
Abstract –We present an efficient methodology for the calculation 
of the transition matrix for 3D-OSEM iterative image 
reconstruction, including a model of the gamma-event detection 
in crystal with photoelectric and Compton scatter interaction. 
The method is adapted for high resolution PET cameras 
composed of pixelated scintillator crystal arrays and with axial 
symmetry. 2D-OSEM algorithm, in combination with rebinning 
methods such as SSRB and FORE, can also be performed using a 
subset of this transition matrix. 

I. INTRODUCTION 

N PET imaging, iterative image reconstruction (IIR) 
algorithms can include a detailed statistical model of the 

high energy gamma ray detection process. 
A maximum-likelihood expectation-maximization (MLEM) 

IIR algorithm follows the next iterative scheme [1]: 
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where at each iteration n, the j voxel value is updated, being yi 
the acquired projection for the line of response (LOR) i, and:  
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the estimated projection, calculated from the probability i ja  
that an event generated in the volume of voxel j  is detected in 
LOR i .  
 Ordered Subset methods [2] group projection data into an 
ordered sequence of blocks and an ordered subset EM (OSEM) 
iteration is defined as a single pass through all subsets. 

The transition matrix { }i ja=A  can be computed 
analytically by estimating the volume of intersection between 
the voxel and the volume between the surfaces of the pair of 
detectors that define the LOR i . In PET cameras it is clear that 

0i ja = (no intersection) in the majority of pairs i-j and 
therefore A  is a sparse matrix in a geometric aproximation. 
These approaches, however, do not consider other physical 

effects (e.g., depth of interaction, object and crystal scattering, 
non collinearity, etc.). 

Monte Carlo (MC) simulation is an alternative method for 
the calculation of the transition matrix [3]. This computation 
can either be based on only the geometrical characteristics of 
the camera, or can also incorporate models of physical 
processes related to the gamma-event generation and detection, 
such as annihilation photon, non collinearity, positron range, 
inter-crystal penetration, detector and object Compton scatter 
or object attenuation. Some of these effects, however, are 
object dependent, and their accurate modeling using Monte 
Carlo simulation would lead to non-sparse matrices, involving 
prohibitive reconstruction times and disk storage requirements.  

Negligible probability values should be rounded to zero, 
working with dense data sets, as sparse matrix operations can 
greatly improve the 3D reconstruction times: in each EM 
iteration only non-zero values need to be backprojected. 

We present here an efficient methodology for the calculation 
of the transition matrix for 3D-OSEM iterative image 
reconstruction, including a model of the gamma-event 
detection in crystal with photoelectric and Compton scatter 
interaction. The method is adapted to high resolution PET 
cameras composed of pixelated scintillator crystal arrays and 
with axial symmetry. 2D-OSEM (possibly in combination with 
rebinning algorithms [4]) can be also performed using a subset 
of the transition matrix. 

II. MATERIALS AND METHODS 
 The proposed technique employs a two-step Monte Carlo 
(MC) simulation methodology for the generation of the 
transition matrix. The first MC simulation includes gamma 
pair generation in the field of view (FOV) and the intersection 
with the detector. The second MC models the depth of 
iteration within the scintillator and inter-crystal scatter. The 
distribution of the energy representing the optical photons 
generated is discretized and stored in look-up tables (LUT). 
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A. Generation of gamma pairs and intersection with the 
detector. 

