlinear registration method that segments homogeneous regions
within multivariate images by mapping a set of nested reference-surfaces. Accurate surfaces are extracted
from a T1w image of the subject, using as target image the bivariate volume comprehending the fractional anisot-
ropy (FA) and the apparent diffusion coefficient (ADC) maps derived from the dMRI dataset. We first verify the
accuracy of regseg on a general context using digital phantoms distorted with synthetic and random deforma-
tions. Then we establish an evaluation framework using undistorted dMRI data from the Human Connectome
Project (HCP) and realistic deformations derived from the inhomogeneity fieldmap corresponding to each sub-
ject. We analyze the performance of regseg computing the misregistration error of the surfaces estimated after
being mapped with regseg onto 16 datasets from the HCP. The distribution of errors shows a 95% CI of
0.56–0.66 mm, that is below the dMRI resolution (1.25 mm, isotropic). Finally, we cross-compare the proposed
tool against a nonlinear b0-to-T2w registration method, thereby obtaining a significantly lower misregistration
error with regseg. The accurate mapping of structural information in dMRI space is fundamental to increase the
reliability of network building in connectivity analyses, and to improve the performance of the emerging
structure-informed techniques for dMRI data processing.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

Diffusion MRI enables the mapping of microstructure (Basser and
Pierpaoli, 1996) and connectivity (Craddock et al., 2013) of the human
brain in-vivo. It is generally acquired using echo-planar imaging (EPI)
schemes, since they are very fast at scanning a large sequence of images
called diffusion weighted images (DWIs). Each DWI is sensitized with a
gradient to probe proton diffusion in a certain orientation. Subsequent
processing involves describing the local microstructure with one of
teban et al., 2016).
BIT), ETSI Telecomunicación,
the available models, which range from the early diffusion tensor imag-
ing (DTI) proposed by Basser and Pierpaoli (1996) to current models
such as AMICO (accelerated microstructure imaging via convex optimi-
zation, Daducci et al., 2015). The microstructural map is then used to
draw the preferential orientations of diffusion across the brain using
tractography (Mori et al., 1999). Finally, a graph representing the corre-
sponding structural network is built using the regions of a cortical
parcellation as nodes and the fiber paths found by tractography as
edges (Hagmann et al., 2008). The methodologies to solve reconstruc-
tion, tractography and network building require the delineation of the
anatomy in the dMRI space. Moreover, current trends on reconstruction
(Jeurissen et al., 2014) and tractography (Smith et al., 2012) are increas-
ingly using structural information to improve themicrostructural map-
ping and fiber-tracking.

Possibly, the earliest structural information incorporated to aid dMRI
processing is the white matter (WM) mask used as a termination
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Fig. 1. The interfacing surfaces Γm between the competing ROIsΩl, play the role of active
contours which drive the registration process. They evolve iteratively along the normal
n̂i of the surface at each vertex vi of the mesh. The gradient speeds si drive registration,
which are computed as the disparity of the data energies with respect to the two
limiting regions of M(vi), the features of the image M in the location of vertex vi. The
computation of shape-gradients is developed in Appendix B. In this figure, the s1
derived from Eq. (A.6) is written in the lower box, with Ωwm being the inner limiting
region, Ωgm the outer region, and w0,1 the relative area associated with vertex v1 with
respect to the total area of surface Γ0.
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criteria for tractography. The standardized procedure to obtain this
maskwas thresholding the FAmap. However, themask and subsequent
analyses are highly dependent on the threshold that is chosen (Taoka
et al., 2009). To overcome the unreliability of FA thresholding, and to
broaden WM segmentation to brain tissue segmentation, a large num-
ber of methods have been proposed using DWIs, the b0, and DTI-
derived scalar maps such as FA, ADC and others (Zhukov et al., 2003;
Rousson et al., 2004; Jonasson, 2005; Hadjiprocopis et al., 2005; Liu
et al., 2007; Lu et al., 2008; Han et al., 2009). However, the precise seg-
mentation of dMRI is difficult for several reasons. First, dMRI images
have a resolution that is much lower than that of the imaged micro-
structural features. Therefore, voxels located in structural discontinu-
ities are affected by partial voluming of the signal sources. Second, the
extremely low signal-to noise ratio (SNR) and the high dimensionality
of the DWIs prevent their direct use in segmentation. Third, the low
contrast between gray matter (GM) and WM in the b0 volume also
makes it unsuitable for brain tissue segmentation.

An alternative route to segmentation in dMRI space is the mapping
of the structural information extracted from anatomical MR images,
such as T1w, using image registration techniques. Generally, intra sub-
ject registration of MR images of the brain involves only a linear map-
ping to compensate for head motion between scans. However, EPI
introduces a geometrical distortion (Jezzard and Balaban, 1995) that
impedes the linear mapping from the structural space. Numerous
methods have been proposed to overcome this problem by incorpo-
rating information from extra MR acquisitions such as fieldmaps
(Jezzard and Balaban, 1995), DWIs with a different phase-encoding
(PE) scheme (Cordes et al., 2000; Chiou and Nalcioglu, 2000), or
T2-weighted (T2w) images (Kybic et al., 2000; Studholme et al.,
2000). These methods estimate the deformation field associated to
EPI distortions and resample the DWIs onto a corrected dMRI space.
The retrospective EPI correction is an active field of research yielding
frequent refinements and combinations of the original methods,
such as (Holland et al., 2010; Andersson et al., 2012; Irfanoglu
et al., 2015). A standardized method to solve the remaining linear
mapping between the corrected-dMRI and the structural spaces is
bbregister (Greve and Fischl, 2009).

