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 Abstract– A fast statistical iterative image reconstruction 
algorithm has been developed for high resolution PET scanners 
based on rotating plane detectors. The proposed technique 
consists of a multi-grid version of the 3D ordered subsets 
expectation-maximization (3D-OSEM) algorithm. The associated 
system matrix is precalculated for the fine grid resolution with 
Monte Carlo methods. Coarse grid system matrices and subset 
subdivision are derived at a post-process step. Only the system 
matrix elements associated to the fourth part of central 
transverse planes are stored in sparse mode format, using axial 
and in-plane transaxial symmetries during the reconstruction. 
The multi-grid proposed technique has been evaluated on 3D 
sinograms obtained from GATE simulations, reporting better 
resolution-noise trade-off than SSRB+2D-OSEM and FORE+2D-
OSEM algorithms, specially in the axial direction and far from 
the center of the FOV. The proposed algorithm shows 
significantly faster convergence rate than single-grid 3D-OSEM 
when is applied to images with local smoothness property. 

I. INTRODUCTION 

HE MLEM algorithm (maximum-likelihood expectation-
maximization) [1] is a powerful image reconstruction 

technique widely employed in PET imaging. Because of the 
low geometric sensitivity and the required high spatial 
resolution, 3D versions of the MLEM algorithm are well 
suited for small animal planar-head, rotating PET cameras. 
The ordered subsets expectation-maximization (OSEM) 
algorithm [2] (a block sequential version of the MLEM 
algorithm) accelerates MLEM and is commonly employed in 
commercial and experimental PET cameras. In this work we 
study a novel iterative algorithm that combines the 3D-OSEM 
with the multi-grid expectation maximization (MGEM) 
algorithm [3], which is based on the idea that low image 
frequencies can converge faster than the high frequency ones. 
The MGEM algorithm is initialized with a coarse grid, where 
the low frequency components are recovered in fast iterations 
due to the smaller dimensionality of the coarse grid system 
matrix. When near convergence, the resulting image is 
interpolated onto the next finer grid.  
The image quality depends on the accurate modeling of the 
system matrix: i.e., the set of a priori probabilities that an 
event generated in a voxel i is detected in the line of response 
(LOR) j, {pij}. Practical implementation at reasonable times 
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however imposes the use of approximations where the 
majority of pij have zero or negligible values. Efficient sparse-
matrix storage and reading techniques can avoid the 
calculations of pij on the fly. In 3D case, the number of non-
zero system matrix values is too large, and the pre-calculated 
system matrix must be compressed with the consideration of 
possible redundancies, i.e., axial and in-plane symmetries [4].  
System matrix estimation can be performed by Monte Carlo 
methods than incorporate physical effects not included in an 
analytical model [5]. 

We have evaluated a multi-grid 3D-OSEM algorithm with 
precalculated system matrix, optimized to high resolution 
planar-head PET cameras composed of pixelated scintillator 
crystal arrays. The comparison with single-grid 2D-OSEM 
and single-grid 3D-OSEM has been also performed.  

II. MATERIALS AND METHODS 

A. Scanner Geometry and Data Format 
The simulated small animal PET scanner design used in this 

work consists of two pairs of planar detectors in coincidence 
mode, with 160 mm of separation between opposite detectors. 
Each detector is composed of a 30×35 array of 1.5×1.5×12 
mm3 LYSO pixelated crystals, assembled on a 100 µm thick 
matrix of plastic reflector. The detectors are mounted on a 
rotating gantry with 180º rotation span [6]. A schematic of the 
scanner’s configuration is plotted in the fig. 1. 

The coincidences associated to the pixelated crystals 
located in the detector extremes are not used in the 
reconstruction process, and the useful field of view (FOV) 
completely covered by the detectors is 44.8×44.8×56 mm3.  
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Fig. 1.  Scheme of the scanner geometry employed in this work: Two pairs 
of planar detectors composed of pixelated crystals and mounted on a rotating 
gantry. 

Coincidences are binned in direct and oblique sinograms as 
a function of four variables: (s, φ, θ, r), where s is the distance 
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between the z axis and the LOR projection onto a transverse 
plane; φ is the LOR azimuthal angle; θ is the angle between 
the LOR and the transverse plane, and r is the mean between 
the axial coordinates of the two crystals in coincidence [7]. 
The following equations converts the absolute coordinates of 
the two crystals involved in coincidence, (x1,y1,z1) and  
(x2,y2,z2), into the 3D sinogram parameters: 
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Sampled values are obtained for s and φ with nearest-
neighbor interpolation, while θ and r are mapped onto z1 and 
z2 using linear interpolation. 

