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  Abstract– We address here the problem of the noise 
deterioration of the quality of the reconstructed images when 
employing the maximum likelihood expectation maximization 
(MLEM) algorithm for iterative image reconstruction in positron 
emission tomography (PET). It is observed that despite the fact 
the cost function (log-likelihood) is monotonically increasing, the 
image quality deteriorates after reaching a certain “optimum” 
point during the iterative process. The principal aim of the work 
is the discovery of a rule that would directly link the quality of 
the reconstructed images at each iteration with the log-likelihood. 
We assume that the true image corresponds to a log-likelihood 
value in correlation with the data acquired, which, when 
achieved, makes no sense looking for higher log-likelihood levels. 
We study here the hypothesis that there is a direct correlation of 
the log-likelihood of the true image (a quantity that is not known 
a priori in real PET scans) and acquired data, with certain 
properties of the pixel updating coefficients (PUC) in the MLEM 
algorithm. For the validation of this hypothesis we have 
employed Monte Carlo experiments using known phantoms. We 
show here that the minimum value of the PUC for the non-zero 
pixels might be one parameter that could be used to verify the 
above mentioned hypothesis. 
 

I. INTRODUCTION 
ositron Emission Tomography (PET) can be used to give 
up images of the distribution of a radiopharmaceutical 
into the human body. PET is used in several clinical areas 

such as oncology, cardiology, neurology, etc. In modern PET 
scanners image reconstruction algorithms play an important 
role in the quality of the produced images. Nowadays the 
Maximum Likelihood Expectation Maximization (MLEM) 
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[1], Ordered Subsets Expectation Maximization (OSEM) [2] 
and their variants [3] are used.  

It is well known that the MLEM algorithm produces images 
with better quality than other analytical techniques, however 
MLEM images are becoming noisier after a large number of 
iterations. At the same time, the objective function that is 
being maximized (log-likelihood) does monotonically increase 
and therefore the image with the highest log-likelihood value 
might not necessarily correspond to the best image. Previous 
works have suggested that maximizing the log-likelihood 
function might not be a good criterion to pursue, as the 
resulting image gets noisier [4]. To overcome this problem 
several methods have been investigated. One method is to stop 
the algorithm after an arbitrary number of iteration and then 
post-filter the reconstructed image [3]. Another method is to 
stop the iteration process based on a robust stopping rule. 
Several research groups in the past have proposed stopping 
rules for the MLEM algorithm [5]-[8] but these have not yet 
been employed in clinical setting.  

Our group has proposed a methodology of an empirical 
stopping rule for the MLEM algorithm [7]-[9]. This work 
reports on the preliminary results of a novel approach to 
monitor the reconstructed image quality by correlating some 
specific properties of the pixel updating coefficients of the 
MLEM algorithm to the log-likelihood value that corresponds 
to the true activity distribution in the source and the data 
acquired.  

II. MATERIALS AND METHODS 

A. MLEM algorithm 
In PET imaging the problem of image reconstruction is to 

estimate the true emission density x̂  from the acquired data 
vector y. The mathematical model that describes the MLEM-
based image reconstruction process is based on the hypothesis 
that the emission in the source occurs according to Poisson 
statistics. The likelihood function L(x) represents the 
probability under the Poisson probability model for emission 
to observe the measured counts if the true density was a given 
image vector x. In maximum-likelihood methodologies, 
typically the log-likelihood function (1) is taken and then 
maximized: 
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 (1) 
 

where i is the ith pixel in the image vector, x is the image 
vector, y(j) is the projected data in jth line-of-response (LOR) 
and �(i,j) represents the probability that an annihilation event 
generated in the area of the ith pixel is detected in the jth 
LOR; �(i,j) is also known as the system matrix for a given 
scanner configuration. The general form of MLEM algorithm 
that expresses the pixel updating process at the k iteration is: 
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where C(k-1) is the vector of the pixel updating coefficients 
(PUC) at the (k-1)th iteration.  

B. The PET scanner 
We have modeled a single-ring PET camera with 128 

scintillation crystals on the ring, a detector width of 7.36 mm 
and a field of view (FOV) of 200×200 mm2.  The detector ring 
radius is 150 mm. The total number of LOR is 8128. Image 
grids with a size of 128×128 (pixel side = 1.56 mm) have been 
employed. Custom Monte Carlo simulations (written in C) 
have been used for the simulation of the activity distribution in 
the source, the generation of positron-electron annihilations, 
the production of gamma-rays, their propagation in the source 
and their detection by the scintillation detectors. Ideal 
conditions have been assumed (100% detector efficiency, no 
Compton scattering or photoelectric effects in the source and 
the detectors, no random coincidences, etc.). 