Here,we present a segmentation and surface-to-volume registration
method called regseg, and show its usefulness in mapping anatomical
information from structural space into native dMRI space to aid subse-
quent processing steps (reconstruction, tractography and network
building using a cortical parcellation). The underlying hypothesis is
that the registration and segmentation problems in dMRI can be solved
simultaneously. To implement regseg we first establish an active-con-
tours without edges (Chan and Vese, 2001) segmentation framework.
A specific set of reference surfaces extracted from the same subject ini-
tialize the 3D active contours, which evolve searching for homogeneous
regions in the multivariate target-image. We apply regseg to segment
dMRI data by mapping a set of nested surfaces extracted from a struc-
tural image (e.g. T1w) to a bivariate target-volume comprehending
the FA and ADC maps. The evolution of the surfaces is supported by a
B-spline basis, optimized iteratively using a descent approach driven
by shape-gradients (Jehan-Besson et al., 2003; Herbulot et al., 2006).
Therefore, regseg establishes a registration framework that actually
deals with the nonlinear warping induced by EPI distortions. Regseg in-
tegrates the benefits of segmentation and registrationmethods together
and exploits the multivariate nature of dMRI data to contribute in the
proposed application on three key aspects: 1) the surfaces are typically
extracted from the T1w image of the same subject, therefore regseg does
not require additional MR acquisitions to the minimal dMRI protocol in
order to estimate the deformation field; 2) alternatively to the typical
design of the processing flow, the information from the reference T1w
can be preciselymapped onto the distorted dMRI space, avoiding the in-
terpolation of the DWIs required by unwarping the diffusion data; and
3) regseg increases the geometrical accuracy of the overall process. In
this paper, we first verify the functionality of themethod and the regseg
implementation using a set of digital phantoms, demonstrating the
subvoxel accuracy in registration. Then, we evaluate regseg on real
dMRI datasets, using a derivation of our instrumentation framework
(Esteban et al., 2014a) which simulates known and realistic EPI distor-
tions. We also compare regseg and a nonlinear registration method to
map the b0 to the corresponding T2w image of the same subject. This
approach is the first step of the above-mentioned T2w-registration
based (T2B) correction methods. We reproduce the settings and imple-
mentation of a widely used diffusion processing software (ExploreDTI,
Leemans et al., 2009). With this comparison, we demonstrate how
regseg achieves higher accuracy with the simultaneous registration
and segmentation process.

Methods

Registration framework and segmentation model

Let ΓR={Γm :m∈ℕ,m≤NS} be the set of NS surfaces extracted from
the undistorted T1w image (the reference space R). We reformulate
the segmentation of the distorted dMRI images (the moving space M)
as a registration problem where we search for an underlying deforma-
tion field U such that the structures in R defined by ΓR align optimally
with their corresponding structures in M:

U : R⊂ℝn →M⊂ℝn

r ↦r
0 ¼ rþ ur; ð1Þ

where r denotes a position in R, r′ is its corresponding location inM, and n
denotes the dimensionality of images. Finally, u=u(r) is the displace-
ment of every point with respect to the reference domain. The general
overview of how the surfaces interact with the registration framework
is presented in Fig. 1.

Cost-function derivation. In a Bayesian framework for registration
(Wyatt and Noble, 2003; Pohl et al., 2006; Gass et al., 2014), the map-
pings U in (1) are evaluated based on their posterior probability given
the observed dataM. LetΩ={Ωl : l∈ℕ, l≤NL} be the set of NL competing
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regions in which M is partitioned by the projection of ΓR. Using Bayes'
rule, the posterior likelihood is computed as:

P U M;Ωjð Þ ¼ P M U;Ωjð Þ P Uð Þ
P Mð Þ ; ð2Þ

where P(M |U,Ω) is the data likelihood. SinceΩ is mapped byU, we sim-
plify P(U,Ω)=P(U)⇒P(M |U,Ω)=P(M |U). The best estimate U then
satisfies the maximum a posteriori criterion and it aligns ΓR into M.
First, we assume independence between voxels, and thus we break
down the global data likelihood into a product of voxel-wise conditional
probabilities:

P M Ujð Þ ¼ ∏
l

∏
r0∈Ωl

P f 0 Uj� �
; ð3Þ

where f′=M(r′) is the feature vector at the displaced position r′ (1) in
themoving image. For convenience and because it has been shown to be
an appropriate approximation (Van Leemput et al., 1999; Cuadra et al.,
2005),we introduce two assumptions for each regionΩl: 1) the features
are i.i.d.; and 2) they can be modeled by multivariate normal distribu-
tions Nðf 0jμl;ΣlÞ, with parameters {μl,Σl} for each region Ωl (Esteban
et al., 2014b):

P M Ujð Þ ¼ ∏
l

∏
r0∈Ωl

N f 0 μl;
X

l

���� �

¼ ∏
l

∏
r0∈Ωl

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð ÞC

X
l

��� ���r e −
1
2
D2

l f 0
� �� 	

; ð4Þ

using D2
l ðf 0Þ to denote the squared Mahalanobis distance of f′ with re-

spect to the descriptors of region l as D2
l ðf 0Þ ¼ ðf 0−μlÞ

T Σl
−1 ðf 0−μlÞ.

C is the number of channels comprised in the image M. Even though
the features being segmented are not generally i.i.d., the spatial interde-
pendency of voxels is implicitly supported by the piecewise smooth
partition of the spaceΩ. In fact, the projection of ΓR ontoM is an implicit
segmentation model, for which the covariance matrix Σl of each region
isminimized. Fig. 2 shows how the joint distribution of the input images
is approximated with a mixture of multivariate normal distributions,
and this minimization is illustrated for the segmentation of the FA and
the ADC maps of one subject.

Regularization. The smoothness of the resulting displacement field is in-
duced by a Thikonov regularization prior:

P Uð Þ ¼ ∏
r
p uð Þ ¼ ∏

r
p0 uð Þp1 uð Þ; with ð5Þ

p0 uð Þ ¼ N u 0;A‐1
���� �

;

p1 uð Þ ¼ N ∇u 0;B‐1
���� �

;
ð6Þ

which requires that the distortion and its gradient have zero mean, and
variance governed by the matrices A and B. Therefore, A and B are ten-
sors that modulate the regularization, and produce deformations with
preferential directions. Finally, the maximum a posteriori problem is
adapted to a variational problem where we search for the minimum
of an energy functional by applying E(u)=− log{P(M|U) P(U)}:

E uð Þ ¼ − log∏
l

∏
r0∈Ωl

N f 0 μl;Σl

��� �
p0 uð Þp1 uð Þ ¼

¼ −
X
l

Z
Ωl

log N f 0 μl;Σl

��� �
 �þ log p0 uð Þp1 uð Þ½ �� 
dr0 ¼

¼ Const:þ
X
l

Z
Ωl

D2
l f0
� �

dr
� �

þ
Z

Ωl

1
2

uTAuþ ∇uð ÞTB ∇uð Þ
h i

dr0:

ð7Þ
This expression is the dual of theMumford–Shah functional that cor-
responds to the framework of active contours without edges (Chan and
Vese, 2001) with the anisotropic regularization term of Nagel and
Enkelmann (1986).

