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Purpose: To develop and validate a computed tomography (CT) harmonization technique by com-
bining noise-stabilization and autocalibration methodologies to provide reliable densitometry mea-
surements in heterogeneous acquisition protocols.
Methods: We propose to reduce the effects of spatially variant noise such as nonuniform patterns of
noise and biases. The method combines the statistical characterization of the signal-to-noise relation-
ship in the CT image intensities, which allows us to estimate both the signal and spatially variant
variance of noise, with an autocalibration technique that reduces the nonuniform biases caused by
noise and reconstruction techniques. The method is firstly validated with anthropomorphic synthetic
images that simulate CT acquisitions with variable scanning parameters: different dosage, nonhomo-
geneous variance of noise, and various reconstruction methods. We finally evaluate these effects and
the ability of our method to provide consistent densitometric measurements in a cohort of clinical
chest CT scans from two vendors (Siemens, n = 54 subjects; and GE, n = 50 subjects) acquired with
several reconstruction algorithms (filtered back-projection and iterative reconstructions) with high-
dose and low-dose protocols.
Results: The harmonization reduces the effect of nonhomogeneous noise without compromising the
resolution of the images (25% RMSE reduction in both clinical datasets). An analysis through hierar-
chical linear models showed that the average biases induced by differences in dosage and reconstruc-
tion methods are also reduced up to 74.20%, enabling comparable results between high-dose and
low-dose reconstructions. We also assessed the statistical similarity between acquisitions obtaining
increases of up to 30% points and showing that the low-dose vs high-dose comparisons of harmo-
nized data obtain similar and even higher similarity than the observed for high-dose vs high-dose
comparisons of nonharmonized data.
Conclusion: The proposed harmonization technique allows to compare measures of low-dose with
high-dose acquisitions without using a specific reconstruction as a reference. Since the harmoniza-
tion does not require a precalibration with a phantom, it can be applied to retrospective studies. This
approach might be suitable for multicenter trials for which a reference reconstruction is not feasible
or hard to define due to differences in vendors, models, and reconstruction techniques. © 2019 Amer-
ican Association of Physicists in Medicine [https://doi.org/10.1002/mp.13578]
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1. INTRODUCTION

The characterization of computed tomography (CT) density
measures is crucial for the development of image-based
biomarkers for disease diagnosis, prognostication, and moni-
toring.1–3 The main purpose of quantitative imaging (QI)
techniques is to reduce functional, biological, and morpho-
logical processes to a measurable quantity employing medical
imaging. The necessity of QI is especially important in light

of a new healthcare delivery system that requires more per-
sonalized treatments and tries to tailor therapies to the under-
lying pathophysiology. The advancement in techniques to
automatically interpret and quantify medical images has been
recognized by regulatory agencies that have now proposed
guidelines for the qualification of image-based biomarkers to
be used as valid endpoints in clinical trials.4 Nevertheless, the
utility of QI is undoubtedly hampered by the discrepancies in
the acquisition and reconstruction parameters, and dose
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differences in clinical studies. In the specific case of CT
images, the quantitative analysis involves dealing with intrin-
sic disparities in the density measures since image character-
istics vary as a function of the chosen scanning parameters.5,6

One way to alleviate these discrepancies is to establish an
acquisition protocol for multicenter studies to share similar
scan parameters, although differences between manufacturers
are still present.7 Additionally, the high utilization of CT
scans has raised some concerns about the implications of
radiation exposure in clinical populations, suggesting the use
of low-dose (LD) and ultra-low-dose techniques in clinical
practice.8,9 Therefore, although acquisition protocols and
devices might be the same, the doses may change from sub-
ject to subject in both longitudinal and cross-sectional stud-
ies. The scenario becomes even more intricate with the
advent of iterative reconstruction methods to deal with LD
acquisitions. The iterative reconstruction methods affect the
CT numbers differently depending on their assumptions and
may result in a deviation of the desired calibration as com-
monly seen in PET attenuation correction techniques using
LD CT protocols.10

Some efforts have been made to minimize the previously
mentioned issues in clinical studies. Spatial discrepancies in
the attenuation levels have been largely observed in clinical
studies.11,12 Some approaches using anatomical references
like trachea and aorta densities have shown promising
results.13,14 The interscanner deviations are also an important
factor that has been studied.7

In this work, we present a methodology that effectively
combines the stabilization of spatially variant noise, that
characterizes and minimizes the effect of noise, with an
autocalibration scheme to remove the nonstationary biases.
For this purpose, we apply the noise-stabilization method
proposed by Vegas-S�anchez-Ferrero et al.15 to characterize
the spatially variant effects of noise in the CT numbers
due to the different factors in the acquisition and recon-
struction of CT scans. This methodology characterizes the
signal/noise relationship through a statistical model that
describes the spatially variant nature of noise and retrieves
both components of signal and noise. Then, we combine
the information obtained from the signal and noise esti-
mates to remove the spatially variant and systematic biases
across the scan following the method we proposed.16 Since
this methodology does not consider any combination of
parameters for the reconstruction as a preferential standard,
we refer to this method as a harmonization methodology.
The methodological contribution is the nontrivial way of
combining the noise-stabilization and the autocalibration
techniques to take advantage of the features of both
methodologies at the same time.

The assessment of our harmonization methodology is
performed in two scenarios: first, with an in silico and
anatomically realistic simulations with known CT numbers
and edge-spread function; and second, with a clinical dataset
of subjects from the COPDGene cohort that were scanned in
either GE or Siemens scanners with different doses and

reconstructed with two filtered backprojection kernels and
iterative methods.

2. MATERIALS AND METHODS

2.A. Harmonization

The harmonization of CT scans is performed in four steps:
(a) characterization of noise and tissues, (b) estimation of sig-
nal and local variance, (c) correction of spatially variant and
systematic biases, and (d) preservation of stabilized details.
In Fig. 1, we provide a schematic description of the method
to illustrate every step.

(a) Characterization of noise and tissues. The estima-
tion of both the signal and noise components of the CT image
is performed by adopting a noncentral gamma distribution
(nc-Γ) as the probabilistic model that characterizes the inten-
sity values of the reconstructed CT images. It follows a three-
parameter distribution:

fCðxja; b; dÞ ¼ ðx� dÞa�1

CðaÞba e
x�d
b ; x[ d; a[ 0; b[ 0

(1)

where Γ(�) is Euler’s gamma function, a and b are the shape
and scale parameters, respectively, and d is the location
parameter set to the minimum value observed in the image,
usually set slightly below �1000 HU. In our case, we set it to
�1024 HU since that is usually the lower bound in clinical
scans.

