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We propose a fully automatic cardiac motion estimation tech-
nique that uses nonrigid registration between temporally adja-
cent images to compute the myocardial displacement field from
tagged MR sequences using as inputs (sources) both horizon-
tally and vertically tagged images. We present a new multi-
source nonrigid registration algorithm employing a semilocal
deformation model that provides controlled smoothness. The
method requires no segmentation. We apply a multiresolution
optimization strategy for better speed and robustness. The
accuracy of the algorithm is assessed on experimental data
(animal model) and healthy volunteer data by calculating the
root mean square (RMS) difference in position between the
estimated tag trajectories and manual tracings outlined by an
expert. For the �20000 tag lines analyzed (45 slices over 20–40
time frames), the RMS difference between the automatic tag
trajectories and the manually segmented tag trajectories was
0.51 pixels (0.25 mm) for the animal data and 0.49 pixels
(0.49 mm) for the human volunteer data. The RMS difference in
the separation between adjacent tag lines (RMS_TS) was also
assessed, resulting in an RMS_TS of 0.40 pixels (0.19 mm) in the
experimental data and 0.52 pixels (0.56 mm) in the volunteer
data. These results confirm the subpixel accuracy achieved
using the proposed methodology. Magn Reson Med 59:
181–189, 2008. © 2007 Wiley-Liss, Inc.
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Most heart diseases involve changes in the mechanical
properties of the myocardial tissue either by direct damage
or as an indirect compensation process. The study of these
properties is very relevant both for better understanding of
the pathophysiological processes and for their impact in
clinical protocols to achieve earlier diagnosis and better
follow- up. In this context, regional myocardial motion
estimation is a key measurement for understanding both
healthy and pathological mechanics. It has been demon-

strated that MR tagging is capable of measuring local myo-
cardial function with superb accuracy (1,2) and that the
sensitivity of the detection of the wall motion abnormali-
ties is increased in the presence of tags (3).

Myocardial tagging was first addressed by Zerhouni et
al. (4) and Axel and Dougherty in 1989 (5). These tech-
niques use spin tagging concepts to produce noninvasive
markers in the myocardial tissue that persist during at
least part of the cardiac cycle. The tagging process is based
on modulating the longitudinal magnetization of the tissue
just before the sequence of images is acquired. Spatial
modulation of magnetization (SPAMM) is the most com-
mon technique used to produce sinusoidal tag patterns
(5,6). Myocardial motion estimation can also be addressed
using alternative techniques such as displacement encod-
ing with stimulated echoes (DENSE) (7), harmonic phase
MRI (HARP) (8), or phase contrast techniques. (9). For
further details on myocardial motion MR sequences and
MR tagging, refer to refs. 10 and 11.

Tissue motion and deformation can be assessed by track-
ing the tags over time with image postprocessing algo-
rithms. Typical image processing schemes that propose to
analyze MRI tagging data usually involve three steps: seg-
mentation of the myocardium (endocardium and epicar-
dium) (12); detection of tag points in each slice and time
frame (13); and fitting a motion field to the tags detected
(14). While most tracking methods have been developed
for 2D data, 3D extensions (or 4D [3D plus time]) have also
been proposed, combining volumetric acquisitions of
short-axis and long-axis images (14–16). Previous methods
have proposed various segmentation techniques, such as
snakes or deformable models (17,18), in some cases com-
bined with finite element models (19) or mechanical con-
straints (20,21). Energy-based techniques such as registra-
tion (22) or optical flow (23) have also been proposed to
track and fit myocardial motion. In particular, Bspline
models have been extensively proposed within segmenta-
tion strategies using Bsnakes and Bsolids (15,24,25) or in
model fitting strategies both spatial and spatiotemporal
(14,22,26). Declerck et al., in their motion reconstruction
comparison (2), proved that Bsplines constitute the best
motion fitting model. Most of these schemes allow the
computing of left ventricular segmental displacement and
strain. However, most of them are too slow to be used in
clinical practice and require user intervention.

The recently proposed HARP technique (8) presents a
new way to obtain the displacement field efficiently from
tagged images by isolating the spectral peaks correspond-
ing to the tag pattern in the frequency domain. Myocardial
motion is computed automatically using spectral optical
flow techniques that track the phase tagged in the myocar-
dial tissue. A drawback of this technique is that the spec-
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tral power associated with the DC peak can interfere with
the process; therefore, innovative schemes have been pro-
posed to eliminate this DC peak (27–29). More detailed
information on cardiac MRI motion analysis and mathe-
matical models and postprocessing techniques can be
found in ref. 16.

