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Abstract. Contrast echocardiography has been proposed as an indicator of myocardial perfusion 
in a non-invasive way. Reperfusion curves can be obtained by destroying all the microbubbles 
using an ultrasound pulse with high mechanical index and acquiring images during the reperfusion 
process. Quantitative parameters describing the process can be obtained from the curves. To 
analyze the complete myocardium, we propose a method for the simultaneous segmentation and 
tracking of endocardium and epicardium in myocardial contrast echocardiography sequences. The 
model consists of two active contours, guided by optical flow estimates. The evolutions of the two 
contours are coupled geometrically using a novel scheme that imposes stability in wall thickness, 
to deal with low contrast regions in the epicardial contour. Both a closed and an open model have 
been designed, to account for the different acquisition views used routinely. The model has been 
evaluated with experimental and clinical sequences, comparing the results with manual 
segmentations carried out by an expert. 

1  Introduction 

Myocardial contrast echocardiography (MCE), due to its ability to assess microvascular integrity, has been 
shown to provide markers of successful reperfusion of acute myocardial infarction [1]. Viability of the 
myocardium is estimated by the degree of myocardial opacification following contrast injection.  A method for 
obtaining quantitative parameters of the reperfusion process consists in destroying the contrast microbubbles 
with an ultrasound pulse of high energy (high mechanical index) and acquiring images continuously during the 
reperfusion process. It is thus possible to obtain the wash-in curve showing the refilling of the region after the 
destruction of the microbubbles [2]. The segmentation and time tracking of the complete myocardium in 
sequences acquired with a real-time acquisition would allow to analyze simultaneously wall motion and 
perfusion of all myocardial segments. To achieve this task, Caiani et al. [3] have proposed a method for 
segmenting each frame separately. The endocardium is segmented interactively in every frame of the sequence 
and the epicardium is obtained by dilating the edge of the endocardium a fixed width. Garcia et al. [4] have 
evaluated a snake model combined with an active shape model to segment four-chamber views. A previous 
segmentation of a high number of images is required to train the model, with the intrinsic drawback that the 
model allows to segment only sequences acquired in a specific view. In this work we propose the use of two 
active contours related by a novel coupling scheme to simultaneously segment endocardium and epicardium. A 
motion estimation step is incorporated to track the contours between frames. 

2 Active contour model 

Each active contour is represented as a discrete set of points or snaxels {v1,v2,... vn} with vi = (xi,yi) [5], and the 
energy of the contour is defined as: 
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where εint is the internal energy, dependent on the shape of the contour, εima is the image dependent energy, and 
εconst represents the external constraints imposed by the user. 

Two coupled active contours are used in our model, to segment the endocardium and the epicardium, 
respectively. The evolutions of the two curves are coupled using geometric constraints. To segment a complete 
sequence, only an initialization of both curves in the first frame is required. The user marks several points, and 
the initial contours are interpolated from these points using a B-spline curve. An evolution of the curves is then 
carried out to adjust the curves to image gradients. In the remaining frames, segmentation is carried out in two 
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stages. To compensate inter-frame displacement a first evolution is performed, based on motion estimation. A 
second evolution is then performed on each snake using the gradient as image energy, with distance restrictions 
between snakes to correct the evolution on regions of the image with low gradient. 

To be able to deal with sequences acquired either in short axis views or in apical two-chamber and four-chamber 
views, we have designed a closed model and an open one. In the closed model the first and last points are linked 
together. In the open model, the first and last points of the curve only have one neighbour each. Definition of 
curvature and distance energies in these cases is not straightforward [5]. We set the curvature energy, εcurvature = 
0 in both ends, so the end points tend to follow their neighbours. 

2.1 Internal energy 

In our model, the internal energy is the addition of two terms. The first one is a curvature energy, based on the 
second derivative. The second term is an energy aimed at distributing snaxels uniformly along the contour. The 
external energy is based on the gradient of a diffusion-filtered version of the image. We have used a simple 
gradient based on finite differences. The energy is computed as the inverse of the gradient value. 

2.2 Distance constraints 

Some parts of the epicardium show a low gradient or no gradient at all due to blooming or other artefacts in the 
acquisition process. On these regions, an evolution of the curve based only on the gradient of the image would 
lead to incorrect results. The endocardium, on the contrary, is usually well depicted due to the high intensity of 
contrast in the cavity. We assume that the segmentation of the endocardium based only on the gradient is 
correct, and introduce a distance constraint, modeled as two coupling energies between the curves. 