This probabilistic distribution has been recently proposed
and evaluated as a versatile statistical model of CT numbers
for different doses and reconstruction methods.15 The pres-
ence of different tissues can be effectively modeled by a mix-
ture model of nc-Γ distributions to the CT:

pðxðrÞÞ ¼
XJ
j¼1

pjðrÞfCðxðrÞjajðrÞ; bjðrÞ; dÞ (2)

for J components, where pj are the weights of the mixture
and aj, bj the parameters of the j-th component. This model
allows us to describe the heterogeneous nature of tissues, the
spatially variant response of noise, and its statistical proper-
ties described in the literature.12,15–17

To ensure that the heterogeneous composition of tissues is
properly described, we set J = 9 components with mean val-
ues, fljgJj¼1, ranging from �1000 to 400 HU. This is a rea-
sonable range of attenuations to model tissues including air
(�1000 HU), lung parenchyma (�700 HU), fat (�90 HU),
vasculature and muscle (50 HU), and bone (>200 HU). The
estimation of the parameters for each component is achieved
through the expectation–maximization method for known
mean values for each component, lj, which reduces the prob-
lem to solve a nonlinear equation in each iteration at each
location.15,18 The estimation of the shape parameters, ajðrÞ,
are obtained by solving the following nonlinear equa-
tion derived from the maximum likelihood estimation in the
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local neighborhood g(r) (for clarity, we omit the reference to
location):

logðajÞ � wðajÞ ¼

P
s2g

cj
xðsÞ�d
lj�dP

s2g
cj

�

PN
s2g

cj log
xðsÞ�d
lj�d

� �
P
s2g

cj
� 1

(3)

where w(�) is the digamma function and cjðrÞ is the probabil-
ity for the j-th tissue class at location r:

cjðrÞ ¼
pjðrÞfCðxðrÞjajðrÞ; bjðrÞ; dÞPJ

k¼1 pkðrÞfCðxðrÞjakðrÞ; bkðrÞ; dÞ
: (4)

Then, the scale factor is calculated as bj ¼ ðlj � dÞ=aj
and the priors pj are updated as pj ¼ 1

jgðrÞj
P

s2gðrÞ cjðsÞ.
Equations (3) and (4) are iteratively applied until conver-

gence is reached, which is usually achieved in very few itera-
tions due to the constraint imposed by the mean fljgJj¼1 for
each tissue. A suitable initialization of parameters for the iter-
ative optimization is pj ¼ 1=J, aj ¼ 2 and bj ¼ lj=aj for
each component.

(b) Estimation of signal and local variance. The estima-
tion of the signal and the local variance of noise is finally
achieved by the calculation of the sample conditioned
moments to each tissue class as follows:

EfXkðrÞjjg � hXkðrÞjji ¼

P
s2gðrÞ

xkðsÞcjðsÞP
s2gðrÞ

cjðsÞ
(5)

where the conditioned expectation operator, E{�|j}, is approx-
imated by the conditioned sample mean operator 〈�|j〉. This
formulation provides a more robust estimate of conditioned
local moments since it just considers samples belonging to
the j-th tissue class.

Finally, the moments for each location can be estimated as
the weighted average of the conditioned moments as:

EfXkðrÞg � hXkðrÞi ¼
XJ
j¼1

pjðrÞhXkðrÞjji (6)

So, the signal and the variance of noise can be directly
estimated as 〈X(r)〉 and r̂2ðrÞ ¼ hX2ðrÞi � hXðrÞi2.

(c) Correction of spatially variant bias. The location-
dependent variance of noise induces a bias in the CT num-
bers. As an example of this effect, in Fig. 2, we represent
the bias induced by the spatially variant noise observed in a
conventional clinical CT scan acquired with a high-dose
(HD) and a soft reconstruction kernel (Siemens Definition,
dose 400 mA, kernel B31f). Note that in Fig. 2(b) the sam-
ples of the trachea exhibit both a systematic bias (the mean
value in the trachea is �938.36 HU) and a location-depen-
dent bias that depends linearly on the variance of noise.
We also represent the regression line hXðrÞi ¼ bairr̂2ðrÞþ
aair. The regression coefficient depends on tissue
density.16

One of the advantages of adopting the noise model of Eq.
(2) is that it provides a functional relationship between the
regression coefficient and the CT number as the density
increases: b(x) = C/(x�d), where x is the CT number and C
is a constant to be determined.15 Note that b(x) decreases as
the tissue becomes denser due to the more symmetric distri-
bution of tissues with higher attenuation value.

For the calculation of C, one can take advantage of the lin-
ear regression in the trachea and/or air external to the body as
follows:

bðx; r̂2Þ ¼ bair
bair r̂2þaair�d

x�d if x[ bairr̂2 þ aair
bair if x� bairr̂2 þ aair

�
(7)

This function sets the highest value of the regression coef-
ficient to the one estimated for air. Then, the coefficient con-
tinuously decreases following the functional relationship 1/
(x�d). Therefore, the linear relationship between density and
noise variance fits both the regression in air and the decrease
law observed.

FIG. 1. Scheme of the proposed harmonization method. (a) The image is statistically characterized by a mixture model that provides the probability of belonging
to each tissue class (posterior probabilities). (b) The conditioned local statistical moments are calculated through the local characterization per tissue by using the
posterior probabilities. Then, they can be aggregated to estimate the moments. The signal and the spatial variance are the first and second order moments, respec-
tively. (c) The functional relationship between signal and variance, bðx; r̂2Þ, is estimated and the spatially variant bias removed. Then, the systematic bias is cor-
rected considering two anatomical structures (trachea: �1000 HU, and descending aorta: 50 HU), resulting in the harmonized signal estimate: X̂ðrÞ. (d) The
harmonized signal can be combined with the stabilized residual in order to preserve any details in the structure that might be codified within the noise. The detail,
D(r), can be added with an average standard deviation, �D, set as a parameter. [Color figure can be viewed at wileyonlinelibrary.com]
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Now, the spatially variant bias can be removed as follows:

~XðrÞ ¼ hXðrÞi � b hXðrÞi; r̂2� �
r̂2ðrÞ (8)

It is important to note that a systematic bias still can be
present in the image since Eq. (8) removes the linear relation-
ship with the local variance, but not the intercept. We remove
the intercept by adjusting the average attenuation levels of
well defined anatomical references to their nominal values.
The most evident structures are the descending aorta, Xaorta,
where the blood attenuation level lblood ¼ 50 HU is usually
adopted;14 and the trachea and/or external air, Xair, where the
air is set to lair ¼ �1000 HU by definition. Then, the har-
monized image is obtained by linear interpolation for those
attenuation levels:

X̂ðrÞ ¼ ð1� kÞlair þ klblood;

with k ¼
~XðrÞ � h~XðrÞjXairi

h~XðrÞjXaortai � h~XðrÞjXairi
(9)

In Fig. 2(c), we illustrate the effect of harmonization in the
trachea. Note that the linear relationship between the variance
of noise and the attenuation level is effectively removed. Fur-
thermore, the intercept is corrected to a more reasonable CT
value for air (��1000 HU) and the dispersion within the
trachea is noticeably reduced providing a more accurate mea-
sure of density.