Numerical implementation

Deformation model. Since the vertices of the surfaces {vi :vi⊂Γ}i=1…NV

are probably located off-grid, it is necessary to derive ui=u(vi) from a
discrete set of parameters {uk}k=1…K. Densification is achieved using a
set of associated basis functions ψk(8). In our implementation, ψk is a
tensor-product B-spline kernel of degree three.

v0i ¼ vi þ ui ¼ vi þ
X
k

ψk rð Þuk: ð8Þ

Optimization. To find theminimumof the energy functional (7), we pro-
pose a gradient-descent approach with respect to the underlying defor-
mation field using the following partial differential equation (PDE):

∂u r; tð Þ
∂t

∝−
∂E uð Þ
∂uk

; ð9Þ

where t is an artificial time parameter of the contour evolution and uk

are the parameters that support the estimate U of the transformation
at the current time point. Let us assume that the preferential directions
of the displacement are alignedwith the imaging axes to simplify Eq. (7)
as expression (A.1) in Appendix A, and thus to compute its derivative in
Eq. (9):

∂E uð Þ
∂uk

¼ ∂
∂uk

X
l

Z
Ωl

D2
l f 0
� �

dr0
� �

þ
Z

Ω

1
2

�α � u∘2 þ β � ∇uð Þ∘2
�
dr0

)
;

(

ð10Þ

where u∘2=uT ⋅u, and {α,β} are the expected variances along the imag-
ing axes of the displacement field and its gradient, respectively. Then,
the data and regularization terms are split and discretized to compute
their derivatives. The derivative of the data term is computed using ex-
plicit shape gradients (see Appendix B), which finally lead to obtain
vertex-wise speeds of the gradient si as illustrated in Fig. 1. The shape
gradient contributions gk on the field coefficients uk can then be com-
puted using the expression (A.7), of Appendix B, obtaining:

gk ¼ −∑i�si � ψk við Þ ê: ð11Þ

Then, introducing the analytical derivative of the regularization
term, Eq. (10) is reformulated as:

∂E uð Þ
∂uk

¼ gk þ α � uk−β � Δukð Þ: ð12Þ

Finally, to descend this gradient, we establish a semi-implicit Euler
scheme (see Supplemental Materials, section S1.3), with a step size pa-
rameter δ, which we solve in the spectral domain as follows:

utþ1
k ¼ F−1

F δ−1 ut
k−gk

n o
F δ−1 þ α� �

I−βΔn o
8<
:

9=
;; ð13Þ

where I denotes the identity operator.
Implementation details and convergence. The regseg tool includes a

multiresolution strategy on the free-form deformation field. Registra-
tion pyramids are created by setting the spacing between the control
points of the B-spline basis functions for each level of the
multiresolution strategy. As a rule of thumb, for a δ = 1.0, both α andβ will typically be in the range [0.0, 1.0]. The parameters used (δ, α, β,



Fig. 2. Evolution of the segmentationmodel defined by the homogeneous regionsΩl, for one real dataset. Panel (A, left) shows the joint distribution of the FA and ADC conditioned to the
segmentationΩ defined by the surfaces ΓR extracted from the T1w image. Theplotwas generated for reference using undistorteddiffusion data, and therefore, ΓR is alignedwith the FA and
theADC. Theproblem ariseswhen the diffusion data present deformation, and the contours ΓR donot fit within thedata (A, center). After registrationwith regseg, the contours aremapped
onto the diffusion data (A, right), and the joint density plot is closer to the reference situation. In panel (B), the three plots in (A) are decomposed tissue-wise. Using filled contours, the
bivariate distribution of each tissue is highlighted in its designated color, and represented over the remaining tissues (in gray colors). To help assessment, dashed contours in black-to-
white colors represent the corresponding distribution in the reference plot. The registration process optimizes the segmentation model of regseg, and thus, the distribution of each
region after registration is located closer to that corresponding in the reference situation, the shape of the distribution is more similar to the reference, and their spread is also reduced.
The effects of optimization are more noticeable on the GM (ΩGM) and the wm (ΩWM). Particularly, the WM typically shows a bimodal distribution when the contours Γ do not fit the
data. The plots in (A) and (B) are provided at full-size in the Supplemental Materials, Figs. S8, S9.
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Fig. 3. Evaluation of regseg using phantom data according to the following instrumental workflow. 1) The reference surfaces ΓR are trianglemeshes extracted from the four binary shapes
(i.e., “box”, “ball”, “L”, “gyrus”). 2) A ground-truth displacement field was generated as described in subsection 2.4, and applied to warp ΓR, thereby obtaining Γtrue. 3) After being warped,Γtrue were projected onto the corresponding discrete 3D volume and downsampled to create partial volume effects at two resolutions, i.e., 2.0 × 2.0 × 2.0 [mm] and 1.0 × 1.0 × 1.0 [mm],
thereby producing sets of tissue fractions maps. 4) The tissue fractions were fed into an MRI simulator, which generated T1-weighted (T1w) and T2-weighted (T2w) -like images at the
two possible resolutions. 5) The regseg toolwas applied using thewarped test images asmultispectralmoving images and ΓR as shape priors. 6) The agreement between the surfaces fitted
by regseg (Γtest) and Γtrue were assessed visually using automatically generated visual reports and quantitatively with the Hausdorff distance between the corresponding surfaces.

1 https://github.com/oesteban/RegSeg/blob/master/Scripts/pyacwereg/data/regseg_
default.json.
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the B-spline grid resolutions, and target image smoothing), the imple-
mentation details, and other features such as the sparse matrix ap-
proach to fast interpolation are discussed in the Supplemental
Materials, section S1.

Evaluation protocol
In order to assess the performance of regseg, we defined the follow-

ing general evaluation protocol: 1) Extract the set of undistorted sur-
faces ΓR; 2) Compute a ground-truth field of displacements Utrue,
which is applied to generate warped images (M) for segmentation;
3) Execute regsegwith ΓR and use thewarped data as inputs; and 4) Per-
form a visual assessment and compute the error metrics.

A first proof of concept is introduced to demonstrate regseg in digital
phantoms with simple geometries, using Utrue without directional re-
strictions. Then, regseg is evaluated in a framework using undistorted
dMRI datasets, and Utrue is derived from the corresponding inhomoge-
neity fieldmap of the subject. Therefore, the deformation field is nonze-
ro only in the phase-encoding (PE) axis, and reproduces a real EPI
distortion. The adaptation of the evaluation protocol to the simulated
phantoms and the real data is explained in the following sections.