 The transition matrix simulator uses voxel-based activity 
distributions placed in the field of view (FOV). The voxels can 
be cubic, spherical or cylindrical shaped with optional 
overlapping. They are located in a uniform cubic grid, 
although with the object oriented programming technique 
used, other configurations like polar grids, blobs, etc. can 
easily be included.  
 Both positron range and non-collinearity are simulated. 
 Photon pair non-collinearity is modeled by means of a 
direction deflection with a Gaussian distribution having a zero-
mean and 0.5 degrees FWHM. Deflections greater than a user 
selected value are discarded, in order to maintain the 
sparseness of the transition matrix.  
 The positron range is object and radioisotope dependent. 
The proposed model approximates fluorine-18 (F18) in water 
as a sum of two three-dimensional Gaussian distributions [5]. 
As a result, the activity is smoothed in the voxel edges. 
 In order to reduce computing, the gamma rays can be 
generated uniformly solely in directions within the solid angle 
of coincidences allowed. For tomographs with axial symmetry, 
only the voxels of the central slice need to be modeled in 
detail. The values for the rest of the voxels can be calculated 
based on 2-fold axial symmetries and axial parallel line 
redundancies [6] 
 The annihilation photons are followed up to their 
intersection with the crystal surface. Then, the N crystals with 
the highest detection probability, according to a previously 
calculated crystal LUT, are retained generating N2 weighted 
lines of response and binned into the corresponding sinogram 
positions. This method allows to simulate relatively few 
photons per voxel to obtain statistically significant transition 
matrix probabilities, instead of tracking individual photons 
along the crystals which would lead to large simulation times.  

B. Crystal LUT simulation. 
For incident high energy gamma rays, the detection 

probability is modeled as a function of the angle of incidence 
and intersection point. The photon tracking has been modeled 
using the Klein-Nishina [7] formula and the National Institute 
of Standard and Technology (NIST) photon cross section 
tables [8]. 
 The depth of iteration is modelled with the exponential 
attenuation in crystal 0

x
xI I e µ−= , where the absorption 

coefficient µ is defined as the total cross section σ , 
multiplied by the density ρ . The total cross section is the sum 
of the photoelectric, pair production, coherent and incoherent 
(Compton) scattering. Only Compton and photoelectric effects 
are significant for 511 keV gamma rays (Figure 1). Using 
NIST tables, LSO crystals can be approximated as 2 5L SiO  

with a density of 7.4 g/cm3, and constituents fractions by 
weight: 17.466% oxygen, 6.132% silicon, and 76.4021% 
Lutetium. The MC algorithm of Compton and photoelectric 
crystal interaction has been modeled as follows.  
 
1. Initialize incident direction 0φ , position 0p ,  energy 0E and 

absorption coefficient 0µ . 
2. Generate a travel distance, log(1 ) / id ν µ= − − , withν being 

 a random number uniformly distributed on ( )0,1  
3. Calculate interaction position 1 ( , , )i i i ip f d pφ+ = ; if it is 
 located outside the crystal, go to 5. 
4. Determine the probability of photoelectric or Compton 

 interaction (photofraction at iE ) 
  If photoelectric, sum energy iE in position 1ip + . Go to 4. 
  If Compton: sum energy ( )if E in position 1ip + . Determine 

 new 1 ( )i i iE E f E+ = − , 1iµ + and 1iφ + ; go to 2. 
5. If the total energy is higher than the energy resolution, keep 

 data. If eventsi N< , go to 1. 
 

 
Figure 1.  Left: Attenuation coefficient and photofraction for LSO. Right: 
Photofraction, total and without coherent scatter (dotted line). 
 
 The density of the detected energy distribution is obtained 
for an incident direction 0φ . The incident energy oE is 
constant (511 keV) and the direction is discretized in spherical 
coordinates as function of azimutal angle in the detector plane 

, 0 2ϕ ϕ π≤ <  and polar angle max, 0θ θ θ≤ < . Where maxθ  is 
the maximum angle between a LOR and the line normal to the 
detector plane. 
 In order to obtain the pixelated crystal iteration 
probabilities, density distributions ( , )i jd ϕ θ are integrated 
over pixelated crystal volumes. The probabilities depend on 
the relative position of the incident crystal (Figure 2). 
 To speed up the process, only the crystals assigned with the 
M  highest probability values are stored in the LUT. A 
discretization of 1 degree in ϕ  and θ , 256 positions in the 
pixelated crystal surface, and 16M =  (using floating point 
values) results in 30 million values in the LUT. 