In this paper, nonrigid image registration is used to
estimate myocardial motion from 2D sequences that con-
tain any tagging pattern. Nonrigid registration methods
have been previously addressed to compute 3D myocar-
dial motion estimates using information theory metrics
(22). However, these metrics may not be adequate in the
2D context due to the small number of samples (30). There-
fore, we propose to use a robust similarity criterion based
on pixel intensity together with a semilocal parametric
transformation model to represent and estimate the myo-
cardial motion (31–33). The method proposed is a multi-
source method that takes advantage of all the image infor-
mation present in the two inputs of the algorithm, the
horizontally and vertically tagged images (34). Myocardial
segmentation is not required and therefore the method is
completely unsupervised. The method has been evaluated
with respect to expert manual tracings on data from an
animal model and volunteers, obtaining subpixel accu-
racy.

METHODS

Automatic estimation of the myocardial motion field was
computed using a multisource nonrigid registration algo-

rithm based on a semilocal Bspline parametric model
(31,33,35). This approach estimates the interframe dis-
placement fields, g�t (x), from consecutive pairs of images
obtained from the given sequences. The Lagrangian mo-
tion field, g(t,X), is then calculated by accumulating the
displacements from the partial fields over time. The mul-
tisource inputs to the proposed algorithm are both the
horizontally and vertically tagged image sequences. The
2D motion field g(t,X) is therefore computed to be consis-
tent with all the information present in both inputs.

Problem Definition

Let us consider the image sequences fa(t,x) and fb(t,x),
corresponding to the image intensities in the vertically and
horizontally tagged images respectively, with t � 1, . . ., T
and x � (x1, x2) � I. Our goal is to estimate a 2D motion
field g(t,X) over the whole temporal domain that is consis-
tent with all the provided information. Figure 1 shows the
scheme of the approach presented. We choose to represent
the motion following a Lagrangian representation with
respect to the first frame of the image sequences; a point at
coordinate x1 � X in the first frame (t � 1) will move to the
location xt � g(t,X) at time t. The formulation is therefore
defined as:

g�t,X� � gt�X� [1]

where t � 1, . . ., T and X � (x1, x2) � I.

FIG. 1. Scheme proposed for tracking the myocardial displacement through time. Partial displacement fields g�t between consecutive pairs
of images are obtained using the complete and complementary information of horizontally and vertically tagged images. The total
displacement field, gt(X), is then obtained from the contribution of the partial fields.
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We define a series of transformations, g�t(xt-1), between
successive pairs of images that describe the g(t,X) such
that:

gt�X� � g�t�xt�1� � gt�1�X� [2]

where xt-1 � gt-1(X) for t � 2,. . . T and g1 (X) � X for t � 1,
with the g�t(xt-1) found through independent multisource
nonrigid registration processes.

Multisource Nonrigid Registration

The interframe displacement field g�t(x) was obtained us-
ing a multisource nonrigid registration algorithm based on
work previously presented (33,35). The registration pro-
cess is formulated as an optimization procedure that min-
imizes a criterion E(fa, fb) to find the best transformation
parameters that define g�t(x) (Fig. 2). More specifically,
given the consecutive image pairs (fa(t-1,x), fb(t-1,x)) as
reference and (fa(t,x), fb(t,x)) as test, the method finds a
correspondence function g�t, which relates the coordinates
of both pairs of images. The same spatiotemporal sampling
is assumed for fa and fb before applying the proposed
method.

The following subsections extend the key parts of the
algorithm: the optimization criterion, the transformation
model, and the optimization procedure.

Optimization Criterion

The optimization criterion used in our registration scheme
is composed of two different terms, a data term ED and a
regularization term ER.

E � ED � �ER [3]

The data term is the summation of the contributions
coming from the two different sources of information fa

and fb. For each source image, the sum of squared differ-
ences between the pixels (x� I) in the reference image
(fa(t-1,x), fb(t-1,x)) and the corresponding ones in the
warped version of the test image (fwa , fwb) � (fa (t,x	g�t(x)),
fb (t,x	g�t(x))) is computed. As a result, the following ex-
pression is obtained:

ED � 1/�2N1�� �(fa�t,x � g�t(x)� � fa�t � 1,x��2

� ��fb�t,x � g�t��x�� � fb�t � 1,x�)2) [4]

where NI is the number of pixels in each frame and the
summation is over x, the pixel pairs defined in Eq. [1].