Simulated phantoms
The workflow required to simulate the digital phantoms and to as-

sess the performance of regseg with them is presented in Fig. 3. A set
of four binary objects (i.e. “box”, “ball”, “L”, and “gyrus”) was generated
by combining the binarization of analytical shapes and mathematical
morphology. The reference surfaces ΓR were extracted from the binary
shapes using FreeSurfer tools (Fischl, 2012). The ground-truth distortion
was generated using a chain of two displacement fields supported by
grids of B-spline basis functions. The coefficients of the basis functions
were generated randomly for both levels in their three dimensions.
The three components of the displacements u=(ud) were bounded
above by 40% of the separation between the control points at each
level to obtain diffeomorphic transforms after concatenation
(Rueckert et al., 2006). The first deformation field was applied to gener-
ate large warpings with control points separated by 50.50 mm in the
three dimensions (ud ≤ 20.20 mm). With the second warping, we
aimed to obtain a field with smoothness close to that found in a typical
distortion field of dMRI data (Irfanoglu et al., 2011). Therefore, the con-
trol points were separated by 25.25 mm (ud ≤ 10.10 mm). After gener-
ating the ground-truth deformation, the original surfaces were
warped by interpolating the displacement field at each vertex. The
warped surfaces Γtrue were binarized to generate tissue fractions at
low (2.0 × 2.0 × 2.0 [mm]) and high (1.0 × 1.0 × 1.0 [mm]) resolutions.
Using anMRI simulator (Caruyer et al., 2014), we synthesized T1w (TE/
TR = 10/1500 ms) and T2w images (TE/TR = 90/5000 ms), which
corresponded to each phantom type, with each at two resolutions
(1.0 mm and 2.0 mm isotropic). The field of view at both resolutions
was 100 × 100 × 100 [mm]. Next, regseg was applied to map ΓR onto

the warped phantoms to obtain the registered surfaces (Γ̂test). To quan-
tify the misregistration error, we computed the Hausdorff distance be-

tween Γ̂test and Γtrue using (Commandeur et al., 2011). In total, 1200
experiments (four phantom types × 150 randomwarpings × two reso-
lutions) were performed according to the workflow illustrated in Fig. 3.

Segmentation model and settings. The segmentation model of the phan-
toms is implicitly defined: all phantoms comprehend an inner surface
enclosing a uniform WM-like region, and an outer surface wrapping a
GM-like layer. The outside is filled with uniform background (see
Fig. 3). All the experimental settings used for the phantoms are made
available in a unique configuration file.1

Real datasets
The experimental framework for the real datasets is presented in

Fig. 4, which extends our previous evaluation (Esteban et al., 2014a)
of distortions using dMRI phantoms.

Data. To evaluate regseg using real dMRI data obtained from human
brains, we collected 16 subjects from the Q3 Release of the HCP

https://github.com/oesteban/RegSeg/blob/master/Scripts/pyacwereg/data/regseg_default.json
https://github.com/oesteban/RegSeg/blob/master/Scripts/pyacwereg/data/regseg_default.json


2 fieldmaps are phase maps, which are intrinsically clipped in the interval of [−π ,π)
[rads] or [rads/s].

3 https://github.com/oesteban/RegSeg/tree/master/Scripts/pyacwereg/data/regseg_
hcp.json.

Fig. 4. Experimental workflow employed to process real data from the Human Connectome Project (HCP). 1) ΓR were extracted from the anatomical reference (T1w image). 2) For use as
the ground truth, we generated a plausible synthetic distortion Utrue from the fieldmap with Eq. (14). 3) The dMRI data were warped using Utrue to reproduce the effects of real
susceptibility-derived distortions. Target diffusion scalars (FA and ADC) were computed with the distorted data and stacked to feed the multivariate input required by regseg. 4) The

method was run to obtain Utest ¼ Ûtrue, i.e., the estimate of the ground-truth deformation. 5) The results were evaluated visually and quantitatively. The arrows in step (5) point to
edges in the target images (light-yellow arrows for FA, blue for ADC) that should be aligned with a surface, showing how distortion limits the direct mapping from the structural space
in which the contours are defined.
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database. The original acquisitions are released within “unprocessed”
packages, whereas the “minimally preprocessed” packages contain the
corresponding images after some processing (correction for several ar-
tifacts, brain-extraction, spatial normalization, etc.).We refer the reader
to Van Essen et al. (2012) for exact details of the acquisition parameters
and Glasser et al. (2013) for the preprocessing issues. These datasets
comprise a large set of images, including T1w, T2w, and multi-shell
dMRI images. Since we obtained the dMRI data from the minimally
preprocessed package, these images are corrected for EPI distortions
and spatially normalized in T1w space. In the Q3 Release of the HCP,
the dMRI session includes six runs, two runs for each of three different
gradient tables, and each table is acquired once with right-to-left and
left-to-right encoding polarities, respectively. Then, the diffusion
datasets with opposed polarities are corrected for susceptibility distor-
tions using the TOPUP tool (Andersson et al., 2003) before producing
the released “minimally preprocessed” data.

Segmentation model. Based on our experience and previous studies
(Ennis and Kindlmann, 2006), we defined the moving image as a stack
of the FA andADCmaps derived fromdMRI data. After evaluating sever-
al alternative models, we empirically defined a partition Ω according to
the following six regions: 1) thalamus (ΩTha); 2) ventricular system and
deep GM structures (ΩVdGM); 3) cerebral WM (ΩWM); 4) brain stem
and cerebellar WM (Ωbst); 5) cerebellar GM (ΩcbGM); and 6) cortical
GM (ΩGM). Using tools in FreeSurfer and appropriate selections of labels
in the aparc segmentation released with the HCP data, we extracted theΓR set for the reference surfaces. The segmentation model correspond-
ing to this partition is shown in Fig. 2 and discussed in greater detail
in the Supplemental Materials, Section S4.

Ground-truth generation. Realistic deformation was achieved by gener-
atingdisplacementfields that satisfy the theoretical properties of distor-
tion. The displacements along the PE axis of the dMRI image are related
to the local deviation of the field ΔB0(r) from its nominal value B0
(Jezzard and Balaban, 1995), as follows:

uPE ¼ γ Tacq sPE
2π

ΔB0 rð Þ mm½ �; ð14Þ
where γ is the gyromagnetic ratio, Tacq is the readout time, and sPE is the
voxel size alongPE. CertainMRI sequences are designed to estimateΔB0,
thereby obtaining the so-called fieldmap. We derived the deformation
Utrue from the fieldmap image released with the corresponding pack-
ages of each dataset in the HCP. The fieldmap was unwrapped2 and
smoothed before applying Eq. (14). Next, the original dMRI waswarped
using the resulting displacement field and fed into a pipeline to process
the corresponding DTI, thereby computing the derived scalars of inter-
est (FA and ADC) usingMRtrix (Tournier et al., 2012).