C. The system matrix  
The system matrix depends on the geometry and 

configuration of the PET scanner (image grid and scanner’s 
layout). Each matrix element �(i,j) represents the transition 
law from the image activity distribution x(i) to the measured 
data y(j). Hence the matrix element shows the geometrical 
acceptance of annihilation events generated in pixel i and 
detected by the LOR j. In this work, the transition matrix for 
the camera configuration employed has been calculated using 
Monte Carlo methods. In the area that corresponds to each 
pixel i a sufficient number of events Ntot were generated and 
the simulated gamma-rays were recorded in each LOR. The 
probability value �(i,j) is then given by the expression: 

( , ) j

tot

N
i j

N
α =  (4) 

where Nj is the number of those events detected within the jth 
LOR. The accuracy of this method depends on the total 
number of annihilation events generated in each pixel. For this 
reason 107 gamma-rays have been uniformly generated in each 
pixel. In that way the relative error is less than 1%. 

D. Data generation 
For this study the MOBY [10] and the digital Hoffman 

brain [11] phantoms have been used. The Hoffman brain 
phantom consists of 18 2-dimensional image slices and the 
MOBY phantom consists of 129 slices as shown in Fig. 1. The 
pixel values in each slice correspond to the activity 
distribution in the area covered by each pixel in the source. A 
proportional number of gamma rays have been generated 
using Monte Carlo methods for this pixel and their trajectories 
have been followed until they hit a detector on the camera’s 
ring. For each slice various activity distributions have been 
simulated, ranging from 200,000 to 6.0 million counts. Using 
this procedure, data from the Hoffman brain and MOBY 
phantoms have been acquired at different activity distribution 
levels and have been reconstructed using the MLEM 
algorithm.  

For the validation of the results obtained, we have used data 
acquired based on the Digimouse phantom [12] and according 
to a similar procedure as the one followed for the Hoffman 
and MOBY phantoms: based on the activity distribution in the 
Digimouse image slices, a predefined number of counts has 
been generated, assuming an ideal, noise-free case. These data 
have been then reconstructed using the MLEM algorithm. 

E. Image quality monitoring 
In the MLEM algorithm an initial estimate image x(0) 
(typically a uniform activity distribution for all pixels) is used 
as starting point. The quality, as referred to the signal to noise 
characteristics, of the reconstructed image steadily improves 
during the first iterations however after a certain point the 
image quality starts getting significantly noisier. In order to 
monitor the noise levels in the reconstructed images, we 
calculate the log-likelihood value for the case of the 
simulations using the Hoffman and the MOBY phantoms 
according to (1), provided that in these cases both the phantom 
image and the detected counts per LOR are known. During the 
MLEM reconstruction, it is of no avail looking higher 
likelihood than the one inherent in the acquired data. Hence, 
when the log-likelihood at a certain iteration reaches the log-
likelihood calculated based on the phantom measurements, 
there is no need to continue the iterative process: 

. .log( ( ))   log( ( ))recon image phantom imageL x L x≥  (5) 

 During a real PET scan, however, the quantity 

.log( ( )) phantom imageL x is not available. In the next section we 
describe a methodology that correlates the log-likelihood-
related properties of the reconstructed image with the 
properties of the PUC, as given in eq. (3). 
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(b)

Fig.1.  The digital phantoms used for the development of the method: a) the Hoffman brain phantom and b) some slices (nº 23 to nº 40) from MOBY phantom. 
 

 
Fig. 2  The NRMSD and log-likelihood curves for the Hoffman brain phantom 
slice nº 14 for 200,000 measured counts 

III. RESULTS 
Fig. 2 shows the evolution of the normalized root mean square 
deviation (NRMSD) [9] and the log-likelihood curve, for the 
reconstructed images from slice nº 14 of the Hoffman brain 
phantom (200,000 counts), starting from a uniform image as 
initial guess. Some examples of the reconstructed images are 
illustrated in Fig. 3. From this figure it can be observed that 
there is an improvement of the reconstructed image quality 
during the first iterations (2nd iteration shown) to the iteration 
where minimum NRMSD occurs (30th iteration) and after that, 
the image progressively deteriorates as further noise is added. 
This effect is also represented in the NRMSD curve in Fig. 2, 
whereas the log-likelihood curves monotonically increases, as 
expected from the application of the MLEM algorithm. 

From equation (2) it is clear that the evolution of the values 
of the PUC reflects the convergence rate for a particular 
image. Motivated by this assumption we have studied further 
the statistical behavior of the PUC for all non-zero pixels of 
the reconstructed image versus the number of iterations. Fig. 4 
shows the histograms of the PUC values for the Hoffman 
brain phantom slice nº 14 at the 10th, 50th and 110th MLEM 
iteration. It can be observed that these histograms have two 
components:  
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Fig. 3.  Hoffman brain phantom slice nº 14, with 200,000 counts acquired, 
reconstructed after: a) 2, b) 30, c) 110 and d) 210 iterations. 
 