C. Scatter simulation 
The differential cross section of Compton scattering is given 
by the Klein-Nishina formula [7]: 
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where 0r  is the classical electron radius and 22 / eE m cε = , 
being E the energy of incident photon; em  the electron rest 
mass and c  the speed of light in the air. The energy E′ of 
scattered photons is given by the ratio: 

/ 1 (1 cos ) / 2r E E ε ψ′= = + − ; where ψ  is the angle between 
incident and the scattered photon. The energy distribution of 
scattered photons is determined by the expression: 
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if 1 1r ε≤ ≤ + , and ( ) 0f r =  otherwise. 
This distribution is sampled by the following technique [7]: 
 
1. Generate 3 random numbers 1 2 3, ,ν ν ν with and uniform 
 distribution in the interval ( )0,1  
2. If 1 27 /(2 29)ν ε≤ + , let 2( 1) /( 1)r ε εν= + + . 
  If 2

3 (( 2 2 ) / ) 1) / 2rν ε ε> + − + , go to 1, else accept r . 
 Else let 2 1r εν= +  
  If 2 3

3 6.75( 1) /r rν > − , go to 1, else accept r . 
   

This algorithm avoids square roots, trigonometric and 
logarithmic functions, and is optimized for high photon 
energies. The secondary scattered events with energies below 
200 keV are simulated with this alternative algorithm [9]: 
 
1. Generate 3 random numbers 1 2 3, ,ν ν ν with uniform 
 distribution on the interval ( )0,1  
2. If 1 (1 ) /(9 )ν ε ε> + + , let 2( 1) /( 1)r ε εν= + + . 
  If 2

3 (( 2 2 ) / ) 1/ ) / 2r rν ε ε> + − + , go to 1, else accept r . 
 Else let 2 1r εν= +  
  If 3 4(1 1/ ) /r rν > − , go to 1, else accept r . 
 

The number of allowed scatters, as well as the minimum 
energy, can be limited to speed up the process.  

D. Transition matrix storage. 
A 3D data set (direct and oblique sinograms) is calculated 

for each voxel and stored in sparse matrix format, since most 
of the probabilities are zero or have negligible values [10]. 
 The sparseness can be achieved with the limitation of the 
non-collinearity, positron range, small voxel size or small 
number of pixelated crystals, but there is a high number of 
nearly zero probabilities, which are rejected by normalizing 
and rounding to integer format (16 unsigned bits). Data is 
divided and ordered in subsets according to the angular 
dimension. The reconstruction speed depends critically on the 
number of subsets and rejections.  

 2-fold axial symmetry and parallel axial redundancies are 
calculated during the reconstruction process. This limits the 
application of the proposed method to PET cameras with axial 
symmetry, but has the advantage that only the values 
corresponding to the voxels of one direct slice (central slice) 
have to be calculated, reducing storage and simulation time by 
two orders of magnitude. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.  Energy deposition distributions for different incident angles and 
crystal surface intersection. Values are represented in logarithmic axes 
normalized to the maximum: (a) 0ºθ = and entry point in the center of a 
pixelated crystal. (b) 0ºθ = ; entry point not centered. (c) 10ºθ = , centered 
(d) 10ºθ = , entry point not centered. Crystal maximum probabilities are 
respectively: 76%, 58%, 37% and 32%. 
  
 Additionally, 2D transition matrices can be extracted from 
the whole 3D data set, using the SSRB algorithm for fast 2D 
reconstructions. 

III. RESULTS 

 The proposed simulation scheme has been applied to a small 
animal PET scanner configuration with rotating detector block 
arrays [11]. This system has four scintillation cameras (Figure 
3), composed of 30×35 arrays of 1.5×1.5×12 mm3 of LYSO 
( ( ) 52 :xxLu Y SiO Ce− ) crystals. Tomographic image data are 
acquired in 3D mode by rotating the gantry in a range of 90 or 
180 degrees. Only coincidences between opposed cameras are 
allowed. 