Metric assessment. Initially, we investigated the appropriateness of the
segmentation model. For five test datasets, we uniformly sampled the
space of distortions Û ¼ ϵ � Utrue ¼ rþ ε uPE (with ϵ∈ [−1.1,1.1] and
uPE from Eq. (14)), and we evaluated the data term of the cost function
in Eq. (7). The minimum of the cost function (subsection 2.1) was
consistently located at ϵ=0.0 (the ground-truth) for all of the cases
(Supplemental Materials, Fig. S2).

Settings. Regseg accepts an affine mapping from surface-space to the
dMRI data as initialization. However, the images provided by the HCP
are already spatially normalized. Therefore, the initial estimation of dis-
tortion is zero in this experiment. Since the distortion Utrue is aligned
along the PE direction (y-axis in our settings), regseg was configured
to allow nonzero displacements only on that corresponding direction.
For the experiments on real data, regseg established a multi-resolution
pyramid of B-spline functions, with control points distributed on grids
of the following spacings: 40 × 100 × 40 [mm] for the first (coarser)
level, 30 × 30 × 30 [mm] for the second level, and 20 × 30 × 10 [mm]
in the third level. Only the first and second levels included Gaussian
smoothing of the target image (σ=[2.0, 0.5]mm, respectively). The ac-
tual choices of the parameter settings are publicly distributed with the
source code for the experiments.3 These settings were obtained manu-
ally, driven by the feedback obtained from the post-registration conver-
gence reports (like that found in Supplemental Materials, section S1.3).

https://github.com/oesteban/RegSeg/tree/master/Scripts/pyacwereg/data/regseg_hcp.json
https://github.com/oesteban/RegSeg/tree/master/Scripts/pyacwereg/data/regseg_hcp.json
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We released regseg along with the tool to generate such convergence
reports.

Cross-comparison. A dual workflow to the general evaluation used for
regseg (Fig. 4), was employed to integrate the alternate T2B registration
scheme. We reproduced the solution and settings provided with
ExploreDTI (Leemans et al., 2009), which is a widely used toolkit for
tractography analysis of DTI. ExploreDTI internally employs elastix
(Klein et al., 2010) to perform registration. The deformation field is cor-
respondingly restricted to the PE direction. The settings file for elastix is
also available.4 In this registration scheme, the T2w image is the refer-
ence and the b0 plays the role ofmoving image. Therefore, the transform
is defined in the coordinate systemof the T2w image, and for each point
in this space it provides the location of the corresponding feature in the
b0 image. Since the surfaces are defined in the T2w –reference– space,
their coordinates can be mapped to the b0 space using this transform,
obtaining the distorted surfaces corresponding to the b0-to-T2w
registration.

Error measurement. Distortion only occurs along the PE axis of the
image, so we computed the surface warping index (sWI) as the area-
weighted distance between the corresponding vertices of Γtrue and

their estimate obtained by the method under the test Γ̂test:
sWI ¼ 1

∑iai
∑Nv

i ai vi−v̂ik k; ð15Þ

where vi⊂Γtrue are the locations of the total NV vertices, ai is the area

corresponding to each vertex vi, and v̂i⊂Γ̂test are the recovered locations
that correspond to vi. In practice, we only report the sWI for three
surfaces ({ΓVdGM ,ΓWM,Γpial}) of crucial interest in whole-brain
tractography. The sWI is always computed on the dMRI space.

Results

Verification and validation using digital phantoms

The results summarized in Fig. 5 demonstrated that the accuracy
was high and below the image resolution. Panel B on Fig. 5 shows the vi-
olin plots for each model type corresponding to the two sets of resolu-
tions for the generated phantoms. In order to relate the average
misregistration error to the resolution of the moving image, we
proceeded as follows. First, we confirmed that the vertex-wise error dis-
tributions were skewed by using the Shapiro–Wilk's test of normality.
All of the distributions of errors in the tests (four phantom types ×
two resolutions) were nonnormal with p b 0.001. Consequently, we
used the nonparametricWilcoxon signed-rank test with the Bonferroni
correction for multiple comparisons (N=150, for each phantom type).
The average errors were significantly lower than the voxel size with
p b (0.001/150) in all tests (four phantom types × two resolutions). Sta-
tistical tests might not be sufficiently conclusive, so we also computed
the confidence intervals, as shown in Table 1.

Evaluation using real datasets and cross-comparison

Finally, we compared the performance of regseg with that of the
standard T2B method. Summary reports for visual assessment of the
16 cases are included in the Supplemental Materials, section S5. In
Fig. 6, box A, the visual report is shown for one subject. We computed
the sWI (15) of every surface after registration using both the regseg
and T2B methods. Finally, to compare the results, we performed
Kruskal–Wallis H-tests (a nonparametric alternative to ANOVA) on
the warping indices for the three surfaces of interest selected in section
4 https://github.com/oesteban/RegSeg/blob/master/Scripts/pyacwereg/data/t2b_
elastix_y.txt.
2.5 (ΓVdGM, ΓWM, Γpial). All of the statistical tests showed that the error
distributions obtained with regseg and T2B were significantly different,
and the violin plots in box B of Fig. 6 demonstrate that the errors were
always larger with T2B. We also show the 95% CIs of the sWI for these
surfaces (Table 2). The aggregate CI for regseg was 0.56–0.66 [mm],
whereas the T2B method yielded an aggregate CI of 2.05–2.39 [mm].
The results of the statistical tests and the CIs are summarized in Table 2.