To implement this coupling, we define two distance-based energies, denoted as hard distance constraint and soft 
distance constraint. The hard constraint, applied to both inner and outer curves, imposes a maximum and a 
minimum distance between both curves, similar to that proposed by Zeng [6] for segmenting the brain cortex. 
When the distance between the curves is outside the allowed distance range, the energy has a very high constant 
value. The distance was defined based on previous manual segmentations and similar constraints proposed in the 
literature. 

The soft constraint, applied only to the evolution of the outer curve, is a novel coupling scheme. It aims at 
preserving the mean distance between curves in regions with low gradients. A weighted mean distance between  
the curves is computed, weighting the distance of each snaxel by the value of the image gradient at that point: 
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The energy of every snaxel is then computed as follows: 

 ( , )ε = −dist i j id v C d  (3) 
This distance energy is again weighted by the value of the gradient at every snaxel, so that the contribution of 
this energy is low in points with a high gradient value. 

Figure 1 shows the effect of the soft constraint based on mean distance. On the left, the result of the evolution 
without this constraint is shown. On the right, the result with the constraint is presented. As can be observed, 
sections of the curve with a high gradient are not affected, while the result is corrected in sections with gradient 
dropouts. 

2.3 Motion energy 

To take advantage of temporal information and make the segmentation more efficient, we define a motion 
energy based on inter-frame displacement estimation. As reported in [7] we tested several optical flow methods 
to track regions of interests in contrast echocardiography sequences. The best results were obtained with the 
method proposed by Lucas and Kanade [8]. 

A multiscale version of the algorithm was designed, using a four-level Gaussian pyramid to capture large 
displacements without a major increase in computational load. The displacement is first computed at the lowest 
resolution. The algorithm is then applied at higher levels, starting from the displacements obtained in the 
previous level. 
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Once we have obtained a displacement for every control point, the energy at each point of the neighbourhood is 
defined as the distance in pixels to the displaced point. Internal energies are also taken into account. The 
compete model is thus: 
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where εmot represents motion energy. In all experiments, the parameters used were α = 1.0, β = 0.6 , γ= 0.8. 

  

Fig 1. Result of curve evolution without distance constraints (left) and including the constraints (right) 

 

3  Experiments and Results 

For evaluating the closed model, six short axis sequences acquired from pigs during experimental surgery were 
used, with a total of 221 images. The open model was tested on 181 images from 6 sequences, obtained in 
clinical routine from 6 different patients. Three of the sequences were two chamber views and three were four 
chamber views. Images were acquired with Contrast Pulse Sequencing (CPS), a real-time acquisition method 
with an Acuson Sequoia (Acuson-Siemens) scanner. All the images were manually segmented by an expert 
observer, and by the automatic model. To compare both segmentations, two parameters were obtained: mean 
distance between curves and Hausdorff distance (maximum distance from a point of a curve to the other curve). 
For the close model, the degree of overlap between segmented surfaces was also computed. The results are 
summarized in table 1 (closed model) and table 2 (open model). Examples of the segmentation of two frames are 
shown in figure 2. 

The proposed algorithm achieved good results both in endocardium and epicardium. Differences with manual 
segmentation results are larger in the epicardium, due to the lack of information in that part of the image. Results 
are similar to those presented by [4], but their model required a priori training by manual segmentation of a high 
number of images. 

 Degree of overlap Mean distance (mm) Hausdorff distance (mm) 

Endocardium 97.7 % ± 0.12 % 1.46 ± 0.70 2.34 ± 1.54 

Epicardium 94.5 % ± 2.11 % 1.87 ± 0.63 3.21 ± 1.97 

Table 1. Comparison between manual and automatic segmentation results for the closed model 
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 Mean distance (mm) Hausdorff distance (mm) 

Endocardium 1.33 ±  0.69 3.23 ± 2.01 

Epicardium 1.75 ± 0.82 3.91 ±  2.52 

Table 2. Comparison between manual and automatic segmentation results for the open model 
 

(a) (b) (c) (d) 

Figure 2. Comparison between automatic and manual segmentations. Automatic (a) and manual segmentation 
(b) of a short axis frame. Automatic (c) and manual segmentation (d) of a four chamber view frame., 

4  Discussion and Conclusion 

We have proposed a model consisting of two coupled active contours. Our model is automatic, except for the 
definition of the myocardium by the user in the first image. The advantage with respect to previous proposals is 
that it does not require a training of the model, avoiding  the need of time-consuming expert interaction and 
making it more general, allowing to segment sequences acquired in different views. Another advantage is the 
inclusion of an optical flow stage to compensate for motion between frames, which allows for an efficient 
tracking even in sequences acquired with a low frame rate. When there is no other information (lack of image 
contrast), the method makes the assumption of uniform myocardial thickness in each frame. This may not be 
correct in some pathological cases, in which some segments may have a reduced thickness. No other a priori 
information is needed. 
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