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a b s t r a c t 

Lung vessel segmentation has been widely explored by the biomedical image processing community; 

however, the differentiation of arterial from venous irrigation is still a challenge. Pulmonary artery–vein 

(AV) segmentation using computed tomography (CT) is growing in importance owing to its undeniable 

utility in multiple cardiopulmonary pathological states, especially those implying vascular remodelling, 

allowing the study of both flow systems separately. We present a new framework to approach the sep- 

aration of tree-like structures using local information and a specifically designed graph-cut methodology 

that ensures connectivity as well as the spatial and directional consistency of the derived subtrees. This 

framework has been applied to the pulmonary AV classification using a random forest (RF) pre-classifier 

to exploit the local anatomical differences of arteries and veins. The evaluation of the system was per- 

formed using 192 bronchopulmonary segment phantoms, 48 anthropomorphic pulmonary CT phantoms, 

and 26 lungs from noncontrast CT images with precise voxel-based reference standards obtained by man- 

ually labelling the vessel trees. The experiments reveal a relevant improvement in the accuracy ( ∼ 20%) 

of the vessel particle classification with the proposed framework with respect to using only the pre- 

classification based on local information applied to the whole area of the lung under study. The results 

demonstrated the accurate differentiation between arteries and veins in both clinical and synthetic cases, 

specifically when the image quality can guarantee a good airway segmentation, which opens a huge range 

of possibilities in the clinical study of cardiopulmonary diseases. 

© 2018 Published by Elsevier B.V. 
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1. Introduction 

Computed tomography (CT) technology has been improving

during the last decades and currently it is possible to obtain near-

isotropic, sub-millimetre resolution acquisition of the complete

chest in a single breath-hold, avoiding partial volume effects and

breathing artefacts. For that reason CT has become the reference

modality in pulmonary imaging and the radiological study of com-

plex biological structures such as pulmonary vessel trees ( Hsieh,

2009; Sluimer et al., 2006 ). 

Although general vessel segmentation in lungs has been widely

explored ( Van Rikxoort and Van Ginneken, 2013 ), the differentia-
∗ Corresponding authors. 
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ion of arterial from venous irrigations is still an open problem.

he main drawbacks found in AV segmentation in CT include: ex-

reme complexity and density of vessel tree structure, arteries and

eins being located in close proximity (often intertwined), similar

ntensity values that make both irrigations indistinguishable (espe-

ially in noncontrast CT), and difficulties in differentiation between

ranching points (bifurcations) and vessel crossings. 

AV segmentation would be useful in different medical scenarios

nd multiple diseases or pathological states. It would allow the

tudy of arterial and venous irrigations separately, displaying

he complex anatomical relationship between pulmonary lesions

nd vasculature, which is critical in oncology studies and man-

gement of cancer treatments, for example. Moreover, it would

rovide additional valuable information for surgeons to evaluate

he arterial and venous conduits for vascular surgery. Features

uch as density, structure, and size of vessels could be studied

n diseases that imply vasculature remodelling. This is the case

or chronic obstructive pulmonary disease (COPD) and especially

https://doi.org/10.1016/j.media.2018.11.011
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Fig. 1. Example of noncontrast pulmonary CT image, where arteries and veins are 

closely situated at different generation levels and share the same intensity values. 

Airways (orange circles) become indistinguishable at high generations because of 

partial volume effects that avoid the visualization of airway walls. For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article. 
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ulmonary arterial hypertension (PAH), where processes such as

rowth, cellular apoptosis, inflammation, and fibrosis contribute to

hanges in arterial structure ( Crosswhite and Sun, 2014 ). The study

f these features would allow physicians to diagnose and follow

he pathological state of patients, and aid in the decision making

or treatment. Additionally, AV information would ease and speed

p the design and test of drugs in clinical trials (monitoring the

ffects and efficiency) for this kind of disease. A segmentation of

he two vessel trees could also be of interest in computer-aided

etection (CAD) systems. In the particular case of CAD for detec-

ion of pulmonary embolism, the identification and discarding of

he whole venous tree would dramatically decrease the number of

rroneous detections outside the arterial tree. 

Nevertheless, AV segmentation has been clinically infeasible de-

pite its objective usefulness. The huge complexity of pulmonary

ascular trees makes a manual segmentation of both structures

ithin a reasonable time frame unrealistic. Thus, the interest in the

esign of automatic or semiautomatic tools is undeniable. How-

ver, only a few image processing methods have been published

or AV segmentation of CT images and most of them require user

nteraction for initialization or guiding, and in general they do not

emonstrate their usefulness with a proper validation scheme. 

For these reasons, the number of studies using pulmonary AV

nformation is very limited, and therefore much knowledge about

he relationship between cardiopulmonary disease and vessel ge-

metry, topology, branching patterns, and other aspects remains

idden. The potential opportunity to fill this gap by creating new

iomarkers or extracting measurements from analysis or statistics

s promising, and it would be accessible through an automatic AV

egmentation tool. 

.1. Background and state of the art on AV segmentation 

Despite the difficulty in classifying pulmonary vessels in CT im-

ges, several contributions to this problem have been proposed

uring recent decades, which have relied on two main sources of

nformation: prior knowledge and vessel connectivity. 