This parametrization is also employed in the system matrix 
pre-calculation, where the non-zero sinogram bins (i.e., scaled 
probabilities pij) are assigned to the corresponding subset and 
stored in sparse matrix format.  

B. System Matrix and Symmetries 
We consider a 3D discretized PET model, where the field of 

view (FOV) is divided in cuboid-shaped regions (voxels) in 
which the activity is assumed to be constant. 

The system matrix must be precalculated using only once 
when a design parameter is modified (voxel size, crystal 
number, rotating span). The simulation details, using Monte 
Carlo Methods, have been previously described [8], and 
include attenuation and scatter effects in the detector. In the 
multi-grid scheme, system matrix simulation is performed 
only for the finest grid, with voxels without overlap. The 
finest grid voxel size is chosen at one quarter the size of the 
pixelated crystal, to ensure that the intrinsic scanner resolution 
is maintained (both in the transaxial plane and the axial 
axis).Coarse grids can be computed joining neighboring 
voxels of the highest order level grid. 

Two different axial alignments have been modeled (figs. 2 
and 3), which allow to obtain pij for other parallel LORs, by 
translation of the voxel coordinates along z. The parallel shift 
redundancies applied are (fig. 4.):  

1 1 2 2,   ,   p p d d d d d d dz z nN z z N z z N→ + → + → +  

where zp  is z coordinate index of voxel in the range [0,Nz), zd1 
and zd2 are the pixelated crystal row indexes associated to the 
coincidence, Nd is the axial shift (in units of number of 
crystals), and n denotes the number of slices that match the 
crystal thickness in the z dimension. 

Analogous, the reflection symmetry along the axial 
direction (fig. 4) obtain  pij for symmetric LORs, and is 
expressed as: 

1 1 2 2,   1 ,   1p z p d z d d z dz nN z z N z z N z→ − → − − → − −  

With the axial alignment proposed in fig. 2, only two 
central slices need to be modeled in detail for the finest 
resolution (n=4), while the rest of the slices are obtained with 

reflection axial symmetry and parallel shift axial 
redundancies. The alignment proposed in fig. 3 requires the 
simulation of at least three slices. In both alignments, coarse 
grids involve voxel sizes half or exactly the size of the 
pixelated crystal in the z dimension, but only the alignment of 
fig. 2 can pre-compute the system matrix probabilities by 
joining voxels of the finest grid. 
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Fig. 2. The number of modeled transaxial slices depends of the thickness 
and alignment of the voxel grid. With the axial alignment plotted in this 
figure, only two central slices need to be modeled in detail for the finest grid.  
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Fig. 3.  In this axial alignment of the voxel grid, at least three slices need to 

be modeled to obtain the rest of the slices with symmetries.   
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Fig. 4.  Parallel shift (left) and axial symmetry (right) along the axial 

direction (z). LORs belonging to voxels z’p derivates from LORs from zp. 
 
Since scanner demostrates rotational symmetry, in-plane 

symmetries have been used, modeling only the voxels 
belonging to the first quadrant.  One voxel i1 with (k,l) 
transaxial indexes has the following in-plane rotational 
symmetry relationship with voxels i2, i3 and i4 (fig. 5): 

2216



 

( )
( )
( )

1 2

1 3

1 4

 

 2

 2

i i

i i

i i

ϕ ϕ π
ϕ ϕ π
ϕ ϕ π

→ ⇒ → +

→ ⇒ → −

→ ⇒ → +

 

 During the projection and backprojection steps, the stored 
pij values are sequentially read with their [s, φ] and [θ, r] 
associated positions. Since the axial symmetries involve a 
change of θ and r values, a lookup-table provides the new [s, 
φ, θ’, r’] values related to voxels in the same x-y position and 
different transverse planes. On the other hand, in-plane 
symmetries shift φ values by a  multiple of 90º. 
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Fig. 5. Only the fourth part of voxels belonging to one transaxial slice are 

stored in the pre-calculated system matrix, obtaining the rest by rotational 
symmetry. 

 

III. EXPERIMENTS AND RESULTS 

352 oblique sinograms of 55×120 bins are formed from the 
collected list-mode data respecting the resolution limits of the 
system. The data are divided in 10 subsets and a LOR is 
assigned to subset n = mod (φ, 10), balanced according to the 
azimuthal angle φ. Three grid levels are used, from the coarser 
of 28×28×35 voxels, to the finest of 112×112×140 voxels. The 
sinogram size is kept constant in the multi-grid scheme. The 
precalculated system matrix parameters are represented in 
table 1. 
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Table 1.  Parameters of the precalculated system matrix (SM) set. The 

sinogram size is 55×120×35×35. 
 