Discussion

We present regseg, a simultaneous segmentation and registration
method that maps a set of nested surfaces into a multivariate target-
image. The nonlinear registration process evolves driven by the fitness
of the piecewise-smooth classification of voxels in the target volume
imposed by the current mapping of the surfaces. We propose regseg to
map anatomical information extracted from T1w images into the corre-
sponding dMRI of the same subject. Previously, joint segmentation and
registration has been applied successfully to other problems such as
longitudinal object tracking (Paragios, 2003) and atlas-based segmenta-
tion (Gorthi et al., 2011). Themost common approach involves optimiz-
ing a deformation model (registration) that supports the evolution of
the active contours (segmentation), like Paragios (2003); Yezzi et al.
(2003). Regseg can be seen as a particular case of atlas-based
segmentation-registrationmethods, replacing the atlas by the structural
image of the subject (structure-informed segmentation). Themain differ-
ence of atlas-based segmentation and the application at hand is the res-
olution of the target image. Atlas-based segmentation is typically
applied on structural and high-resolution images. A comprehensive re-
view of joint segmentation and registration methods applied in atlas-
based segmentation is found in (Gorthi et al., 2011). They also propose
a multiphase level-set function initialized from a labeled atlas to imple-
ment the active contours that drive the atlas registration. Alternatively,
regseg implements the active contours with a hierarchical set of explicit
surfaces (triangular meshes) instead of the multiphase level sets, and
registration is driven by shape-gradients (Herbulot et al., 2006). As an
advantage, the use of explicit surfaces enables segmenting dMRI images
with accuracy below voxel size.

An important antecedent of regseg is bbregister (Greve and Fischl,
2009). The tool has been widely adopted as the standard registration
method to be used along with the EPI correction of choice. It imple-
ments a linearmapping anduses 3Dactive contourswith edges to search
for intensity boundaries in the b0 image. The active contours are initial-
ized using surfaces extracted from the T1w using FreeSurfer (Fischl,
2012). To overcome the problem of nonlinear distortions, bbregister ex-
cludes from the boundary search those regions that are typically
warped. Indeed, the distortion must be addressed separately because
it is not supported by the affine transformation model. Conversely, the
deformation model of regseg is nonlinear and the active contours are
without edges (Chan and Vese, 2001) since the FA and ADC maps do
not present steep image gradients (edges) but the anatomy can be iden-
tified by looking for piece-wise smooth homogeneous regions.

Recently, Le Guyader and Vese (2011) proposed a simultaneous seg-
mentation and registration method in 2D using level sets and a nonlin-
ear elasticity smoother on the displacement vector field, which
preserves the topology even with very large deformations. Regseg in-
cludes an anisotropic regularizer for the displacement field described
by Nagel and Enkelmann (1986). This regularization strategy conceptu-
ally falls in the midway between the Gaussian smoothing generally in-
cluded in most of the existing methodologies, and the complexity of
the elasticity smoother of Le Guyader and Vese (2011). Otherminor fea-
tures that differ from current methods in joint segmentation and regis-
tration are the support of multivariate target-images and the efficient
computation of the shape-gradients implementedwith sparsematrices.

We verified that precise segmentation and registration of a set of
surfaces into multivariate data is possible on digital phantoms. We ran-
domly deformed four different phantom models to mimic three

https://github.com/oesteban/RegSeg/blob/master/Scripts/pyacwereg/data/t2b_elastix_y.txt
https://github.com/oesteban/RegSeg/blob/master/Scripts/pyacwereg/data/t2b_elastix_y.txt


Fig. 5.A.Visual assessment of the results obtainedon thedigital phantoms. The panel shows three coronal slices (indices indicated on the lower left corner) of eachphantomvolume at low
resolution: “gyrus” (top left), “L” (top right), “ball” (bottom left), and “box” at (bottom right). The contours recovered after registration are represented in yellow. Regseg achieved high
accuracy because it determined the almost exact locations of the registered contours with respect to their ground truth positions (shown in green). The partial volume effect makes
segmentation of the sulci a challenging problem with voxel-wise clustering methods, but they were successfully segmented with regseg. B. Quantitative evaluation: the violin plot
shows the variability across experiments of the average Hausdorff distance measured in each vertex of the corresponding surface, for the low (left) and high (right) resolutions. Error
averages were consistently below the size of the voxel.
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homogeneous regions (WM, GM, and cerebrospinal fluid) and we used
them to simulate T1w and T2w images at two resolution levels. We
measured the Hausdorff distance between the contours projected
using the ground-truth warping and the estimations found with regseg.
We concluded that the errors were significantly lower than the voxel
size. We also assessed the 95% confidence interval (CI), which yielded
an aggregate interval of 0.64–0.66 [mm] for the low resolution phan-
toms (2.0 mm isotropic voxel) and 0.34–0.38 [mm] for the high resolu-
tion phantoms (1.0 mm isotropic). Therefore, the error was bounded
above by half of the voxel size. The distributions of errors along surfaces
varied importantly depending on the shape of the phantom (see
Fig. 5B). The misregistration error of the “gyrus” phantom showed a
much lower spread than that for the other shapes. We argue that the
symmetry of those other shapes posed difficulties in driving the con-
tours towards the appropriate region due to sliding displacements be-
tween the surfaces and their ground-truth position. The effect is not
detectable by the active contours framework, but it is controllable
Table 1
The distributions of vertex-wise Hausdorff distances between the ground-truth surfaces
and their corresponding estimates obtained with regseg presented a 95% CI below the
half-voxel size for all of the phantom types. TheCIswere computed bybootstrapping using
104 samples, with the median as the location statistic.

Res. “Gyrus” “Ball” “Box” “L” Aggreg.

1.0 mm 0.18–0.38 0.31–0.45 0.34–0.42 0.34–0.40 0.34–0.38
2.0 mm 0.59–0.60 0.65–0.76 0.68–0.71 0.67–0.77 0.64–0.66
increasing the regularization constraints. When regseg is applied on
real datasets, this surface sliding is negligible for the convoluted nature
of cortical surfaces and the directional restriction of the distortion.