(d) Preservation of stabilized details. At this point, the
signal and variance are estimated, and the spatially variant
and systematic biases due to the heterogeneous noise cor-
rected. So, if we are interested in a densitometric study, the
harmonization methodology provides a suitable calibrated
signal X̂ðrÞ [cf. Eq. (1)]. However, if we are interested in
the local changes of the signal to analyze specific anatomi-
cal structures, we would like to preserve any detail that
might remain within the noise as much as possible. Our
harmonization methodology is able to estimate those
details, D(r), and even incorporate them to the estimated
signal as an additive component with a predetermined and

stabilized dispersion across the image, �D (i.e., a spatially
homogeneous dispersion of average �D). To do so, we make
use of the stabilization transformation derived by Vegas-
S�anchez-Ferrero et al.15 for a Gamma distribution,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XðrÞ � d
p

, that follows a Gaussian-like distribution. Then,
the detail component following a zero-mean with homoge-
neous standard deviation, �D, to be added to the signal esti-
mation X̂ðrÞ becomes:

DðrÞ ¼ �D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðrÞ � d

p � h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðrÞ � d

p iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hX � di � h ffiffiffiffiffiffiffiffiffiffiffiffi

X � d
p i2

q (10)

2.B. Synthetic CT scans

The evaluation of the proposed methodology is per-
formed in a set of anatomically realistic images with known
reference values, spatially variant variance of noise, and
edge spread function. The methodology applied to generate
these images is the following:

Definition of the reference standard. The definition of
an anatomical model with relevant structures for clinical pur-
poses is always a challenging task. One natural option would
be to make use of a physical phantom mimicking human
structures of interest. Physical phantoms, however, usually
present too homogeneous patterns and very localized syn-
thetic lesions (when they are available) that make the analysis
of confounding factors, such as spatially variant noise, more
intricate and nonrealistic. In our case, with the purpose of
having a gold standard to measure the discrepancies due to
acquisition parameters, we created an anthropomorphic in-
silico phantom from a HD and high-resolution real CT scan.
We removed the noise and bias components; and assumed the
resulting densities as the gold standard over which we will
generate the simulated acquisitions.

These synthetic images have some limitations: (a) Recon-
struction artifacts are assumed to be signal. However, those
artifacts will be equally present across realizations, so they

(a) (b) (c)

FIG. 2. Example of correction of functional dependence between density and noise variance in the trachea air for a high-dose and soft kernel reconstruction. (a)
Coronal view of the minimum intensity projection to perceive the trachea (in red). (b) Regression of the computed tomography numbers and the spatial variance
of noise in the trachea. (c) The harmonization corrects the functional dependence and reduces the bias in air. [Color figure can be viewed at wileyonlinelibrary.c
om]
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will not affect the comparative analysis of harmonization. (b)
The resolution is limited to that one obtained from the origi-
nal image. To alleviate this fact, we considered a reference
image acquired with a sharper kernel to obtain a representa-
tive resolution range as kernels become softer.

The anatomic reference model was obtained from a
scan acquired with a Siemens Sensation 64, reconstruction
kernel B46f, slice thickness 0.75 mm, and pixel dimen-
sions 0.64 9 0.64 mm, (120 kVp, 400 mA). The noise
was removed by means of an anisotropic filter proposed
by Vegas-S�anchez-Ferrero et al.15 to preserve the edges of
the anatomical structures. In Fig. 3(a), we show the ana-
tomic synthetic image with two different visualization win-
dows (pulmonary and soft tissues). We selected a subject
with evident areas of emphysema to model the bias effect
of reconstruction and doses in areas of clear presence of
disease.

Noise model. The noise generation was performed follow-
ing the characteristics of noise described in the literature: (a)
right skewness,15,16,19 (b) linear relationship between mean
and variance,15,16 and (c) spatially variant noise.12, 15–17 Fol-
lowing these features, the signal is set as the most likely value
of a random realization of noise: the mode.

According to the linear relationship between attenuation
level and noise, the highly dense structures should show a
higher noise response, for example, bones and their neighbor-
hoods, whereas soft tissues and air show a moderate noise
response. The simulated nonstationary standard deviation of
noise is shown in Fig. 3(b). It was defined as a smooth
region-dependent map derived from the image with a low-
pass filter. This map of the standard deviation of noise is nor-
malized to an average level of 1 Hounsfield Unit (HU). The
simulation of different doses will modify this average level,
hereafter called �s, to mimic the increase of noise due to dose
reduction.

To provide a realistic model of noise, we adopt the non-
central Gamma distribution since it fulfills the features of
noise observed in studies with different devices, doses, and
reconstruction algorithms.15

Due to the spatially variant nature of noise, the random
variable parameters will depend on location r. More specifi-
cally, let m(r) be the signal defined at location r 2 X � R3,
and s(r) the normalized standard deviation as the one shown
in Fig. 3(b). According to the nc-Γ parametrization in Eq. (1),
we can write the parameters in terms of the mode, m(r), and
the variance, s2ðrÞ, as follows:
aðrÞ ¼ 1

þ
ðmðrÞ � dÞ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmðrÞ � dÞ4 þ 4ðmðrÞ � dÞ2s2ðrÞ

q
2s2ðrÞ ;

(11)

bðrÞ ¼ mðrÞ � d
aðrÞ � 1

(12)

We can now produce a realization of an anatomically real-
istic CT scan with the desired parameters (signal: m(r), spa-
tially variant noise: s2ðrÞ) by generating a nc-Γ(a(r),b(r))
noise realization distributed at location r.

In Fig. 4(a) and 4(b), we show the probability density
functions (PDF) of a signal set to �1000 HU (corresponding
to the air density) and �700 HU (lung parenchyma) for an
increasing standard deviation, r.

Resolution effects. The effects on the spatial resolution
due to the different reconstruction kernels were simulated
through isotropic Gaussian filtering for a varying range of
scales defined by its standard deviation (j) in the pixel
dimensions.

It is important to note that the mean value of the noise dis-
tributions (dots for each distribution in Fig. 4) increases with
r due to the positive skewness of the distribution. This
implies that any reconstruction kernel that performs low-pass
filtering will induce an average bias in the attenuation level.
The bias is more apparent for lower CT numbers such as air
emphysema due to the stronger skewness Fig. 4(a). For
higher attenuations, the bias is less pronounced Fig. 4(b) as
the distribution becomes more symmetric. This effect has

[-1024,-700] [-1024,200]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) (b)

FIG. 3. (a) Synthetic image for two different visualization windows (left: lung parenchyma [�1024,�700] HU; right: soft tissue [�1024,200] HU). (b) Normal-
ized nonstationary standard deviation of noise. [Color figure can be viewed at wileyonlinelibrary.com]
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been extensively observed in the literature for clinical CT
scans — especially in the trachea — due to the increase of
noise variance caused by the surrounding densities of tis-
sues.13,14,16

The selection of the scale range was performed consider-
ing the resolution provided by the reference image, which
was assessed as the difference between 10% and 90% of the
amplitude of the edge-spread function (ESF) in a region of
the image with stable and known nominal attenuation levels
(external air and subcutaneous fat). Since the synthetic image
comes from an anatomical CT scan, we selected the edge
response by following an approach inspired by the one pro-
posed by Sanders et al.20, who employed the contour of the
subject to get the ESF between external air and the body sur-
face. We set those nominal values to �1000 HU for air and
�90 HU for fat. The samples to obtain the ESF were
acquired in the perpendicular direction of the body contour.
To correct the impairments in the ESF profiles, we approxi-
mated a sigmoid function as suggested by Li et al.21 and cen-
tered the samples to a common reference. Finally, the
centered ESF samples are used to fit a sigmoid function to
calculate the difference between 10% to 90% range analyti-
cally. The result obtained for the reference image was
D90%
10% ¼ 1:93.