 
Fig. 4.  Histograms show the distribution of the values of the updating 
coefficients C. As the iteration process progresses, the PUC values shift 
around 1.0.  

 
Fig. 5  ( )

min
kC  versus number of iterations for MOBY phantom slice nº 40 and 

Hoffman slice nº 14. 
 
(a) a concentration of values around 1.0, which correspond to 

the PUC of those pixels for which the true phantom value 
has been closely approximated and  

(b) a region with values lower than 1.0 (tail) which 
corresponds to the PUC values of those pixels that have 
not yet reached their true values at that particular point of 
the iterative process.  

This effect is expected, given the non-uniform convergence 
rate of the MLEM algorithm for the different image regions. 
Therefore, it can be concluded that for a pixel i that lies in the 
non-zero activity areas of the true image:  

lim ( ) 1.0
k

C i
→∞

=  (6) 

The tail region in the histograms shown in Fig. 4, 
corresponds to the part of the image that has not been fully 
reconstructed. Hence, it can be considered that the lower 
values (most left ones) in these histograms, and particularly 
the minimum value of the tail, correspond to the pixel values 
that contribute mostly to the noise level in the reconstructed 
image. We define a variable:  

( ) ( )
min min{ ( ), 1,2,..., }k kC C i i I= =   (7) 

where I is the total number of pixels with non-zero activity in 
the image and k is the iteration number. ( )

min
kC is the minimum 

value of the vector of the PUC among the non-zero pixels of 
the reconstructed image at the iteration k. ( )

min
kC can be easily 

calculated from each histogram.  
We studied further the relationship between the log-

likelihood and the minimum value of the PUC, as well as the 
dependence of this variable on the iteration number and the 
number of measured counts. For that purpose we considered 
the images from the Hoffman brain and MOBY phantoms as 
the true activity distributions and we simulated the data 
generation and detection process as described in section II.D. 
The log-likelihood for each image and its corresponding 
sinogram were calculated and as a result of the MLEM-based 
image reconstruction has been considered the image for which 
equation (5) has been firstly achieved.  

(a) (b) 

(c) (d) 
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Fig. 6.  Mean min

optC  values versus number of counts for Hoffman and MOBY slices, the averaged slices and the fitting line of averaged slices. 

 
Fig. 5 shows an example of the evolution of the ( )

min
kC value 

for an experiment with the Hoffman slice nº 14 for 2.1 million 
counts, and another with the MOBY slice nº 40 for 90,000 
counts in the source. The figure shows that ( )

min
kC  increases 

monotonically with the iteration numbers.  
As a next step, we simulated the Hoffman and MOBY 

phantoms with a range from 0.2 million to 6.0 million counts. 
Each image has been reconstructed using image grid 128×128 
pixels. min

kC values were calculated for each activity level, 
averaged over all slices. For each image slice we recorded the 
new quantity min

optC  namely the minimum value min
nC of the 

PUC for the image obtained at the iteration k = n at which the 
criterion of equation (5) is achieved for the first time. Fig. 6 
shows the average min

optC values as a function of the activity 
distribution for all slices of the Hoffman and MOBY 
phantoms. This figure shows that the mean min

optC  values 
increase monotonically as a function of the activity 
distribution levels, with similar shapes for both curves.  From 
Fig. 6 it can be observed that the mean min

optC  depends on the 
number of measured counts. Furthermore there is a 
characteristic clustering of the min

optC values for a given count 
number implying a little dependence on the shape of the 
imaged object. 

Moreover, Fig. 6 shows the curve that results from the 
averaging of the two individual curves from the two 
experiments described before. Using that average curve one 
can estimate the min

optC  for a given number of counts, 
independently of the shape of the activity distribution in the 
source. Since in real PET scans the number of detected counts 
is known, the discovery of a relationship between min

optC  and 
the detected number of counts would in fact establish a 

relationship between the log-likelihood inherent in the 
acquired data and the true image from the one part and the 
iteration at which this log-likelihood value is reached 
(approximately) during the image reconstruction process. 

In order to parameterize quantitatively the dependence of 

min
optC  on the number of counts, we fitted the averaged curve 

shown in Fig. 6. A fitting method has been applied using the 
weighted average and associated errors of mean min

optC . 
Different fitting models have been tested such as linear, 
polynomial or Gaussian equations. In Table I the R2 values 
produced by various equations are shown. Each of these 
values gives information about the goodness of fit of the 
equation. An R2 of 1.0 indicates that the selected model 
perfectly fits the data. 

