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Abstract. The structure and function of the myocardial microvascula-
ture affect cardiac performance. Quantitative assessment of microvascu-
lar changes is therefore crucial to understanding heart disease. This pa-
per proposes the use of 3D fractal-based measures to obtain quantitative
insight into the changes of the microvasculature in infarcted and non-
infarcted (remote) areas, at different time-points, following myocardial
infarction. We used thick slices (∼ 100µm) of pig heart tissue, stained for
blood vessels and imaged with high resolution microscope. Firstly, the
cardiac microvasculature was segmented using a novel 3D multi-scale
multi-thresholding approach. We subsequently calculated: i) fractal di-
mension to assess the complexity of the microvasculature; ii) lacunarity
to assess its spatial organization; and iii) succolarity to provide an estima-
tion of the microcirculation flow. The measures were used for statistical
change analysis and classification of the distinct vascular patterns in in-
farcted and remote areas, demonstrating the potential of the approach
to extract quantitative knowledge about infarction-related alterations.

1 Introduction

Cardiovascular diseases (CVDs) result in the alteration of microvasculature [14].
Therefore, there is increased interest in gaining deeper knowledge of the mi-
crovascular patterns and their changes during the development of CVDs in an
effort to identify the underlying biological mechanisms and develop more effi-
cient therapeutic approaches. Advances in imaging systems, particularly in high
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resolution microscopy, allow visualization at sub-micrometer resolution and in-
creasing depths of the three-dimensional (3D) microvasculature [13], which is
inaccessible by other imaging technologies.

However, understanding and identifying changes in the 3D structure of the
microvasculature not only requires the use of state-of-the-art imaging techniques,
but also the use of unbiased image analysis methods that allow the translation
of qualitative biological observations into quantitative knowledge. Furthermore,
automatic 3D image analysis allows extracting information not attainable from
traditional manual analysis, and at the same time, diminishes subjectivity prob-
lems, time and labor requirements, of both manual and supervised analysis.

Nevertheless, even in the case of automatic analysis, the problem of identifying
measures that can optimally describe highly complex structures, their changes
and structural-function relations remains a challenging task. Traditional analy-
sis provide information of paramount importance regarding vessel structure and
function, but is insufficient when dealing with complex objects [7], such as bio-
logical samples, which can be self -similar, i.e. fractals. The concept of fractals
was introduced by [10] and ever since they have been applied in a variety of
image analysis and pattern recognition problems. In the biomedical field, they
found great appeal in the study of vascular networks [9].

This paper provides a quantitative approach of describing changes that oc-
cur to the cardiac microvasculature at different time-points, after myocardial
infarction (MI), at remote and infarcted regions. To achieve this, while also ac-
commodating the complex and multi-scale properties of the microvasculature,
a 3D fractal-based approach was followed. To the best of our knowledge this is
the first effort made to apply a complete 3D fractal-based analysis (fractal di-
mension, lacunarity, succolarity) to quantitatively assess progressive MI-related
changes of the microvascular patterns. In biological terms, the higher the frac-
tal dimension, the higher the morphological complexity is, i.e. the number of
microvessels. The higher the lacunarity, the more heterogeneous the gap distri-
bution and as a result the blood supply within the tissue is. The higher the
succolarity, the larger the amount of blood that can flow in the vessels, thus the
better the oxygenation. Furthermore, a simple, but efficient, 3D method is pro-
posed for the segmentation of vascular structures from images stained for blood
vessels.

2 Methods

2.1 Data Acquisition and Pre-processing

All experiments were approved by the Institutional Animal Research Commit-
tee. Three adult male Large-White pigs were anesthetized and acute MI was
induced using an angioplasty balloon with 30-minute occlusion of the left ante-
rior descending coronary artery followed by reperfusion. The pigs were sacrificed
1, 3 and 7 days after reperfusion.

Tissue samples from both infarcted and remote areas from each left ventricle
were collected. Samples were fixed with 0.4% paraformaldehyde, embedded in
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Fig. 1. (a) Overview of MMT method. (b) Possible directions of blood flow through
the segmented microvasculature; horizontal flow from left to right (arrow 1) and vice
versa (arrow 2), vertical flow from up to down (arrow 3) and vice versa (arrow 4), and
in depth blood flow from upper to lower slices (arrow 5) and vice versa (arrow 6).