2.C. Clinical CT scans

A set of 104 subjects from the Phase 2 COPDGene study
with multiple acquisitions were randomly selected. COPD-
Gene is an observational longitudinal study funded by the
NHLBI of 10 300 smokers whose goal is to define the epi-
demiologic associations and genetic risk factors for the devel-
opment of COPD. The CT data available from those subjects
come from two manufacturers: Siemens (54 subjects) and GE

Medical Systems (50 subjects). Each subject was acquired at
full inspiration, 120 kVp, with HD and LD protocols during
the same session (400 mA and 100 mA, respectively). The
CT images were reconstructed with both filtered backprojec-
tion (FBP) and iterative methods with a resolution of
� 0.65 9 0.65 9 0.75 mm. The FBP reconstructions were
performed with a soft and a sharp kernel in HD. The Siemens
dataset provides seven different configurations of the same
scanned subject that we will describe according to the dose
(HD or LD) and the reconstruction method (FBP: soft, sharp;
Iterative: Iter. 1, Iter. 2, and Iter. 3). Similarly, five different
configurations are available for the GE dataset. A detailed
summary of datasets is provided in Table I. Note that the Sie-
mens dataset has iterative reconstruction for 33 of the 54

(a) (b)

FIG. 4. Probability density function of a nc-Γ distribution known signal value set in the mode and increasing noise. Note that the most likely tissue density relies
in the mode of the distribution, whereas the mean (represented as dots) depends on the variance of noise. This interrelationship will generate a bias (difference
between mean and mode) that depends on the reconstruction kernel and the dose. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Summary of vendor parameters for each dataset.

Models Avg. CTDIvol Method Description #

Siemens (n = 54)

Definition, Definition AS+,
Sensation 64

13.47 mGy B31f HD soft 54

B45f HD sharp 54

2.87 mGy B31f LD soft 54

B45f LD sharp 21

I31f2 LD Iter. 1 33

I31f5 LD Iter. 2 33

I44f2 LD Iter. 3 33

GE (n = 50)

Discovery CT750 HD,
LightSpeed VCT

15.63 mGy Standard HD soft 50

Bone HD sharp 50

2.96 mGy Standard LD soft 50

ASIR 40% LD Iter. 1 50

ASIR 100% LD Iter. 2 50
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subjects, the other 21 subjects were reconstructed with the
sharp kernel.

2.D. Evaluation metrics

We performed two different quantitative assessments of
the harmonization technique. First, we focus on the effects
over the image resolution, the noise reduction, and bias cor-
rection. For this purpose, we use the synthetic images
described in Section 2 as the reference standard. We simulated
a set of n = 50 realizations of independent noisy acquisitions
generated from the anatomical reference with a wide range of
average noise standard deviations, �s 2 f1; 10; 20; 30; 40; 50;
60; 70g, and reconstruction kernels, j 2 {0.0,0.3,0.4,0.5}.
This is a reasonable range of parameters since HD scans with
sharp kernels are equivalent to �s� 40 HU and j� 0.0 by con-
struction, and soft kernels have been reported to be about
j� 0.4.15

Then, we assessed the harmonization in the comparison
of CT scans from the same subjects but different dose and
reconstruction method. The evaluation was performed both
in the synthetic images and in the clinical datasets. The
assessment involved an analysis of consistency of densito-
metric measures (consistency of local mean across acquisi-
tions) and an analysis of concordance (consistency of mean
and variance across acquisitions). Finally, the assessment of
similarity between local structures was studied by analyzing
the differences between local probability distributions
throughout a paired Kolmogorov–Smirnov test in the clini-
cal dataset.

The specific metrics employed during the evaluation are
defined as follows:

Spatial resolution. Distance for which the 10% and 90%,
D90%
10%, of the edge response is reached. These margins serve

as a robust metric to compare the differences between modu-
lation transfer functions quantitatively.22

Noise reduction. The root mean square error (RMSE)
with respect to the reference reconstruction.

Bias correction. Difference between the average CT num-
ber within the trachea and the nominal value of air
�1000 HU. For the higher densities, we measure the bias of
the fat surrounding the contour of the chest with respect to
the nominal value in the synthetic images (�90 HU).

Consistency. The consistency of densitometric measures
across doses and reconstruction methods is studied by model-
ing the local average of samples (neighborhoods of 7 9 7
voxels in the axial planes) with a two-level hierarchical linear
model. The samples were taken in different locations of the
volume covering densities from �1000 to 550 HU. The
adopted model is the following:

yi;j;k;r ¼ Aj þMk þ ei;j;k (13)

where Aj is a random effect explaining the contribution of the
different density regions and it is assumed to follow a normal
independent distribution Nðl; r2AÞ. Mk models the fixed
effects of the reconstruction (dose, kernel, device) indexed as
k ¼ 1; ; nM (Siemens: nM ¼ 7; GE: nM ¼ 5). In this model,

the level-1 units are the samples acquired i = 1,. . .,n (Sie-
mens: n = 54, GE: n = 50) and the level-2 units are the
j ¼ 1; ; nA density levels (we set nA ¼ 213 levels for both
datasets). The residual ei;j;k is assumed to follow a normal
independent distribution Nð0; r2eÞ.

For the synthetic images, the effects of the reconstruction
method are the result of the composition of a reconstruction
kernel term, Rr, a dose term, Dl, and their interaction:

yi;j;r;l ¼ Aj þ Rr þ Dl þ ðR� DÞr;l|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mk

þei;j;r;l (14)

So, the indices describe the different doses l = 1,. . .,8 and
reconstruction kernels r = 1,. . .,4 (i.e., k = 1,. . .,32).

The goodness of fit of the models is evaluated for both
analyses through the root mean square error (RMSE). The
effects of the reconstruction methods are described by using
two dispersion metrics. First, we use the range, defined as
Drange ¼ maxðMkÞ �minðMkÞ to study the range of effects
due to the reconstruction methods. Second, we use the mean
absolute difference, defined as DMD ¼ P

i

P
j jMi �Mjj=n2

to analyze the average deviations between methods. Low val-
ues of DMD and high values of Drange would indicate that
methods can be clustered. The software applied for this analy-
sis was JMP� (Version 14.0.0, SAS Institute Inc., Cary, NC).

Concordance. We analyze the reliability of measures
across acquisitions by means of the concordance correlation
coefficient, qccc, proposed by Lin — a widely accepted index
of agreement in settings with different raters.23 This measure
penalizes biases (differences in the first-order statistics) and
deviations in their variances (second-order statistics),
assumes a positive correlation between raters, and is defined
in [0,1]. Values under 0.9 are commonly considered as a poor
concordance.24 A good harmonization methodology would
provide high concordance across doses and kernels.