The multi-grid 3D-OSEM scheme was evaluated with 

realistic phantom simulations performed with GATE [9]. A 12 
ns time-coincidence window and 0.4-0.7 MeV energy window 

have been used. 15 point sources were placed in a warm 
cylinder (20 mm radius by 48 mm length) to quantify the noise 
and resolution properties. The radial positions were located at 
r={2,6,10,14,18} mm off-center, in three transverse planes 
z={-20,0,10} mm. The generated events in the point sources 
were 1/5 times the events of the cylinder and 14 million 
coincidences were collected. A multi-grid 3D-OSEM 
reconstructed image of this study is shown in fig. 6. 

 

 
Fig. 6.  Multi-grid 3D-OSEM reconstruction of point sources in a warm 

cylinder simulated with GATE. Transverse,  saggital and coronal sections. 
 
In fig. 7, the geometric mean of the radial, tangential and 

axial resolution (specified by the FWHM of the adjusted 
Gaussian curve), of point sources located on the central 
transverse plane is plotted against the radial position. The 
methods compared are SSRB+2D-OSEM (single slice 
rebinning followed by 2D-OSEM), FORE+2D-OSEM 
(Fourier rebinning), multi-grid and single-grid 3D+OSEM. 5 
iterations and 10 subsets were used in all cases. The maximum 
axial rebinning for 2D methods was chosen 15 and 25 
pixelated crystals. 
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Fig. 7.  2D-OSEM and 3D-OSEM resolution vs. radial position figure. 

 
 
Noise-resolution curves are plotted in fig. 8. The number of 

iterations is referred to the finest grid iterations. The 
coefficient of variation (COV) is defined as the standard 
deviation divided by the mean, and is measured on the warm 
cylinder, over 500 random selected voxels per slice. The 
resolution (FWHM) is referred to the mean value for point 
sources in the central transverse plane.  

These results show a better resolution-noise trade-off than 
SSRB+2D-OSEM and FORE+2D-OSEM methods, especially 
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far from the center of the FOV, while converging faster than 
single-grid 3D-OSEM. 
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Fig. 8.  2D-OSEM and 3D-OSEM noise vs. resolution figure.  
 
A Derenzo-type phantom was simulated with GATE, with a 

total amount of 4.8 millions of coincidences, and water-filled 
rods of {4.8, 3.6, 2.4, 1.8, 1.2} mm diameter, with the same 
distance between surfaces. In fig. 9, transverse central planes 
are shown for multi-grid and single-grid 3D-OSEM. 
Reconstructions times in each iteration vary from 12min 56s 
for the finest grid to 21s (see table 2), for the coarsest grid, 
improving the total reconstruction time in the multi-grid 
scheme with the same number of total iterations.  
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Single-grid reconstruction, 1,2 and 3  iterations
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Fig. 9.  Derenzo-type  GATE simulation. Up: multi-grid 3D-OSEM (3  
iterations with different grids). Bottom: single-grid 3D-OSEM reconstruction 
(1,2 and 3 iterations). 

 
 
 
 

12min56s4min40s1min30s21sRec. time

112x112x141112x112x7156x56x7128x28x36Image Size
16min47s7min33s2min17s33sRec. time

112x112x140112x112x7056x56x7028x28x35Image Size 
12min56s4min40s1min30s21sRec. time

112x112x141112x112x7156x56x7128x28x36Image Size
16min47s7min33s2min17s33sRec. time

112x112x140112x112x7056x56x7028x28x35Image Size 

 
 

Table 2. Computing time for one iteration over 10 subsets, for different 
image sizes employed the multi-grid scheme. (PC Pentium IV, 3.2 MHz CPU 
clock and 1GB RAM) 

IV. CONCLUSIONS 
A fast multi-grid 3D-OSEM iterative image reconstruction 

scheme has been implemented and evaluated for high 
resolution planar-head rotating small animal PET cameras. 
The algorithm employs pre-calculated system matrix, 
simulated with Monte Carlo methods and stored in an efficient 
way in sparse matrix format. The reconstruction of simulations 
performed with GATE have reported better resolution/noise 
curves than the 2D-OSEM algorithm, whereas the 
convergence is accelerated with respect to the equivalent 
single-grid method without appreciable loss of image quality. 
The accelerating technique of MLEM provides a good trade-
off between quality and reconstruction time.  
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