OCT and frozen down. Thick sections (∼ 100µm) were obtained in the cryostat,
stained in flotation for the microvasculature with primary antibody anti-VE-
Cadherin (Santa Cruz) 1:100, and incubated with secondary antibodies, Alexa-
Fluor 568 (Molecular probes) 1:500 and Hoechst (Life Technologies) 1:10000.

Spectral imaging was performed with a Leica SP5 confocal microscopy using
emission from a 561nm laser and 40×/1.25N.A. oil immersion lens. Z-stack slices
(1024×1024 pixels) were acquired every 1µm by applying the deepness correction
setup. The resulting voxel size was 0.3785µm× 0.3785µm× 1.007µm.

Prior to proceeding with the analysis, Non-Local Means Filtering [4], was
adapted for enhancing the quality of the images.

2.2 Segmentation

A 3D multi-scale multi-level thresholding approach (MMT) was developed for
the segmentation of the labeled vessels from confocal images, inspired by the
box counting (BC) method [3] and Otsu’s multi-level thresholding method [12].

Grids of varying size e were overlaid onto the image under investigation.
Subsequently, the multi-level thresholding was applied to each box Bj(e), j =
1, ..., N(e) of the grid with size e in order to calculate the M intensity classes that
maximize the inter-class variance within the box. For every grid,N(e) thresholds
(tM ), as many as the boxes that composed it, were therefore calculated and ap-
plied to the corresponding box. In total, k candidate segmentations Vi, i = 1, .., k
were produced, one per grid size e, as a mosaic of the application of the N(e)
thresholds on the boxes. Only voxels that belong to the two classes with higher
intensity (M − 1,M) were considered as parts of the microvasculature. Thus,

Vi(u) =

{
1, I(u) ≥ t(M−1)(Bj(e))
0, I(u) < t(M−1)(Bj(e)) .

(1)
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where voxel u = (x, y, z) ∈ Bj(e) and I the original image.
Subsequently, candidate segmentations Vi, i = 1, .., k had to be fused into a

single segmentation. To achieve this, majority rule voting applied:

V (u) =

∑
i=1,..,k wiVi(u)∑

i=1,..,k wi
, (2)

where wi are the weights that define the degree to which candidate segmentation
Vi will contribute to the final segmentation and were set to 1 considering equal
contribution of all candidate segmentations.

An overview of the MMT method is presented in Fig. 1 (a). It is worth men-
tioning that in the traditional BC, cubic boxes compose the grid. However, here,
boxes of size e × e × ez with ez = 10 < e = 25, .., N , were used in order to
accommodate for the smaller size of our images along z-direction and to cover a
wide range of scales while ignoring the smaller ones that provide a very limited
region for variance calculation.

2.3 Fractal-Based Methods

Fractal Dimension. A variety of methods have been proposed for the calcula-
tion of fractal dimension [8]. Among them, the box-counting method (BC), which
is the most popular and widely used approach, was applied in this work. Grids of
cubic boxes of size e are overlaid on the original image. Subsequently, the fractal
dimension(Fd) is defined as the negative slope of the bi-logarithmic plot of the
number of boxes Ne needed to cover the microvasculature as a function of the
box size e. Thus,

Fd = − lim
e→0

log(Ne)

log(e)
. (3)

However, real-life objects might not present self-similarity over an infinite range
of scales but rather over finite [9,2]. To deal with this limitation, we followed the
procedure presented in [2] to identify cut-offs scales for which the microvascula-
ture can no longer be considered as fractal. However, no statistically significant
difference was observed between the calculation of fractal dimension with and
without cut-offs and the former is presented in this document.