We evaluated regseg in a real environment using the experimental
framework presented in Fig. 4. We processed 16 subjects from the
HCP database using both regseg and an in-house replication of the
T2w registration based (T2B) method. Regseg obtained a high accuracy,
with an aggregate 95% CI of 0.56–0.66 [mm], whichwas below the voxel
size of 1.25 mm. The misregistration error that remained after regseg
was significantly lower (p b 0.01) than the error corresponding to the
T2B method according to Kruskal–Wallis H-tests (Table 2). Visual in-
spections of all the results (Supplemental Materials, section S5) and
the violin plots in Fig. 6 confirmed that regseg achieved higher accuracy
than the T2B method in our settings. We carefully configured the T2B
method using the same algorithm and the same settings employed in
awidely-used tool for dMRI processing. However, cross-comparison ex-
periments are prone to the so-called instrumentation bias (Tustison
et al., 2013). Therefore, these results did not prove that regseg is better
than T2B, but indicated that regseg is a reliable option in this application
field. Finally, we also proposed a piecewise-smooth segmentation
model defined by a selection of nested surfaces to partition the multi-
spectral space comprehending the FA and the ADCmaps and ultimately
identify anatomical structures in dMRI space.We also demonstrated the
smoothness of the objective function on five of the real datasets (Sup-
plementalMaterials, Fig. S2), taking advantage of the directional restric-
tion of possible distortions. However, regseg requires densely sampled
surfaces to ensure the convergence. Using the digital phantoms, we



Fig. 6.A. Example of a visual assessment report, whichwas automatically generated by the evaluation tool. Each view shows one component of the input image (in this case, the FAmap),
the ground-truth locations of the surfaces (green contours), and the resulting surfaces obtainedwith the test method (yellow contours). The first two rows show axial slices for regseg and
the T2w-registration based (T2B) method, while the last two rows show the corresponding sagittal views. The coronal view is omitted because it was the least informative due to the
directional property of the distortions. Specific regions where regseg outperformed T2B are enlarged. B. Violin plots of the error distributions for each surface across the 16 subjects,
which show the voxel size of the dMRI images (1.25 mm), thereby supporting the improved results obtained by regseg with the proposed settings.
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severely decimated the surfaces by a large factor. These surfaces intro-
duced a bias which displaced the zero of the gradients from the mini-
mum of the objective function impeding the convergence.

The proposed application of the method in the task of identifying
structural information in dMRI images is an active field of research
(Jeurissen et al., 2015). Current processing of dMRI involved in the
connectome extraction and other applications (such as tract-based spa-
tial statistics –TBSS– or surgical planning) require a precise segmenta-
tion of the anatomical structures in the diffusion space. Some
examples of these processing tasks are the structure-informed recon-
struction of dMRI data (Jeurissen et al., 2014; Daducci et al., 2015), the
anatomically constrained tractography (Smith et al., 2012), and the im-
position of the cortical parcellation mapped from the T1w image
(Hagmann et al., 2008). The problem was firstly addressed using
image segmentation approaches in the native diffusion space, without
definite and compelling results. With the introduction of retrospective
correction methods for the EPI distortions and image registration ap-
proaches, the task has been typically solved in a two-step approach.
First, the DWIs are corrected for EPI distortions by estimating the nonlin-
ear deformation field from extra MR acquisitions (Jezzard and Balaban,
1995; Chiou and Nalcioglu, 2000; Cordes et al., 2000; Kybic et al., 2000).
Second, mapping the structural information from the corresponding
T1w image using a linear registration tool like bbregister (Greve and
Fischl, 2009). The current activity on improving correction methods
(Irfanoglu et al., 2015) and the comeback of segmentation of dMRI in
its native space (Jeurissen et al., 2015) proof the open interest of this ap-
plication. Regseg addresses this joint problem in a single step and it does
not require any additional acquisition other than the minimal protocol
comprehending only T1w and dMRI images. This situation is commonly
found in historical datasets.



5 The Hadamard power of a matrix or a vector is the power of its elementsM∘p ¼ ðmij
pÞ.

Table 2
Statistical analysis of results obtained using 16 real datasets from the HCP, which shows
that regseg performed better than the alternative T2w-registration based (T2B) method.
The distribution of the errors computed for the surfaces of interest (ΓVdGM, ΓWM, Γpial)
and the aggregate of all surfaces (Aggreg. column) had lower 95% CIs with regseg. The
CIs in this table were computed by bootstrapping using the mean as the location statistic
and with 104 samples. The Kruskal–Wallis H-tests indicated that there was a significant
difference between the results obtained using regseg and the T2B method.

ΓVdGM ΓWM Γpial Aggreg.

CI regseg 0.50–0.78 0.50–0.55 0.66–0.73 0.56–0.66
T2B 1.78–2.58 1.94–2.36 2.16–2.58 2.05–2.39

H-tests p-value 4.1 ⋅10−6 2.3⋅10−6 2.3 ⋅ 10−6 1.8 ⋅ 10−16

H-stat 21.20 22.31 22.31 67.85
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Weenvision regseg to be integrated in diffusion processing pipelines,
after a preliminary DTI computation and before anatomically-informed
reconstruction and tractographymethods. Since the structural informa-
tion is projected into the native space of dMRI, these two processes and
thematrix building task can be performed on the unaltered dMRI signal
(i.e. without resampling data to an undistorted space). For analyses
other than connectivity, like TBSS, the deformation estimated by regseg
can be used to map the tracts into structural space. Even though we
apply regseg to the problem of susceptibility distortion, it is not a distor-
tion correction method, but rather a surface alignment method. In fact,
the distortions are not corrected in the EPI data. Therefore, we suggest
here to perform the reconstruction and tractography processes in the
original (distorted) diffusion data. Regseg allows to avoid resampling
and/or unwarping of the diffusion signal because the structural infor-
mation necessary in the diffusion analysis is mapped from the reference
space. Certain applications (like TBSS) andmethodologies (like building
the connectivity matrix by clustering the tracks) may not be performed
correctly on the native (distorted) diffusion space because they still
need a mapping to the undistorted space. Using regseg, the tracks ob-
tained in native space can be unwarped using the resulting estimation
of the deformation field. This methodological variation will be further
investigated, to ensure which processing design yields the most accu-
rate tractography results.

Beyond the presented application on dMRI data, regseg can be indi-
cated in situations where there are precise surfaces delineating the
structure, a target multivariate image in which the surfaces must be
fitted, and the mapping between the surfaces and the volume encodes
relevant physiological information, such as the normal/abnormal devel-
opment or the macroscopic dynamics of organs and tissues. For in-
stance, regseg may be applied in fields like neonatal brain image
segmentation in longitudinal MRI studies of the early developmental
patterns (Shi et al., 2010). In these studies, the surfaces obtained in a
mature time point of the brain are retrospectively propagated to the ini-
tial time points, regardless of the changes in the contrast and spatial de-
velopment between them.More generally, regsegmay also be applied to
the personalized study of longitudinal alteration of the brain usingmul-
tispectral images, for instance in the case of traumatic brain injury
(Irimia et al., 2014) or in monitoring brain tumors (Weizman et al.,
2014).

