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Abstract—We have developed a new algorithm for fast re-
gion of response rendering in Positron Emission Tomography
(PET). The algorithm can be applied efficiently to Expectation
Maximization (EM) techniques that include per-event probability
distributions with shapes more complex than symmetric tubes of
response. The algorithm is generic for any system geometry and
draws the scalar field associated to a generic input kernel with
a constant cut-off threshold independent from the actual kernel
shape. In the current version it has been tested for reconstructing
List-Mode (LM) data simulated with GATE on the rPET small
animal scanner and used with a 2D Gaussian kernel specifically
designed for the rPET. EM parallelization has been achieved at
per-event level on a 8 core dual CPU. Results show that the
new algorithm allows for LM reconstruction in low times with
complex kernel functions of the relative position of the voxel with
respect to the line of response.

I. INTRODUCTION

THE ability of reconstructing images iteratively by consid-
ering full raw acquired Positron Emission Tomography

(PET) data, instead of compressing it in histograms, is known
as one the promises of next PET reconstruction techniques.
However, histogram mode reconstruction is still today the
way to go in typical real world applications. The main reason
comes from the high computational complexity in deriving a
full emission probability spatial distribution for each acquired
event. It is possible to reduce complexity by introducing
approximations, as in Siddon based algorithms [1], but the
trade off in accuracy can exceed the advantages of using per-
event information.

Recently, highly parallelized, fast List-Mode (LM) recon-
struction has been shown to be possible with more accurate
tubes of response (TOR) [2], [3]. However, the proposed
implementation is efficient only for tubes of response that
are radially symmetric and whose section is constant along
the line of response (LOR). If asymmetric tubes with 2D
Gaussian section are used, the algorithm would benefit from
a more specific tailoring of the region of response (ROR).

Manuscript received November 15, 2011. This work was partially supported
by Spain’s Ministry of Science & Innovation through CDTI - CENIT
(AMIT project) and INNPACTO (PRECISION project), Instituto de Salud
Carlos III (PI09/91058 & PI09/91065) and projects TEC2010-21619-C04-03
&TEC2008-06715-C02-02, Comunidad de Madrid (ARTEMIS S2009/DPI-
1802), and the European Regional Development Funds (FEDER). CIBER-
BBN is an initiative funded by the VI National R&D&i Plan 2008-2011,
Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by
the Instituto de Salud Carlos III with assistance from the European Regional
Development Fund.

G. Sportelli, J. Ortuño and A. Santos are with the CIBER de Bioingenierı́a,
Biomateriales y Nanomedicina (CIBER-BBN), Spain, and with the Biomed-
ical Image Technologies, Depto. de Ingenierı́a Electrónica, Universidad
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The introduction of additional information as acolinearity, time
of flight and energy correction would make a specific region
tailoring approach even more advantageous.

In this work, we present a new efficient algorithm suitable
for parallel LM reconstruction, able to produce accurate re-
gions of response defined with a constant probability cut-off
on its elements and a generic modeling kernel. The algorithm,
with a variable 2D Gaussian kernel, has shown in simulations
that can outperform image quality in traditional reconstruction
algorithms based on precomputed system matrices with a
very low CPU time per processing unit [4]. Our tests also
showed how tuning the ROR size can have dramatic effects in
reconstruction speed with negligible effects on image quality.

II. MATERIALS AND METHODS

The reconstruction process is based on the one-pass list-
mode EM algorithm [5], in which the emission probabilities
are derived through a fast voxel search and compute algorithm.
The probability associated to each voxel is calculated with a
generic projector model, or kernel, that is defined according
to the modeled system response [2], [3], [4]. The novelty of
the introduced method consists in the possibility of identifying
the ROR dynamically depending on the modelled probabilities,
without any assumptions on its axial section. The advantage
is that the processing time per processor unit can be reduced
at no cost in terms of used memory or accuracy.

A. The LOR Space Frame

The projector model, i.e. the scalar field that describes the
TOR, has been derived with respect to a reference system in
which the z axis is aligned with the ideal LOR, x and y axes
orthogonal to the z axis and projected from the detectors axes.
For any LOR, a 3D transformation is calculated to convert the
coordinates of every voxel center p = xi + yj + zk on the
new reference frame p′ = x′i′ + y′j′ + z′k′. In homogeneous
coordinates, the transformation can be expressed as a 4 × 4
matrix M , composed of a rotation matrix R and a translation
vector t: [
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] [
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1
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[
p
1

]
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The elements of the rotation matrix are the normal vectors
of three perpendicular planes: a) the plane perpendicular to the
LOR; b) the plane that contains the LOR and principal axis
of the pixelated crystals; c) the plane perpendicular to a) and
b). Thus, it holds that:
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Fig. 1: Geometric diagram of the vectors involved in the
change of reference system.

r3 =
p2 − p1

|p2 − p1|
, r2 =

r3 × n

|r3 × n|
, r1 = r2 × r3 (2)

where p1 and p2 are the vertices of the LOR and p3 is a
point belonging to the principal axis of one of the pixelated
crystal associated to the LOR. R and t are computed as:

R =

 rT1
rT2
rT3

 , t = −Rp0 (3)

where pm is a point belonging to the LOR, that will be
the origin of coordinates of z′. A geometric diagram of the
vectors involved in the change of reference system is illustrated
in Fig. 1.