35 direct and 1190 oblique sinograms of 59 radial and 170 
angular bins are formed from the collected list-mode data to 
reach the resolution limit calculated for the scanner and crystal 
dimensions (Figure 4). The total number of lines of response in 
this geometry is 235 59 170  12,286,750× × = . The FOV is 
discretized into 5100 100 70 / 4 5.5 10π× × × ⋅  voxels, which 
means that the dimension of the transition matrix A is 

126.75 10J I× ⋅  elements. The sparseness and rejection of 
small values limits to 510  the transition matrix elements per 
voxel. The stored bins for one single slice calculation are 

5 810 100 100 / 4 7.8 10π× × × ⋅ . Using 4 bytes for the position 
of each matrix element and 2 bytes per element value (in 
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sparse storage mode), the pre-calculated 3D transition matrix 
needs less than 5 GB of hard disc space. 
 

 
(a) 

 
(b) 

Figure 3.  (a). Scanner geometry, transaxial view, (b) Scanner geometry, 3D 
model 
 

The 3D-OSEM algorithm only reads a priori probabilities 
{ }i ja=A  twice during each EM iteration (projection and 

back-projection). The lecture is sequential if the subsets are 
pre-ordered. Using a hard disk with 50 Mbps read velocity the 
matrix-loading process in each complete 3D-OSEM iteration 
takes less than 4 minutes. This time is independent on the 
number of subsets.  

 

 
(a) 

 
(b) 

Figure 4.  Visual example of a transition matrix in sinogram mode. Only non-
zero elements are stored in sparse mode. (a) Direct sinogram, (b) Oblique 
sinogram. There are 1225 similar sinograms for a single voxel. 
 

The transition matrix simulation only needs to be calculated 
once per tomograph configuration. During the design process, 
however, several geometries are evaluated. The fast simulation 
method proposed is suitable for the calculation of statistically 
significant probabilities with 5 seconds of simulation time per 
voxel, resulting in a total simulation time of approximately 10 
hours in a Pentium IV (2.5 GHz) platform. The previously 
stored crystal LUT takes also a few seconds for each angular 
discretization. 

The exact simulation times depend on many parameters that 
can be adjusted by the user, like the number of crystals 
involved (N most probable), scatter simulation, voxel size, etc.  

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 5.  Phantoms simulated with SimSET: (a) Derenzo-type phantom. Rods 
diameters (mm): [3.4, 2.4, 2.0, 1.6, 1.4, 1.2]. Total coincidences (70 slices): 
10.3·106 , (b) Rods activity density two times the background activity,  rods 
(mm): [6.0, 5.0, 4.0, 3.0, 2.0, 1.0], Total coinc. (70 slices): 24·106(c) Rods 
(mm): [6.0, 5.0, 4.0, 3.0, 2.0, 1.0] Total coinc. (70 slices): 20.5·106  
 

We have used SimSET [12] to generate realistic data sets of 
phantom activity distributions for the scanner configuration 
described above (Figure 5), in order to validate the 
methodology proposed. Preliminary reconstructions have been 
made with the system matrix calculated as described here. The 
3D-OSEM reconstruction in the central transaxial plane is 
shown (100x100 pixels, slice 34 of 70), as well as a 
SSRB+FBP with axial rebinning of 5 crystals and Hanning 
window smoothing (128x128 pixels, slice 34 of 69). 3D-
OSEM has been performed with 10 subsets and 5 iterations, 
without Bayesian regularization, scatter and attenuation 
correction (Figure 6). 

 

 
(a1) 

 
(a2) 

 
(b1) 

 
(b2) 

 
(c1) 

 
(c2) 

Figure 6.  Reconstructions of phantoms in Figure 5. (a1,b1,c1) 3D-OSEM 
reconstructions, 5 iterations, 10 subsets. (a2,b2,c2) SSRB-5 + FBP (Hanning 
window) 
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IV. CONCLUSIONS 

An efficient method for the calculation of the transition 
matrix for 3D iterative image reconstruction based on Monte 
Carlo techniques has been presented. The model (adapted to a 
high resolution PET system for laboratory animal imaging) 
incorporates not only the geometrical configuration of the 
tomograph, but also detailed a-priori information on the 
physical process of the γ-event detection by the scintillation 
crystals. Future work will include incorporation of further 
models corresponding to the response of the photomultiplier 
tubes and the front-end electronics of the system. The 
inclusion of phoswich crystals for depth-of-interaction (DOI) 
computation is also straightforward. 
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