Statistical similarity. We assess the similarity between
scans by comparing the probabilistic distribution of nonover-
lapping local neighborhoods of 7 9 7 9 7 voxels through
the paired Kolmogorov–Smirnov test. We consider the ratio
of patches that are statistically indistinguishable as the statis-
tical similarity metric. To ensure the preservation of local
structure within the signal, a detail factor of �D ¼ 40 HU is
used, which is approximately the standard deviation of HD
and soft kernel images.15

3. RESULTS AND DISCUSSION

3.A. Synthetic study

Noise reduction. The visual aspect of harmonized images
is represented in Fig. 5 for a prototypical HD acquisition with
both sharp and soft kernels. To improve the visualization of
the results, we divided the image into two regions (left and
right) to show the result of harmonization in different visual-
ization windows, that is, lung window: [�1024,�700] HU,
and soft tissue window: [�1024,200] HU. Qualitatively, har-
monized images achieve a remarkable increase of contrast in
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both lung parenchyma and soft tissues. This effect is due to
the combination of noise reduction and bias removal, which
we further analyze in the next sections.

Quantitatively, the RMSE results depicted in Fig. 6
increase with �s as expected. There is also an increasing ten-
dency as the kernel standard deviation, j, becomes higher
(softer). This trend is due to the blurring effect caused by
softer reconstruction kernels. The slope of the curves, how-
ever, reduces as the kernel becomes softer as a result of the
noise reduction by the reconstruction kernel.

The results obtained for the harmonized data show a less
pronounced increase with noise, indicating a more robust
behavior. Interestingly, both curves intersect at certain points
for each reconstruction kernel. This intersection describes the
situation in which noise is so low that the harmonization does
not contribute positively. It is, nevertheless, important to state
that those scenarios are far below the current acquisition con-
ditions for clinical studies, even for HD protocols (clinical
studies of HD protocols and soft reconstruction kernels have
shown to be equivalent to j = 0.4 and �s ¼ 40 HU, for
400 mA, 120 kVp).15

Resolution. The results obtained for D90%
10% are illustrated

in Fig. 7. The proximity of results for the noisy and harmo-
nized images indicates no loss of edge response after harmo-
nization. Actually, there is a small improvement in the edge
response for softer reconstruction kernels (j ≥ 0.4). This
improvement is due to an increase in contrast achieved by the
bias removal effect performed by the harmonization.

Bias correction. Quantitative results of bias obtained in
the trachea are shown in Table II. Note that the bias is dramat-
ically reduced by the harmonization for all the kernel and
noise configurations. The bias is always below 2 HU after
harmonization, which means a reduction of more than 95%
for realistic scenarios such as j = 0.0 and �s ¼ 40 HU, for
which the bias observed in the trachea is about 45 HU. In the
case of softer reconstructions, the improvement is even better.

For the subcutaneous fat (�90 HU), the bias is less pro-
nounced, reaching values around 5 HU in the noisiest scenar-
ios. Similarly, the harmonization successfully removes the
bias, achieving an average of �3:04 � 10�5 	 1:77 � 10�5 HU
for all configurations. For brevity, we omit the specific
results.

[-1024,-700] [-1024,200][-1024,-700] [-1024,200][-1024,-700] [-1024,200]

Reference HarmonizedNoisy
Reference HarmonizedNoisy

FIG. 5. Visual representation of harmonization of synthetic images reconstructed for a prototypical configuration for high-dose acquisitions with soft kernels
(j = 0.4 and �s ¼ 40 HU). The image is divided in two regions where different visualization windows are applied to improve the visualization of the effect of
noise and harmonization. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Root mean square error for different reconstruction kernels and average standard deviation of noise. [Color figure can be viewed at wileyonlinelibrary.c
om]
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Consistency. In Table III, we provide the results for the
metrics describing the effects due to kernel reconstruction
and dosage within the hierarchical model. As expected, the
harmonization reduces the RMSE remarkably (33.10%),
going from 9.58 to 6.41 HU. This implies an appreciable
reduction of the residual noise due to the estimation of the
signal. Besides, Drange is reduced in a 74.18%, from 40.44 to
10.44 HU. This reduction exhibits the excellent suppression
of both dose and kernel effects by the harmonization method-
ology. That result is strongly supported by the 81.32% of
reduction for the average absolute differences (from 14.19 to
2.65 HU).

Concordance. The concordance correlation coefficient,
qccc, is shown in Fig. 8 for all possible combinations of ker-
nel and doses. Note that the harmonized data obtains a
much more homogeneous concordance map than the
observed for the original data. The average concordance
value obtained for the noise data is qccc ¼ 0:85. This value
implies that the noisy images show a poor concordance
according to the strength-of-agreement proposed by
McBride for the Lin’s concordance correlation coefficient.24

Conversely, the harmonized data achieves a qccc ¼ 0:95
which is qualified as a substantial concordance and shows
that densitometric measures are comparable in studies with

FIG. 7. Analysis of resolution for the width required to raise the edge response from 10% to 90% of reference levels for air (�1000 HU) and surrounding fat
(�90 HU). [Color figure can be viewed at wileyonlinelibrary.com]

TABLE II. Bias observed in the noisy and harmonized data in the trachea region.

Kernel Description

Average standard deviation of noise �s

1 10 20 30 40 50 60 70

0.0 Noisy 1.56 (5.40) 7.25 (53.81) 18.19 (108.92) 30.74 (142.48) 42.76 (248.07) 55.25 (220.54) 68.77 (254.80) 81.56 (288.12)

Harmonized 0.90 (2.90) 0.70 (17.66) 0.06 (31.74) -0.52 (43.80) -0.71 (81.59) -0.30 (89.47) 0.10 (92.34) 0.98 (104.90)

0.3 Noisy 1.79 (4.63) 7.34 (41.56) 18.41 (70.02) 30.56 (106.49) 42.85 (149.22) 55.64 (191.28) 68.50 (241.51) 82.37 (281.89)

Harmonized -0.04 (3.16) 0.22 (17.55) -0.05 (29.58) -0.73 (53.34) -1.31 (55.87) -1.50 (70.43) -1.51 (59.02) -0.77 (107.44)

0.4 Noisy 3.54 (3.89) 9.17 (38.34) 20.15 (75.37) 32.37 (98.18) 44.97 (134.67) 57.37 (153.50) 70.34 (172.40) 83.25 (201.92)

Harmonized 0.32 (4.92) 0.71 (16.17) 0.68 (29.10) -0.12 (39.36) -0.88 (50.51) -1.76 (52.01) -2.20 (72.85) -2.59 (84.75)

0.5 Noisy 5.73 (3.59) 11.27 (24.43) 22.06 (52.03) 34.30 (83.47) 46.94 (112.42) 59.82 (123.47) 72.49 (140.61) 85.42 (155.18)

Harmonized 1.68 (22.40) 1.91 (19.60) 1.81 (38.79) 1.33 (43.50) 0.38 (55.50) -0.63 (55.39) -1.24 (71.12) -1.64 (71.69)

Bold indicates the lowest bias. Values are represented as: mean (std � 10�2) HU.