We chose to use the sum of squared difference (SSD)
criterion because of its simplicity, fast computation time,
and smoothness of the resulting search space. The exten-
sion of this criterion to the multisource case provided good

FIG. 2. Multisource nonrigid registration scheme. The nonrigid registration problem between consecutive frames of sequences is formu-
lated as an optimization problem that finds the best transformation minimizing the given criterion E. This criterion encompasses a similarity
metric between the multisource test and reference data and a regularization term to guarantee overall smoothness.
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results in the proposed framework. The use of this mea-
surement actually assumes an intensity conservation be-
tween consecutive frames that can be admitted in the case
of tagged MR image frames separated by short time inter-
vals as compared with T1 recovery (23). However, if re-
quired, the T1 signal modulation could also be included in
the criterion (23).

A regularization term was added to the data term to
improve the stability of the solution and to overcome some
of the intrinsic difficulties of the registration process such
us intracavitary intensity variations, through-plane mo-
tion, noise and artifacts. As a reasonable regularization
term, the vector Laplacian of the transformation was cho-
sen, providing good results for low values of the weight �.

ER � ���
2g�t�2dx1dx2 [5]

Transformation Model

The transformation between the test and reference frame
pairs was defined as a linear combination of Bspline basis
functions, located in a rectangular grid (31–33)

g�t�x� � �cj�r�x/h � j� [6]

The spacing between grid points h (knot-spacing) deter-
mines the number of parameters cj to be optimized and the
final rigidity of the solution. The compact support of the
B-splines actually determines the local influence of the
parameters. The use of B-splines also provides other ad-
vantages such as computational simplicity, good approxi-
mation properties, and implicit smoothness. In all our
experiments we used cubic B-splines. In a general ap-
proach, the degree could be set as a parameter; however,
Laplacian regularization requires the use of cubic
B-splines. When this requirement is not present, similar
accuracies in results could be obtained with quadratic
B-splines with less computation time.

Interpolation

In order to calculate the warped images (fwa , fwb), a con-
tinuous version of the input images is efficiently computed
from a 2D spline interpolation using filtering (36). This
representation also allows the analytical calculus of the
image derivatives needed in the optimization and regular-
ization processes and provides an excellent framework to
achieve subpixel solution.

Multiresolution and Optimization Strategy

A gradient descent optimization approach is used to find
the solution g� � arg min g��G E(g�) for each registration
process. The directional information embedded in the
tagged data allows for a more efficient optimization by
decoupling the two directional components of the gradi-
ent. Therefore, the horizontal estimation of the motion is
driven by the horizontally tagged images and similarly for
the vertical component of the motion.

Speed and robustness are improved by the use of a
multiresolution approach in both the image and the trans-
formation space. The multiresolution methodology used
creates a pyramid of subsampled images optimal in the
L2-sense, taking advantage of the spline representation
(37). The problem is solved starting at the coarser level of
the pyramid (the most subsampled image) and proceeding
to the finest level. For each image level, two levels of
deformation are optimized following also a coarse to fine
strategy.

Spatiotemporally Derived Parameters

Regional analysis of the myocardium is attained by com-
puting the spatiotemporal derived parameters (mean dis-
placement, velocity, and strain) from the estimated motion
field for every segment. The B-spline representation of the
transformation allows the computing of spatial derivatives
analytically.

Image Data

The proposed algorithm was tested on data from an exper-
imental animal model and data from healthy volunteers.
Both research protocols were approved by the Institutional
Review Board of the National Heart, Lung, and Blood
Institute.

The animal data were acquired on five healthy dogs. A
3D fast gradient echo tagging sequence was used to ac-
quired the tagged MR short-axis cardiac images using a
General Electric (Milwaukee, WI, USA) 1.5 T CV/i scanner.
Imaging parameters were as follows: field of view (FOV) �
180 � 180 � 128–160 mm, acquisition matrix � 384 �
128 � 32, 12° flip angle, TE/TR � 3.4/8.0 ms, 4–5-mm
slice thickness, tagging separation 2.8 mm. Long-axis
stripe tag images were acquired using a 2D fast gradient
echo pulse sequence using the following imaging param-
eters: FOV � 200 � 200 � 8 mm, acquisition matrix �
256 � 128, 12° flip angle, TE/TR � 3.2/8.0 ms, 4–5-mm
slice thickness, tagging separation 6 mm, and 1 TR-per-
segment for 8-ms temporal resolution. Respiratory and
cardiac gating were applied in order to have a more con-
trolled experiment and reduce blurring (38). The complete
cardiac cycle was acquired with a temporal resolution of
8 ms. However, only the first 40 time frames were actually
used for analysis in this paper because the tag contrast-to-
noise ratio in subsequent frames was too low for reliable
manual segmentation. Three different short-axis locations
were chosen for each subject, covering basal, mid, and
apical sections of the left ventricle. Long-axis two- and
four-chamber views were also used for the analysis.