Lacunarity. The gliding box (GB) method [1] was used for the calculation of
lacunarity L. According to the GB method, boxes of different sizes are glided
every 1 voxel over the image and the number of voxels inside the boxes belonging
to the structure of interest, i.e. voxels with value 1, are calculated and represent
box mass M . Therefore, for each box size e, lacunarity is calculated by the first
and second moments of inertia of mass distribution

L(e) =

∑
e=1,..,N M(e)P (M, e)∑
e=1,..,N M(e)2P (M, e)

, (4)

where P (M, e) = n(M,e)
N(e) , n(M, e) stands for the number of boxes with mass M

and N(e) for the number of boxes of size e.
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When comparing images with different densities, one limitation presented by
lacunarity is its dependence on image density. To tackle this incompatibility, we
used the normalized lacunarity (Lnorm) as proposed by [5],

Lnorm(e) = 2− (
1

L(e)
+

1

cL(e)
) , (5)

where cL(e) is the lacunarity the complemented image (cL(e)). This formulation
results in lacunarity values that are in the range [0, 1], allowing comparison
among images with different densities. The lacunarity over all scales is defined
by the mean along all scales.

Succolarity. Although succolarity (S) was firstly described by Mandelbrot [10],
the first formal definition and method for its calculation, based on an adaption
of BC method, was proposed recently by [11]. In brief, regions, i.e. blood vessels
in the case of this study, that a fluid, i.e. blood, can flow are represented by 1
while obstacles to the fluid with 0. For the 3D case, 6 different directions that the
blood can flow through the vascular structure are defined as shown in Fig. 1(b).

A segmented image V is therefore decomposed in six 3D images Vd one per
direction d = 1, .., 6. Subsequently, the BC method is applied to each Vd. The
number of voxels with value 1 is calculated n(e), as well as the pressure (P ) of
the flow in each box by the coordinates of the centroid of the box, following the
direction under investigation. The normalized succolarity is given by

S(d, e) =

∑
e=1,..,N O(e)P (e)
∑

e=1,..,N P (e)
, (6)

where O = n(e)
e stands for the occupation percentage of boxes of size e.

Ultimately, in this work, overall succolarity was approximated by its maximum
value among all 6 directions, i.e. the dominant direction of blood flow.

3 Results

Fifty-four 3D confocal images, nine for each tissue category, were used for the
analysis of the infarcted heart microvasculature. For simplicity, images corre-
sponding to tissue from infarcted and remote areas, 1 day, 3 and 7 days post MI
were abbreviated as I1MI, R1MI, I3MI, R3MI, I7MI, and R7MI.

Firstly, the outcome of the multi-scale multi-thresholding method was visually
evaluated by an experienced biologist in order to avoid bias in the analysis
due to erroneously segmented images. In solely one case out of fifty-five the
segmentation outcome was considered unsatisfactory.

In order to quantify alterations in the complexity, gap distribution and/or
microcirculation of the microvasculature, as expressed quantitatively by fractal
dimension, lacunarity and succolarity, statistical change analysis was performed.
To achieve this, we applied Wilcoxon rank sum tests and Multi-variate analysis
of variances (MANOVA) to perform pairwise comparisons of the characteristics
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(a) (b)

Image (a) (b)

Fd 2.3 2.1

Lnorm 0.7 0.8

S 0.008 0.003

Fig. 2. Example segmentations by means of MMT method (first row) and of traditional
multi-level thresholding (second row) from remote (a) and from infarcted area (b) along
with the corresponding 3D fractal measures. The segmented vessels are presented with
red on the slices along x-y,y-z,x-z (right) and on the 3D reconstructions (left).
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Fig. 3. Statistical comparison by means of (i) Fractal Dimension, (ii) Lacunarity, (iii)
Succolarity, where *, ** and *** represent p-value< 0.05, 0.01 and 0.001 respectively.

Table 1. Multivariate Anova. P-values for cases that the null hypotheses is rejected
at the 1 % significance level are shown in bold.

I1MI - R1MI p = 0.0039 I1MI - I3MI p = 0.056 R1MI - R3MI p = 0.0122

I3MI - R3MI p = 0.0702 I1MI - I7MI p < 10−9 R1MI - R7MI p = 0.0367

I7MI - R7MI p = 10−6 I3MI - I7MI p < 10−7 R3MI - R7MI p = 0.2383

Table 2. Accuracy (%) in classifying the distinct vascular patterns using different
classifiers: (1) Knn, (2) SVM, (3) Adaboost.