TABLE III. Analysis of effects of reconstruc-
tion parameters for the different datasets (syn-
thetic images, Siemens, GE) for the root mean
square error (RMSE), dynamic range of fixed
effects estimates, Drange, and mean absolute
difference of the fixed effects, DMD.

Dataset

Noisy/Reference Harmonized

RMSE Drange DMD RMSE Drange DMD

Synthetic images 9.58 40.44 14.19 6.41 (33.10%) 10.44 (74.18%) 2.65 (81.32%)

Siemens 83.48 40.65 13.56 61.19 (26.70%) 12.83 (68.44%) 3.50 (74.20%)

Siemens
 (w/o LD Iter. 3) 70.47 15.86 7.16 48.51 (31.17%) 2.18 (86.27%) 0.90 (87.49%)

GE 78.03 5.56 2.45 59.16 (24.19%) 4.85 (12.72%) 1.94 (20.84%)

Values are represented in HU (% reduction with respect to the noisy/reference image).
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different doses and reconstruction kernels under the harmo-
nization paradigm.

3.B. Clinical data

In Fig. 9, we show an example of the effect of harmoniza-
tion for each dataset. We select two subjects with clear
emphysema regions to appreciate the reduction of contrast as
a consequence of the increase of noise and the reconstruction
method for LD acquisitions. Note that the harmonization
reduces dramatically the noise in the sharp HD reconstruction
without compromising the anatomical structures. The harmo-
nization also increases the contrast of LD acquisitions com-
parable to HD reconstructions.

Consistency. The statistical significance of all random
and fixed terms is detailed in Appendix A, where we show
the suitability of the proposed hierarchical linear model and
the non-negligible effects of reconstruction methods. In
Table III, we summarize those results through the RMSE and
the two dispersion metrics employed for the consistency anal-
ysis. Interestingly, the estimate of the fixed effect of Iter. 3 for
the Siemens dataset described in Appendix A (29.03 HU)
shows that the bias dramatically differs from the other itera-
tive methods (Iter 1: 4.09 HU and Iter. 2: 4.24 HU). This
lack of consistency between Iter. 3 and the other iterative
methods used for LD reconstruction, in combination with the
remarkable high bias, indicates that the Siemens Iter. 3
method might not be an ideal reconstruction method for some
quantitative analyses in studies with heterogeneous acquisi-
tion protocols. For this reason, we also included an analysis
of the Siemens dataset without the LD Iter. 3 reconstruction.

Nevertheless, that reconstruction technique will show the per-
formance obtained by the harmonization in extreme cases.

The reference data has an RMSE around 80 HU for GE
and Siemens datasets. The higher RMSE obtained in clinical
data is obtained as a result of the variability introduced by the
subject anatomies (the phantom just considered one anatomic
reference).

Note that the harmonization reduces the RMSE by 25%.
This reduction implies that the consistency among acquisi-
tions that is not explained through the fixed effects Mk or ran-
dom effects Aj is also considerably reduced. These reductions
are a consequence of the noise reduction effect of harmoniza-
tion and are consistent with the results obtained for the syn-
thetic image dataset.

The Siemens dataset shows a Drange ¼ 40:65 HU, while
DMD ¼ 13:65 HU. This indicates that the effects due to
reconstruction methods are clustered. To analyze this clus-
tered behavior, we provide a detailed analysis of the pairwise
differences for both datasets. Table IV shows the absolute
pairwise differences for both the Siemens dataset (upper diag-
onal: reference; lower diagonal: harmonized). We also repre-
sent the connections between reconstruction methods by
grouping them with letters (those configurations sharing let-
ters are statistically similar to each other according to the
Tukey’s range test with significance 0.05). Note that the dif-
ferences between LD Iter. 3 and the rest of methods are
abnormally high (always beyond 24 HU and reaches more
than 40 HU) indicating that Iter. 3 introduces large biases.
However, even in this extreme case, the harmonization
reduces the deviations in more than a 70% in some cases
(from 40.65 HU to 10.65 HU when compared to HD soft),

FIG. 8. Concordance correlation coefficient (qccc) for a pair of images with different configurations of dose (�s) and kernels (k). Note that qccc for the noisy data
shows important discrepancies as the noise differences of images increase. The harmonized data shows a more homogeneous concordance across doses and ker-
nels. [Color figure can be viewed at wileyonlinelibrary.com]
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leading to an overall reduction of 68.44% for Drange (from
40.65 HU to 12.83 HU) and a 74.2.0% for DMD.

The Tukey’s range test shows three clusters in the refer-
ence dataset: (a) HD filtered backprojection methods; (b) LD
filtered backprojection methods; (c) LD Iter. 1 and Iter. 2;
and (d) Iter. 3. Interestingly, the LD soft method shows a low
difference with the HD methods and the Tukey’s range test
accept their similarity. However, a higher tendency of more

than 2.4 HU is observed. After harmonization, the Siemens
dataset exhibits a homogeneous behavior for all the recon-
struction method (except for Iter. 3). If we exclude Iter. 3, we
get Drange ¼ 2:18 and DMD ¼ 0:90, showing a reduction of
more than 85% for both metrics. This reduction makes all the
reconstruction methods statistically comparable and demon-
strates the suitability of the harmonization method for the
comparison of densitometric measures in chest CT scans.

Soft Sharp Soft Iter. 1 Iter. 2 Iter. 3
High-Dose Low-Dose
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Soft Sharp Soft Iter. 1 Iter. 2
High-Dose Low-Dose
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GE

FIG. 9. Examples of harmonization for each dataset and detailed region with emphysema in the lung window [�1024,�700] HU. Note that the effect of noise
reduces the visibility of anatomical structures in the sharp HD reconstruction for the reference images, and the reduction of the contrast in the low-dose recon-
structions as a result of the noise and reconstruction method. The harmonization reduces the noise, improves the visibility of anatomical structures and increases
the contrast in the low-dose reconstructions to the same levels observed in the high-dose reconstructions. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE IV. Absolute differences in the recon-
struction effect (average std �s) for the Siemens
dataset.

HD LD

Soft Sharp Soft Sharp Iter.1 Iter.2 Iter.3

HD Soft – 0.26 2.75 6.07 15.71 15.86 40.65

Sharp 0.20** – 2.49 5.81 15.45 15.60 40.38

LD Soft 0.42*** 0.23*** – 3.33 12.96 13.11 37.90

Sharp 2.18*** 1.98*** 1.75*** – 9.63 9.78 34.57

Iter.1 1.70*** 1.50*** 1.27*** 0.48*** – 0.15 24.94

Iter.2 1.17*** 0.97*** 0.75*** 1.01*** 0.52 – 24.79

Iter.3 10.65*** 10.85*** 11.07*** 12.83*** 12.34*** 11.82*** –

Reference A A A,B B C C D

Harmonized A A A A A A B

Upper diagonal: reference data; lower diagonal: harmonized data; bold letters: statistically equivalent; * Difference
decrease >10%, ** >20%, *** >30%. Configurations not connected with the same letters indicate are statistically dif-
ferent.
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The GE dataset shows a more homogeneous behavior
(Drange = 5.56 HU, DMD ¼ 2:45 HU), although the lower
value of DMD also suggests that the effects can be clustered.
The reduction of the effects due to reconstruction is more
subtle, decreasing Drange a 12.72% and DMD a 20.84%. We
also provide a detailed analysis of the pairwise differences for
both datasets in Table V. The range test also identified two

clusters: (a) HD methods and (b) LD methods. After harmo-
nization, the LD cluster splits into the (b) LD soft method
and (c) Iter. 1 and Iter. 2. However, note that now Iter. 2 does
not show statistically significant differences in the HD
methods.