Human data were obtained from five normal healthy
volunteers aged 30–50 years and heart rates within the
range of 45–80 bpm with no prior history of cardiac dis-
ease or chest pain. The data were acquired on a 1.5 T
Siemens Espree scanner (Siemens Medical Solutions, Er-
langen, Germany) equipped with gradient coils capable of
imaging at 33 mT/m and with maximum slew rates of 100
T/m/s. A gated, sequential, multiphase 2D balanced
steady-state free precession (SSFP) imaging sequence with
a 1-1 SPAMM tagging preparation was employed.
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For balanced SSFP, a 3-TR linear ramp starting sequence
was employed prior to data acquisition. During the imag-
ing acquisitions, a ramped train of imaging flip angles,
based on the prescription given in ref. 39, was used to
distribute the tagging-prepared magnetization equally
across all cardiac phases and was optimized for maximum
tagging contrast according to the acquisition window and
R-R durations. Typically, during each cardiac cycle, the
flip angle increased monotonically from 25° at the begin-
ning of the R-R to 50° at the end of the acquisition window.
After acquisition, the flip angle was ramped back to zero
for the remainder of the R-R.

Typical imaging parameters used were: tag separation �
6 mm, imaging FOV � 300 � 300 mm, acquisition ma-
trix � 256 � 130, TE/TR � 2.5/5.0 ms, slice thickness �
5 mm, tag separation � 6 mm and five TRs-per-segment for
a temporal resolution of 25 ms. The first 20–30 frames
were selected, which provided enough tag contrast-to-
noise ratio for reliable manual segmentation.

Measurements

To assess the accuracy of the proposed approach, hori-
zontal and vertical tags were tracked by an expert using
FindTags (12,13) to serve as a gold standard. A total
number of 25 sequences (40 frames) from the animal
data and 20 sequences from the volunteer data were
analyzed (20 –30 frames). The estimated trajectories of
the tags using our technique were calculated by apply-
ing the tracking deformation function to the points se-
lected on the tag lines in the first frame. Two different
sets of accuracy measurements were performed. First,
the estimated trajectories of the horizontal and vertical
tags were compared point to point to the manual track-
ing for 20 – 40 time frames, computing the total RMS
error in mm. The accuracy of the horizontal and vertical
motions were assessed independently. In a second mea-
surement, the effect of tracking accuracy on strain mea-
surements was estimated by measuring adjacent tag line
distances. Manually traced adjacent tag distances were
compared point to point with the estimated tag dis-
tances for both the horizontal and vertical tagged data,
computing the RMS value of the measured tag separa-
tion (RMS_TS) in mm.

All the measurements were calculated for all the tags
present in the myocardium and over all the analyzed
frames. The mean number of tags for animal data was 17 in
the short-axis images, corresponding to aproximately
22,000 point-to-point comparisons along the sequence,
and 8 tags in the long axis, corresponding to aproximately
5000 point-to-point comparisons. For the volunteer data, a
mean value of 9 tags per frame was analyzed in the short-
axis images (3000 point-to-point comparisons) and 11 tags
per frame in the long-axis images (3500 point-to-point
comparisons).

The temporal dependency of the RMS measurement was
also studied for all sequences in the animal data set, rep-
resenting the time evolution of the RMS along the cardiac
cycle. Moreover, in order to explore the effect of time
resolution and the ability of the proposed algorithm to
recover larger displacements between frames, new se-
quences were generated and analyzed by downsampling

the number of frames by two and four, respectively (three
slices). The RMS analysis was also performed with respect
to the manually traced points.

Short-axis sequences (N � 30) were analyzed using the
proposed multisource nonrigid registration scheme. Long-
axis sequences (N � 15) were studied as monosource data
as they were only horizontally tagged to assess longitudi-
nal motion. Cubic B-splines were used to represent the
transformation and the subsequent image interpolation of
the images. The multiresolution processing scheme was
set at four levels in successive steps, having half the size in
each dimension (37). Regularization was employed in all
cases, using a value of � equal to 1.0 (Eq. [3]), as this value
was found to make the solution more stable. Optimal knot
spacing was investigated by performing a set of initial tests
on three different sequences from the animal data set. The
knot spacing values tested were: 2.8 mm (equal to the tag
spacing), 5 mm, and 10 mm. The RMS measurement with
respect to the manual tracings was computed to decide the
best option.