The derived transformation is used repeatedly on each voxel
center coordinates whose contribution to the projection is
above a given threshold.

B. Search Algorithm

Given an ideal LOR, derived as the pair of most probable
positions of photons-crystals interaction for an acquired event,
the search algorithm provides the coordinates of all image
voxels whose position has a probability of emission of the
detected photons higher than a constant cut-off value. This
a posteriori probability is evaluated by means of a projector
function p(i, j,D), where i is the voxel center, j is the LOR
and D is additional useful data as crystals efficiency, skewness
etc.

A schematic diagram of the method is illustrated in Fig. 2.
The first intersection between the LOR and the field of view
(FOV) is computed geometrically and produces the voxel of
entrance. Starting from this voxel, a recursive loop looks for
its neighbors and processes all the elements that produce
a kernel output above the cut-off threshold. Given that a
single voxel can be neighbor of multiple voxels, a specific
mechanism is needed in order to prevent voxel reprocessing.
A voxel marks memory has been initially developed, but it
showed to be infeasible for massive parallelization on graphics
procecessors (GPU), given the low memory resources available
per single GPU core. Therefore a specific FOV sampling
system has been developed. The new voxel search algorithm

Fig. 2: Simplified flow chart of the voxel search algorithm.

Fig. 3: Geometric diagrams of the ROR propagation technique.
In the figure the primary direction is along axis Z, the
secondary along axis Y and the tertiary along axis X .

is based on a hierarchical approach, in which each identified
voxel corresponds to a node of a tree. Nodes are divided
in 3 partitions (primary, secondary, tertiary) and processed
sequentially. Primary voxels are all intersected by the LOR,
each with a different coordinate in the axis Z, secondary
voxels are obtained by propagating primary ones in the Y
direction; tertiary voxels are obtained by straight propagation
of secondary ones in the X direction Fig. 3. Propagation stops
when the cut-off condition on the current voxel is met. With
this scheme all the voxels of the ROR that are within the cut-
off boundary can be obtained by keeping in memory only the
coordinates of the current voxel and those of its parents.

It is important to note that the search algorithm involves
only sum operations and no global memory access in write
mode, which is the necessary condition for its implementation
on graphical processing units.

C. Projector Model

Three different projector models have been used in order
to assess quality and speed of the proposed reconstruction
method. The simplest one is the constant Gaussian model,
in which all TORs are modelled as tubes with symmetric
Gaussian section with a fixed standard deviation derived from
the mean point spread function of the system. We also used cir-
cular and elliptical (2D) Gaussian kernels where the standard
deviations are calculated on-line per LOR based on GATE
simulations [4]. Image reconstructions have been performed
on simulated Derenzo-type and NEMA quality phantoms in
order to assess the contrast recovery coefficient (CRC) and
noise capabilities of the proposed method (Fig. 4 and 5).
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Fig. 4: Axial, coronal and sagittal views of a Derenzo-type
phantom reconstructed with the elliptical Gaussian model.

Fig. 5: Transaxial and axial slices of the NEMA quality
phantom reconstructed with the elliptical Gaussian kernel.

D. Parallelization

In order to parallelize the OSEM reconstruction algorithm
we subdivide the LM dataset into several partitions, each
processed by a different processing unit. Separated results
are then joined and split again after each iteration. This kind
of parallelization pattern, commonly referenced as reduction
pattern, provides negligible computation overhead, although is
not feasible for graphics processing units. A finer paralleliza-
tion pattern is under testing for GPU processing. In the GPU
parallelization is achieved at LOR level by means of atomic
operations on a shared memory space.

III. RESULTS AND CONCLUSION

Experiments have been conducted in order to assess the
trade-off between reconstruction speed and image quality.
Two cut-off thresholds have been used in the kernel sam-
pling algorithm while reconstructing GATE simulated NEMA
phantoms [4] within a small animal rPET scanner [6]. Results
in Fig. 6 show the recovery coefficient vs. noise/signal ratio
trade-off when using 1% and 10% as cut-off conditions,
where the kernel maximum value at the center is 1. In
Fig. 7 reconstruction speeds are plotted for different kernel
models and with the two cut-off condtions above. The cut-
off value has a clear impact in the quality of results. As it is
appreciable in Fig. 7, the 2D Gaussian model reconstructs in
almost half the speed if the cut-off is changed from 10% the
Gaussian peak to 1%. The parallelization overhead has been
measured for multicore CPUs by executing the algorithm with
8 running cores at 2.1 GHz Fig. 7. A preliminar GPU-based
algorithm implementation has been also shown to be possible.
The acceleration obtained with a commodity graphics adapter
(nVIDIA GeForce GTX 480) with 480 processing cores is
about 50x with respect to a CPU core.

Fig. 6: Recovery coefficient vs noise-signal measured in the 1
mm and 2 mm diameter rod of the quality phantom for LM-
OSEM reconstructions using the 2D Gaussian kernel described
in [4]. Cut-off values are 1% and 10% of the kernel maximum.

Fig. 7: Reconstruction speed comparison. Speeds for different
kernel models and cut-off thresholds are compared when
executed in a machine with 8 cores running at 2.1 GHz.
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