Conclusion

Regseg is a variational framework for the simultaneous segmentation
and registration of 3D dMRI data obtained from the human brain,where
within-subject anatomical information is used as a reference. The regis-
tration method segments the target multivariate image into several
competing regions, which are defined explicitly by their limiting sur-
faces. The surfaces are active and they evolve on a free-form deforma-
tion field supported by the B-spline basis. A descent optimization
strategy is guided by shape gradients computed on the current partition
of the target image. Regseg uses active contours without edges and it
searches for homogeneous regions within the image. We tested regseg
using digital phantoms by simulating T1w and T2w MRI warped with
smooth and random deformations. The resulting misregistration of the
contours was significantly lower than the image resolution of the
phantoms.

We proposed regseg for simultaneously segmenting and registering
dMRI data to their corresponding T1w image from the same subject.
We demonstrated the accuracy of the proposedmethod based on visual
assessments of the results obtained by regseg and cross-comparisons
with a widely used technique. Moreover, regseg does not require any
images in addition to the minimal acquisition protocol, which only uti-
lizes T1w and dMRI. As well as the proposed application to dMRI data,
other potential uses of regseg are atlas-based segmentation and tracking
objects in time-series.

Availability and reproducibility statement

We considered the reproducibility of our results as a design require-
ment. Therefore, we used real data obtained from the Human
Connectome Project (Van Essen et al., 2012) and all of the software uti-
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sources, etc.) involved in this study are publicly available under a
unique package (Esteban and Zosso, 2015).

Author contributions

All the authors contributed to this study. OE implemented themeth-
od, designed and conducted the experiments, wrote the paper, simulat-
ed thephantoms, and prepared the real data. DZ devised anddrafted the
registration method, generated early phantom datasets, and collaborat-
ed in the implementation of themethod. AD,MBC, andMJLC interpreted
the results. AD, MBC, MJLC, JPT, and AS advised on all aspects of the
study.

Acknowledgments

The authors thank Y. Alemán and G. Wollny for their thorough re-
views of the manuscript, V. Estellers for early discussions at the begin-
ning of this project, and L. A. Vese for her support during OE's research
visits to her laboratory. We also thank A. Leemans for kindly sharing a
p-code version of ExploreDTI from which the settings for elastix could
be extracted.

DZ was supported by the Swiss National Science Foundation under
grants PBELP2-137727, P300P2-147778, and NSF-DMS 1418812. This
study was supported by the SpanishMinistry of Science and Innovation
(projects TEC-2013-48251-C2-2-R and TEC2015-66978-R), Comunidad
deMadrid (TOPUS S2013/MIT-3024) and the European Regional Devel-
opment Funds, the Center for Biomedical Imaging (CIBM) of the Geneva
and Lausanne Universities and the EPFL, as well as the Leenaards Foun-
dation and Louis Jeantet Foundation.

Appendix A. Simplifying the regularization term

The exponentials of the Thikonov regularization prior in Eq. (6) have
the general form vTMv. If M is a n×n diagonal matrix such that M=
m In, then:

vTMv ¼ m � vT Inv
� � ¼ m � v∘2;

where we have introduced the Hadamard power notation.5

http://www.itk.org
http://www.itk.org
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In general, the anisotropy of the distortion field is aligned with the
voxel coordinate system, so A and B of Eq. (7) can be simplified to diag-
onal matrices to regularize the registration process, such that A=α In
and B=β In. By substituting into Eq. (7), we obtain:

E uð Þ ¼ Const:þ
X
l

Z
Ωl

D2
l f 0
� �

drþ
Z

Ω

1
2

α � u∘2 þ β � ∇uð Þ∘2
h i

dr: ðA:1Þ

Appendix B. Application of the shape-gradients

The computation of gradients at the locations of the active contours
in the instant t is based on thework of Herbulot et al. (2006). Let F(r) be
an “arbitrary” function over the image domain Ω=Ωl∪Ωm split in two
regions l andm, and Γl ,m a closed boundary between them.We now de-
rive the domain integral w.r.t. t:

∂
∂t

Z
Ω
F rð Þdr ¼

Z
Ω

∂
∂t

F rð Þdr ¼
Z

Γl;m
F rð Þ ∂Γl;m

∂t
;NΓl;m

� �
dr; ðA:2Þ

where h∂Γl;m∂t ;NΓl;m i is the projection of the boundary movement on the
unit inward normal NΓl ,m. Assuming that the region descriptors {μl,Σl}
vary slowly enough, we can consider that ∂

∂t FðrÞ ¼ 0 and thus:

∂
∂t

Z
Ω
F rð Þdr ¼ −

Z
Γl;m

F rð Þ ∂Γl;m
∂t

;NΓl;m

� �
dr: ðA:3Þ

The Eq. (A.3) is discretized as follows. First, the surface between lim-
iting regions l and m (Γl ,m) is explicitly represented by a discrete set of
vertices vi, with i∈{0,… ,Np−1}. Consequently, the inwards normal of
the surface NΓl ,m is represented by the discrete set of normals n̂i at
each vertex of themesh. The resulting summation is, therefore, discrete
and the integral operator is replaced by the sum:

ðA:4Þ

where ai is the area corresponding to vertex vi, and Ap ¼ ∑iai is the
total area of the surface p. In the following, we will refer as wp ,i=ai/Ap
to the area contribution of vi to the total area of the surface it belongs
to. For simplicity, the sumover p can be also removed, as the vertices be-
long to only one of the total P contours.

Then, the speed of vi is discretized using the artificial time-step pa-

rameter δ, as the displacement ∂vi
∂t ¼ viðδ ¼ t þ 1Þ−viðδ ¼ tÞ:

∂
∂t

Z
Ω
F rð Þ dr¼−

X
i

wp;i F við Þ ∂vi
∂t

� n̂i: ðA:5Þ

Since the energy functional is defined over competing regions, the
displacement of vi will cause an energy exchange between the limiting
regions, and therefore F(r) must be split in two terms, Fin(r) corre-
sponding to the interior region and Fout(r) to the exterior:

ðA:6Þ

Then, we identify the shape gradient contribution gk on the coeffi-
cients uk of the B-spline grid to obtain the definition of gk given in
Eq. (12):

gk ¼ −
X
i

∂v0i
∂uk

; s0 i

� �
with s0 ¼ wi D2

out f 0i
� �
 �

−D2
in f 0i
� �

n̂i;

and
∂v0i
∂uk

¼ ∂
∂uk

vi þ
X
k

ψk við Þuk

( )
¼ ψk við Þe ̂;

ðA:7Þ

where ψk and uk define our B-spline deformation model (Eq. (8)) and ê
is the coordinates system's unit vector.
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