The variability of the expert manual tracing was also
checked by performing six independent tracings in one
slice from the experimental data set. These data were
analyzed following the same measurement procedure ap-
plied for the automatically traced points (RMS point-to-
point comparisons).

RESULTS

The measurements performed to adjust the knot spacing
parameter showed comparable results for the three spacing
values investigated. Figure 3 shows the RMS measurement
with respect to the manual tracings for the three different
slices (basal, mid, and apical) and spacings (10, 5, and
2.8 mm). Horizontal (H) and vertical (V) errors were ob-
tained independently. Best performance was ensured for
5- and 2.8-mm spacings, although 2.8 mm showed higher

FIG. 3. Comparison of RMS error measurements for different values
of the knot spacing parameter h (1, 0.5, and 0.28 cm). Three differ-
ent sequences of the same subject (basal mid and apical short axis)
were analyzed with the proposed multisource nonrigid registration
approach. Horizontal (H) and vertical (V) tracking errors were as-
sessed independently. In general, the best performance results
were for finer grids (0.5 and 0.28 cm).
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computation times (higher number of parameters cj to be
optimized). Given these results, h � 5 mm was used for all
the remaining experiments as it was a good compromise in
terms of computation time and accuracy.

Artificial tags were generated to visualize the recovered
motion field by applying the reconstructed motion to an
evenly spaced pattern located at the first frame of the
sequence (end-diastole). Figure 4 shows the horizontal and
vertical artificial tags at end systole for a mid-LV slice in
one of the animal subjects (top) and a basal slice from one
of the volunteer subjects (bottom).

The current version of the algorithm coded in Python
needed about 2 or 3 min to recover the motion field from a
typical sequence (30 frames, 200 � 200 pixels) using a
standard PC (3 GHz Pentium D, 1GB DDR2). We expect a
five- to tenfold reduction in computation time when the
algorithm is completely recoded in C.

Tag location error measurements (RMS) in the experi-
mental data resulted in a mean error of 0.52 � 0.16 pixels
(0.25 � 0.07 mm; mean � SD) in the short-axis sequences
and 0.51 � 0.15 pixels (0.45 � 0.14 mm) in the long-axis
sequences. Similar results were obtained with the volun-
teer data, for which an RMS error of 0.46 � 0.11 pixels
(0.50 � 0.12 mm) was obtained for the short-axis images
and correspondingly 0.56 � 0.15 pixels (0.54 � 0.15 mm)
in the long-axis sequences. Figure 5 shows RMS plots (Fig.
5a) for all the short-axis sequences analyzed (top: experi-
mental; bottom: volunteer data) and both the horizontal
and vertical tagged images with the expert manual tracings
and the resultant artificial tags (Fig. 5b) at end-systole.
RMS was calculated over all the tags present in the myo-
cardium and along the frames analyzed within the se-
quence. The mean number of tags in the short-axis images
was 17 in the experimental data, (�22,000 point-to-point
comparisons along the sequence) and 9 in the volunteer
data (�3000 point-to-point comparisons).

FIG. 4. Artificial tags (red) automatically tracked using the proposed
algorithm for a mid-LV slice of one of the animal subjects (top) and
a basal slice of one of the volunteers (bottom). The same deforma-
tion field is actually applied in both the horizontal and vertical tagged
images to obtain the artificial tags.

FIG. 5. a: RMS error from all the short-axis images analyzed in pixels (top: animal data; bottom: volunteer data). Light gray, horizontal error;
dark gray, vertical error. Sequences grouped by subject and ordered by slices (B, basal, M, mid; A, apical). b: Manually traced points (green)
are displayed together with tracked points (red) at end of systole, showing the small error measured.
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Likewise, Fig. 6 shows the same information and figures
for the long-axis data. No major differences are observed
among subjects in the results displayed. The mean number
of tags in the long-axis images was 8 in the experimental
data, (5000 point-to-point comparisons along the se-
quence) and 12 in the volunteer data (3500 point-to-point
comparisons).