TABLE I 
R2 VALUES FOR DIFFERENT FITTING EQUATIONS 

Equation R2 value 
Rational 0.9986 

4th degree polynomial 0.9927 
6th degree polynomial 0.990 

Cubic polynomial 0.9796 
Gaussian 0.9161 
Quadratic 0.9302 

The most accurate, according both to visual inspection and by 
producing the best R2 value as shown in Table I, resulted the 
following rational form: 

NK A
N b

α+=
+

                                    (8) 

where N is the number of counts in the image, expressed in 
millions. The behavior of mean min

optC  can be expressed as a 
function of the number of counts N, a parameter known in all 
cases, including real PET scans.  
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 phantom image reconstructed image difference image  

Slice nº 15 
(2.62 million 

counts)  

 

Slice nº 20 
(1.40 million 

counts) 

Slice nº 45 
(2.35 million 

counts) 

Slice nº 90 
(1.66 million 

counts) 

Fig. 7.  The validation of stopping rule using the Digimouse slices nº 15, 20, 45 and 90. The images shown are the phantom slices, the reconstructed images and 
the difference between them 
 

The parameters A, a and b have been specified using the 
fitting tool of MATLAB as follows: 

A = 0.9169 ± 4.3e-03 
� = 0.2756 ± 34e-03  
b = 0.5413 ± 53e-03 

(9) 

 
 

TABLE II 
DETAILS ABOUT THE RECONSTRUCTION USING STOPPING RULE 

 N (×106) K*
  n (stopping iteration nº) 

Slice #15 2.62 0.8330 95 
Slice #20 1.40 0.7807 87 
Slice #45 2.35 0.8254 87 
Slice #90 1.66 0.7970 71 

*calculated from eq. (8) 

IV. DISCUSSION  
Based on the current results, the value of K, as it can be 

calculated from equation (8), can provide an indicator for the 

instance of the iterative process at which the reconstructed 
image reaches a level of log-likelihood that would satisfy 
equation (5), and therefore constitutes the most appropriate 
result of this iterative image reconstruction process. The 
MLEM algorithm can therefore be stopped at the iteration n 
where : 

( )
min

nC K≥  (10) 
In other words we suggest that one can consider terminating 
the MLEM iterations at the iteration n at which the minimum 
value of the pixel updating coefficients  

For the validation of the proposed methodology a different 
set of phantom images have been used. This set of real 
scanned images originated from the Digimouse phantom [12]. 
Using Digimouse slices as input, the projection data were 
generated with the Monte Carlo methods described in section 
II.D, with a determined number of counts for each image slice. 
Using equation (8) the corresponding K values were estimated. 
The MLEM algorithm was stopped when the condition 
described in equation (10) was met.  

3267



 

For the Digimouse slices nº 15, 20, 45 and 90, with nº of 
counts 2.62, 1.40, 2.35 and 1.66 million respectively, the 
MLEM reconstructed was stopped at iteration number 95, 87, 
87 and 71 respectively. These data are also summarized in 
Table II. Fig. 7 shows the phantom image on which the 
generation of the detected counts was based, and the 
corresponding reconstructed image as well as the difference 
between the original phantom image and the reconstructed one 
are shown for each one of the four Digimouse slices selected. 
The difference images between the phantom and reconstructed 
show that the images produced using the proposed stopping 
rule are very similar to original phantom images, 
demonstrating the goodness of the methodology developed 
here.  

Fig. 8 shows some line profiles taken from the phantom and 
the reconstructed images for the four exemplary Digimouse 
images shown in Fig. 8. There is a very close match between 
each pair of line profiles, something that re-enforces the 
accuracy of the methodology developed. 

V. CONCLUSIONS 
We have developed a methodology for the monitoring of 

the image quality, in terms of the noise characteristics, of the 
images reconstructed using the MLEM algorithm on synthetic 
PET data, produced by Monte Carlo techniques. This 
methodology is based on the hypothesis that a good criterion 
to stop the MLEM-based iterative process could be that the 
reconstructed image, taking into account the acquired data in 
each line of response, produces a log-likelihood value 
approximately near the log-likelihood value of the true image. 

 The methodology developed here, based on the properties 
of the pixel updating coefficients in the MLEM-based image 
reconstruction has been shown to produce images very close 
to the phantom images, in the case of simulation studies. At a 
second step, the method has been validated using an 
independent simulation study, in which the original activity 
distribution in the source has been considered unknown, when 
selecting the stopping point of the iterative process. The 
proposed criterion depends on the projection data and the PET 
camera geometry, for which the parameters A, a and b of 
equation (8) need to be calculated. Further work is needed in 
order to establish the dependence of these parameters on PET 
scanner geometry. Work is on-going in order to determine 
how the developed methodology is affected by the various 
noise effects in PET scans, such as attenuation, randoms, 
scattering, etc. This work is currently being carried out with 
realistic data produced by simulations using the GATE 
platform. 
 

 
Fig. 8.  Line profiles from the phantom (blue lines) and reconstructed (green 
lines) images taken from the Digimouse slices shown in Fig. 7. 
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