Concordance. The average concordance correlation coef-
ficient for the Siemens and the GE datasets are represented in
Tables VI and VII, respectively. In the case of the Siemens,
the concordance levels experience a clear increase after har-
monization. Especially, the HD soft reconstruction compared
to all the LD reconstruction, which reach substantial concor-
dance levels (>95%).

We observe a similar behavior for the GE dataset, where
the most noticeable increase is performed for the sharp HD
method compared to the LD reconstructions. This increase is
in agreement with the results observed in the consistency
analysis. It is worth noting that the concordance increase
observed for GE is more modest than for the Siemens dataset,
although the densitometric results of both datasets are com-
parable. This is probably due to a more pronounced spatial
variance within the GE scans since the qccc penalizes not only
the biases but also the variance differences in the compar-
isons. This fact will also be perceived in the following section
where we compare the similarity for local statistical distribu-
tions (and therefore, the biases, and variances).

Statistical Similarity. The ratio of neighborhoods with
indistinguishable distributions considering a statistical signif-
icance of 0.001 are shown in Tables VIII and IX for each
dataset. The increase for all pairs compared is evident (bold
letters) except for those pairs that already showed very high
values. The conclusions here are similar to the previous anal-
yses: the harmonization remarkably increases the similarity
of images across reconstruction scenarios (doses and kernels,
and iterative methods). It is worth noting that the HD ratio of
statistically equivalent samples was 52.88% and 37.87% for
Siemens and GE, respectively. This low ratio is not due to
differences in the mean value, as confirmed the consistency
analysis for HD in both datasets, but in the variance of the
local distribution, as was pointed out in the concordance
analysis. The harmonization reduces the impairment of local
variance and improves the ratio in more than 30 percentage
points (Siemens: 89.24%, GE: 77.25%). Perhaps the most
remarkable improvement is that the comparison between har-
monized LD-to-HD reconstructions achieves higher ratios
than HD-to-HD for the nonharmonized comparisons. This
result evidences the suitability of the harmonization tech-
nique to alleviate statistical discrepancies between images
acquired with different doses.

4. DISCUSSION AND CONCLUSIONS

We proposed a harmonization methodology to reduce the
effects of spatially variant noise and biases derived from
acquisitions. Our technique is intended to reduce the spatially
variant nature of noise. It retrieves both the signal and noise
components separately and removes the location-dependent
biases induced by noise.

TABLE V. Absolute differences in the reconstruction effect (average std �s) for
the GE dataset.

HD LD

Soft Sharp Soft Iter.1 Iter.2

HD Soft – 1.08 4.48 4.21 3.99

Sharp 1.65 – 5.56 5.29 5.07

LD Soft 4.85 3.20*** – 0.27 0.49

Iter.1 4.08 2.43*** 0.78 – 0.22

Iter.2 2.09*** 0.44*** 2.76 1.99 –

Reference A A B B B

Harmonized A A B B,C A,C

Upper diagonal: reference data; lower diagonal: harmonized data; bold letters: sta-
tistically equivalent; * Difference decrease >10%, ** >20%, *** >30%. Configu-
rations not connected with the same letters indicate are statistically different.

TABLE VI. Average of concordance correlation coefficient in % for pair com-
parisons of images acquired with different configurations in the Siemens
dataset.

HD LD

Soft Sharp Soft Sharp Iter.1 Iter.2 Iter.3

HD Soft – 95.64 93.34 88.53 91.90 92.37 88.21

Sharp 96.11 – 87.76 83.80 87.61 88.15 84.53

LD Soft 94.56 90.34 – 98.12 96.99 96.11 92.09

Sharp 91.51 88.69 97.77 – – – –

Iter.1 95.19 92.10 99.77 – – 99.61 95.40

Iter.2 95.33 92.57 98.76 – 99.48 – 95.60

Iter.3 90.97 89.60 94.30 – 95.00 95.84 –

Upper diagonal: original images, lower diagonal: harmonized images. Bold letters:
Improvement >1%.

TABLE VII. Average of concordance correlation coefficient in % for pair
comparisons of images acquired with different configurations in the GE data-
set.

HD LD

Soft Sharp Soft Iter.1 Iter.2

HD Soft – 95.60 90.39 91.03 91.32

Sharp 97.24 – 84.22 84.59 84.56

LD Soft 91.17 88.29 – 99.80 98.69

Iter.1 91.77 88.31 99.71 – 99.52

Iter.2 91.91 87.78 98.44 99.43 –

Upper diagonal: original images, lower diagonal: harmonized images. Bold letters:
Improvement >1%.
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We provided a thorough assessment of the harmonization
in two scenarios. First, we evaluated its performance in
anatomical in-silico simulations for different doses, kernels,
and spatially variant noise. Then, we repeated the same analy-
sis of consistency in a clinical dataset acquired in nine differ-
ent hospitals from two manufacturers: Siemens (50 subjects)
and GE (54 subjects). The subjects were scanned at different
dose protocols during the same session, and the CT scans
were reconstructed with different reconstruction methods
including filtered back projection and iterative methods.

Our evaluation was performed in anthropomorphic simula-
tions and real acquisitions to consider better the spatially
variant noise that is the result of the interaction between x-ray
energy with an inhomogeneous medium like the human body.
Although studies based on phantom acquisitions are very rel-
evant when assessing systematic effects of reconstruction
techniques and potential signal restoration approaches, our
experience is that the spatially variant effects due to photon
starvation and beam hardening are hard to mimic in phantom
experiments and real acquisition provides a more suitable
scenario for the method presented in this work.

The evaluation in the in-silico simulations showed that our
methodology is robust to noise without compromising the
resolution of the original image. The biases induced by noise
were successfully removed in low densities (air in the tra-
chea) and high densities (subcutaneous fat). We also tested
the consistency of local measurements with a hierarchical

linear model showing a reduction of the effects caused by
dose and kernel (average absolute reduction of 81.32%, from
14.19 to 2.65 HU). The statistical concordance between
acquisitions was also measured, showing a remarkable
increase in the strength-of-agreement (from 0.85 to 0.95).