Adjacent tag separation error measurements (RMS_TS)
in the experimental data resulted in a mean error of 0.40 �
0.06 pixels (0.19 � 0.03 mm) in the short-axis sequences
and 0.48 � 0.21 pixels (0.42 � 0.19 mm) in the long-axis
sequences. The results in the volunteer data were an RM-
S_TS error of 0.51 � 0.10 pixels (0.56 � 0.10 mm) in the
short-axis images and 0.30 � 0.33 pixels (0.29 � 0.32 mm)
in the long-axis sequences. Figure 7a shows the RMS_TS
bar plot for all the animal sequences, and Fig. 7b shows the
results for the volunteer data (top: short axis; bottom: long
axis). These results confirm that the error in the strain
could be equivalent or even smaller than the displacement
error, since the tag mislocation is actually correlated in
space due to the smoothness of the motion model used.

Variability of manual tracing resulted in a mean RMS
value of 0.26 � 0.06 pixels. In comparison with the auto-
matic results, we can conclude that the accuracy achieved
is not far from the accuracy of an expert user using Find-
Tags (12,13).

The time-dependency study resulted in a linear depen-
dence of the RMS through time mainly caused by the
decreased signal-to-noise in the tags due to T1 recovery
during the sequence (Fig. 8). For the entire sequence the
RMS is maintained under one pixel.

The temporal resolution study showed similar RMS re-
sults for both the doubled and quadrupled time intervals
in comparison with the full temporal resoultion. These
results confirm that error acumulation does not seem to
occur at higher time resolutions, when more consecutive
frames contribute to the computation of the final field.On
the other hand, the algorithm shows a good performance to
account for very small motions (high temporal resolutions)
and mid-motions (coarse temporal resolutions).

DISCUSSION

The proposed method for motion tracking has shown good
results on both animal and normal volunteer data sets.
These two data sets actually cover a good range of tag
image features (higher and lower temporal and spatial
resolutions, stripe vs. sinusoidal tag shape, gradient echo
sequence vs. SSFP sequence). The proposed process was
shown to handle both data sets very efficiently, providing
subpixel accuracy over the whole sequence. Subpixel ac-
curacy is achieved thanks to the good approximation prop-

FIG. 6. a: RMS error from all the long-axis images analyzed in pixels (top: animal data; bottom: volunteer data). Sequences grouped by subject.
b: Manually traced points (green) are displayed together with tracked points (red) at end of systole, showing the small error measured.
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erties of the B-spline transformation model and the robust-
ness of the optimization process that incorporates an op-
timal multiresolution scheme and an analytical
representation of the gradient. B-spline parametric models
have previously been demonstrated to be suitable for mo-
tion modeling by Declerck et al. (2). In comparison with
previous literature based on nonrigid registration tech-
niques using information theory metrics (22,40) we have
reported a better accuracy with respect to the manual
delineation.

One of the main points of the methodology presented
is the fact that no user interaction is required throughout
the whole process. The method performs both tag fitting
and field fitting in one step. No masking or segmentation
is applied thanks to the smoothness of the transforma-
tion model and the regularization introduced. Only in a
few cases has some slight tethering coming from the
adjacent static tissues been noticed. In these cases a
mask defined in the first image of the sequence can be
incorporated in the process to mask out the regions that
produce the tethering.

In comparison with other tag postprocessing techniques,
such as HARP, the current approach produces a motion
estimate making use of all the available information in the
image. The multiple source approach together with the 2D
transformation model allows for the computing of a coher-
ent estimate of the 2D motion in just one process.

In the advent of longer lasting tags (for example from 3 T
imaging) periodicity motion field constraints could be
added to improve the accuracy if full cycle imaging is
achieved (32,35).

FIG. 7. Adjacent tag separation error (RMS_TS) plots are represented for both the experimental data (a) and the volunteeer data (b). Tag
separation measurements are equivalent or smaller than tag mislocation RMS for most data sets,showing that the strain calculation
accuracy should be as good as the displacement accuracy.

FIG. 8. Temporal dependency of RMS for all the animal (top) and
volunteer (bottom) short-axis data sequences. RMS is maintained
under one pixel through the analyzed frames of the sequences,
therefore providing subpixel accuracy.
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CONCLUSIONS

This study suggests that fully automatic tagged MR image
processing is feasible using multiple source nonrigid reg-
istration techniques. The method has been tested on high-
resolution experimental data (animal model) and on nor-
mal volunteer data. Subpixel accuracy is achieved in both
data sets thanks to the B-spline image representation. Fur-
thermore, the analytical representation of the deformation
is an optimal framework to obtain spatiotemporally de-
rived parameters analytically (such as strain) from the
computed displacement field.
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