Classifier 1 2 3 Classifier 1 2 3 Classifier 1 2 3

I1MI - R1MI 58 73 75 I1MI - I3MI 58 75 83 R1MI - R3MI 68 73 79

I3MI - R3MI 64 71 57 I1MI - I7MI 100 100 100 R1MI - R7MI 52 57 72

I7MI - R7MI 100 100 100 I3MI - I7MI 79 100 86 R3MI - R7MI 53 60 65

of the microvasculature from infarcted vs remote areas at all time-points, and of
the same tissue area progressively in time.

Fig. 2 provides examples of the performances of MMT method and traditional
multi-level thresholding on two images of our dataset, along with the calculated
metrics for comparison purposes.
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Table 1 provides the p-values for all pairwise comparisons performed by means
of MANOVA. The null hypothesis, that there is no statistically significant differ-
ences between the infarct and remote areas, was rejected in the case of I1MI vs
R1MI and in that of I7MI vs R7MI. This implies significant differences regard-
ing the space filling properties of the microvessels (fractal dimension, lacunarity)
and microcirculation. Of particular interest is the fact that 3 days after MI the
null hypothesis is not rejected. This, in conjunction with recent work by [6] on
the bimodal pattern of edema after MI, makes the study of changes at 3 days
post MI a point for further investigation. I1MI and I3MI differ significantly from
I7MI, but not among them, while remote areas at different time-points present
no significant differences.

Fig. 3 presents plots which indicate mean values, standard deviations and
p-values, resulting from Wilcoxon rank sum tests, for the statistical change
comparison in terms of each fractal measure independently. A statistically sig-
nificant decreased complexity, expressed by fractal dimension, was observed be-
tween I1MI and I3MI, when compared with I7MI. In contrast, a progressively
increased varying distribution of gaps was observed by means of lacunarity. This
inversely proportional relation between fractal dimension and lacunarity might
be related to a wider range of sizes of microvessels. In fact, 7 days post MI
apart from capillaries, larger vessels were observed, as also reported in the ca-
nine MI model [15]. Moreover, by comparing succolarity in infarcted areas 1 and
7 days post MI, functional changes related with microcirculation were added to
the structural, expressed by fractal dimension and lacunarity. As it might have
been expected, there was no measure that presented significant differences for
remote areas at progressing time-points. As far as between infarcted and remote
areas comparisons are concerned, gap distribution, presented statistically signif-
icant differences at all time-points under comparison, which makes lacunarity
the most sensitive among the measures compared. Differences between remote
and infarcted areas became clear in terms of all metrics only 7 days post MI.

Ultimately, we incorporated the metrics into a classification scheme. The clas-
sifiers used are, (i) K-nearest neighbor classifier (knn), (ii) Support Vector Ma-
chines (SVM), and (iii) Adaboost [17]. In all cases, 9-fold cross validation re-
peated 100 times was used. Accuracy rates (%) are presented in Table 2. The
classifiers demonstrated similar behavior with higher accuracy in those pairs
of comparisons for which MANOVA had demonstrated differences. In addition,
Adaboost and SVM classifiers achieved more than 70 and 75 % accuracy respec-
tively, for all of those cases. This demonstrates the power of fractal measures to
describe and identify between different microvascular patterns post infarction.

4 Conclusions

We proposed the use of a 3D fractal-based approach to quantify infarction-
related changes of the microvasculature at three different time-points after MI.
3D confocal images stained for blood vessels of both infarcted and remote areas
were used. The animal model chosen was the pig due to its high translational
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value related with the similarity of its coronary artery anatomy and distribution
to those of humans [16].

Statistically significant changes in terms of structure (fractal dimension and
lacunarity) and function (succolarity) were detected by means of significance
tests and MANOVA. Furthermore, relatively high rates of correct classification
of unseen 3D microvascular images into distinct tissue categories, based on just
their complexity, gap distribution and dominant blood flow as expressed by the
applied fractal measures, demonstrate their potential to describe and recognize
characteristics and changes due to infarction at the microvascular level.
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