The assessment methodology performed in the clinical
datasets was able to detect strong biases introduced by an iter-
ative reconstruction method (I44f2 Siemens iterative
method). Even in that case, the harmonization was able to
reduce the range of differences between acquisitions from
40.65 to 12.83 HU (a 68.44%). The performance of GE and
Siemens scans is similar when the outlier is removed from
the analysis (average differences between acquisitions of
7.15 HU for Siemens and 2.45 HU for GE). For both ven-
dors, the harmonization is able to reduce the average differ-
ences between acquisitions to <2 HU). More importantly, the
Tukey’s range test shows that the differences between LD and
HD CT scans observed in the original acquisitions are no
longer appreciable after harmonization. The analysis of statis-
tical concordance shows improvements in agreement with the
consistency analysis (comparisons between LD and HD
methods reached >95% of concordance after harmonization).
A more detailed comparison of the local statistical distribu-
tion of data through the paired Kolmogorov–Smirnov test
showed that the harmonization is able to increase the ratios of
comparable regions between LD and HD scans to higher
levels than high-dose to high-dose comparisons of nonharmo-
nized scans.

In light of these results, we can conclude that the harmo-
nization reduces the bias induced by noise without compro-
mising resolution of the original image, as suggested by the
evaluation of the edge response Fig. 7 in our simulations and
the visual results of the harmonized image Fig. 9. The unique
interaction between the noise and the location-dependent bias
is an interesting effect that we adequately address with our
methodology. This effect is especially relevant in low-density
regions where the deviation between different acquisitions
with different noise spectra is most acute. Prior studies using
the COPDGene phantom has shown biases in the air com-
partment consistent with our results for both Siemens and GE
as reported in Table III.19,25 The hierarchical mixed-effect
model shows that the effects due to dose and reconstruction

TABLE VIII. Average ratio of samples with sta-
tistically equivalent distributions with the Kol-
mogorov–Smirnov test (significance 0.001) in
% acquired with different configurations in the
Siemens dataset.

HD LD

Soft Sharp Soft Sharp Iter.1 Iter.2 Iter.3

HD Soft – 52.88 44.66 27.01 47.73 41.12 34.23

Sharp 89.24*** – 56.51 62.49 43.96 16.24 33.65

LD Soft 68.13** 61.20 – 71.64 97.35 32.96 65.59

Sharp 51.40** 66.91 74.09 – – – –

Iter.1 65.79* 53.85 97.22 – – 64.78 69.59

Iter.2 51.79* 32.52* 75.84*** – 93.01** – 40.61

Iter.3 50.49* 48.30* 71.35 – 75.81 71.12*** –

Upper diagonal: original images, lower diagonal: harmonized images. Bold letters: Improvement >1%. * >10%, **
>20%, *** >30%.

TABLE IX. Average ratio of samples with statistically equivalent distributions
with the Kolmogorov–Smirnov test (significance 0.001) in % acquired with
different configurations in the GE dataset.

HD LD

Soft Sharp Soft Iter.1 Iter.2

HD Soft – 37.87 42.95 51.74 46.66

Sharp 77.25*** – 53.44 34.73 15.13

LD Soft 59.99* 61.04 – 99.98 57.40

Iter.1 63.68* 52.41* 97.20 – 92.04

Iter.2 60.66* 37.21** 77.79** 94.64 –

Upper diagonal: original images, lower diagonal: harmonized images. Bold letters:
Improvement >1%. * >10%, ** >20%, *** >30%.
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kernel are remarkably reduced after harmonization, making
LD and HD reconstructions statistically equivalent for densit-
ometric purposes. The harmonization not only reduces the
deviations between reconstructions, concerning local average
intensity, but also reduces discrepancies in the second-order
statistics (variance) as was confirmed by a concordance corre-
lation analysis between acquisitions.

Despite the positive effect of iterative reconstruction tech-
niques in reducing image noise in LD acquisitions, our results
indicate that the harmonization still is necessary and brings a
positive effect for LD iterative reconstructions. We also noted
that some iterative reconstructions might introduce unex-
pected deviations that should be considered when designing
imaging protocols for specific studies. Nevertheless, the har-
monization technique was able to reduce those outlier

behaviors to bring them within the same class of performance
in terms of absolute differences as shown inTable IV.

A relevant contribution of our work is the evaluation
framework presented in Section 2.D. This framework
assesses the difference between acquisition according to a
panel of metrics for resolution, noise reduction, bias correc-
tion, consistency, concordance, and statistical similarity. We
believe that this framework could be used for the systematic
assessment of different protocols and the ability to produce
reliable results for clinical studies that will rely on quantita-
tive imaging biomarkers.

This work has some limitations that are worth noting.
First, the presented harmonization technique only models the
effect of spatially variant noise and induced biases, and it
does not attempt to address other effects as beam hardening

FIG. 10. Details and significance of the hierarchical linear model for the Siemens dataset. [Color figure can be viewed at wileyonlinelibrary.com]
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or other reconstruction artifacts that might have a differential
behavior across vendors and reconstruction software ver-
sions. Additionally, although the resolution of harmonized
images is not compromised, the differences in resolution
between soft and sharp reconstructions still persist. This lim-
its the improvement of concordance between reconstructions
with too different resolutions. Second, the presented evalua-
tion is confined to commons reconstruction techniques for
Siemens and GE. Although the spatially variant noise is
implicit to the physics of the CT acquisition, we do not have
data from other vendors that could lead to more general con-
clusions related to the effects of harmonization in multicen-
ter studies using imaging. Finally, the data used in this study
were collected as part of phase 2 of the COPDGene study

and is limited to the protocol characteristics defined during
the study design.

To conclude, we believe that the results obtained with our
harmonization method evidence its suitability to alleviate the
statistical discrepancies between images acquired under
heterogeneous acquisition protocols in a vendor-neutral fash-
ion — a particularly desirable property for multicenter stud-
ies. The reduction of the impact of kernels and protocol
differences is an important property that might contribute to
defining more robust features in emphysema and gas trapping
densitometric biomarkers for COPD and radiomics features
in lung cancer studies.26–28 Besides, since our technique is
built upon the statistical models that characterize the signal-
to-noise relationship, it does not require any special

FIG. 11. Details and significance of the hierarchical linear model for the GE dataset. [Color figure can be viewed at wileyonlinelibrary.com]
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precalibration phantom and, therefore, can be applied retro-
spectively to re-analyze already-acquired data.
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APPENDIX A

HIERARCHICAL LINEAR MIXED MODEL FOR
CONSISTENCY ANALYSIS OF CLINICAL SCANS

The results of the adjusted hierarchical linear mixed model
is shown in Figs. 10 and 11 for the Siemens and GE scans,
respectively. Note that the model significantly explains the
effects of kernels and acquisitions in the reference datasets of
both scanner brands. After harmonization, the Siemens dataset
shows a remarkable reduction in the fixed effects for all recon-
struction methods. In some cases, the reduction is so effective
that the fixed effects become nonstatistically significant (soft
HD and sharp HD). For the GE scans, the harmonization
achieves a smaller reduction, but also makes some of the fixed
effects nonstatistically significant (sharp HD and Iter. 2).

a)Authors to whom correspondence should be addressed. Electronic mails:
gvegas@bwh.harvard.edu; rsanjose@bwh.harvard.edu.
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