Biological knowledge and CT image-based information can be

xploited to ease this classification task ( Fig. 1 ). Especially relevant

s the existence of a vascular pattern inside the lung: the bron-

hopulmonary segment, revealing a preferential relationship be-

ween arteries, veins, and airways inside this functional region. The

ain-stem arteries, veins, and airways lie together in loose connec-

ive tissue sheaths at the hilum. Once inside the lung, arteries run

long with the ventilating bronchi, developing close to each other

nd in parallel, whereas veins follow Miller’s dictum, generally be-

ng as far away from the airways as possible ( Miller, 1947 ). Arteries

nd veins are closely situated, often intertwined down to the capil-

ary networks, where both vascular trees are connected. CT images

isplay pulmonary vessels and airways with specific characteristics

ypical of the modality, where the intensity values in arteries and

eins (and also airway walls) are very similar when no contrast

edia is used, yielding unclear boundaries between them. More-

ver, high but still limited resolution in CT imaging produces par-

ial volume effects that avoid the visualization of high-generation

essels, capillaries and, therefore, the connection between arteries

nd veins. This fact, together with the intensity values of airway

umen and the small thickness of airway walls cause airways to

ecome indistinguishable from lung parenchyma earlier than ves-

els. 

The spatial relationship between the bronchus and lung vas-

ulature has been exploited by several researchers by using prior

nowledge asserting that airways run in parallel with arteries,

aking necessary a previous airway tree segmentation. Tozaki

t al. (1998, 2001) used intensity filters, information about dis-

ances between vessel segments and bronchus, as well as pixel-
ased connections. Only a gross qualitative analysis of results was

entioned, based on the visual assessment of relevant large ves-

els from the AV outputs in eight cancer-related CT cases, per-

ormed by a medical specialist. Buelow et al. (2005) proposed

 method of front-propagation from seed points at the voxel,

egment, and tree levels, based on distance to bronchus (de-

ecting homologous bronchi candidates) and orientation (using

he eigenvalues of a Frangi-like tensor structure ( Frangi et al.,

998 )). Only large vessels (excluding main-stem) were analysed

nd no quantitative validation was performed, but it showed sys-

ematic misclassifications at distal branches of the vascular tree.

onekura et al. (2007) did not present an AV segmentation algo-

ithm, but studied anatomical features of vessels in crossings and

ifurcation points, as well as the relation between bronchial and

essel pulmonary trees from manual AV segmentations, with the

bjective to discover features for the future development of a clas-

ification algorithm. 

Other approaches do not use prior knowledge of the bronchial

ree and basically trust the connectivity information to lead the

eparation process. The independent use of connectivity informa-

ion in a dedicated approach has demonstrated quite limited per-

ormance owing to the high proximity of arteries and veins in mul-

iple locations of the development of pulmonary tree irrigations,

ommonly displaying touching areas and intertwined events. Some

uthors tried to address these problems by applying some modifi-

ations or improvements over the main connectivity strategy. How-

ver, all connectivity-based methods require a starting point: some

abelled seeds to begin and drive the connectivity classification.

hat is the reason why approaches mainly based on connectivity

end to be semiautomatic methods, needing user intervention to

et the seed points for arteries and veins. 

Wala et al. (2011) presented a tracking-based automated

ethod for low-dose CT scans to separate arteries from other

urrounding isointensity structures. The algorithm follows arter-

es starting from automatically detected seed points located in

he basal pulmonary areas and tracking the vessel, detecting

ifurcations. The validation of results computes an evaluation



146 D. Jimenez-Carretero, D. Bermejo-Peláez and P. Nardelli et al. / Medical Image Analysis 52 (2019) 144–159 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

a  

l  

a

1

 

a  

o  

s  

a  

f  

v  

d  

e  

i  

b  

i  

n  

d

 

i  

m  

t  

r  

w  

d  

W  

c  

n

 

t  

a  

o  

e  

i  

t  

a

2

 

k  

r  

t  

c  

t  

t  

fi

E  

w  

a  

(  

t  

s

 

(  

v  

o  

n  

s  
metric proposed by the authors: sparse surface. A quantitative

evaluation of results reported 64% sensitivity and 90% specificity

values when using sparse markings on 10 low-dose CT cases

(210 arteries and 205 veins in total) as a reference standard.

Park et al. (2006) applied a similar approach based on sphere-

inflation tracking from terminal points to the heart in six CT an-

giographies, trying to differentiate between bifurcations and cross-

ings and automatically detecting the pulmonary trunk. However,

they only provide gross quantitative evaluation measures: aver-

age number of errors in branches (five incorrectly classified and

six missing per case), not detailing the validation process and the

branches used to that end. More recent semiautomatic works com-

bine fuzzy connectedness using a fuzzy distance transform to-

gether with topomorphological features such as multiscale open-

ing and morphological reconstruction to perform the AV segmenta-

tion from seed points placed interactively by the user ( Saha et al.,

2010; Gao et al., 2010; 2012 ), embedded later into a 2D–3D in-

terconnected graphical user interface. The validation of these ap-

proaches included three real human noncontrast CT images, one

phantom of CT contrast-separated pulmonary AV casting of a pigs

lung, two in vivo contrast-enhanced CT images of a single pig, and

mathematically generated tubular phantoms. The results reported

that 91–95% accuracy can be achieved with this method iteratively

placing around 35 seed points; this can be improved to 99% with

more than 60 seed points. They also provide 92–98% of interuser

agreement using the semiautomatic tool proposed by the authors,

and only 74–87% without it, when a more manual segmentation

process is followed. 

A different method, trusting only in connectivity, used high-

order potentials to label vessel voxels from the automatic detec-

tion of the pulmonary artery trunk and left atrium ( Kitamura et al.,

2013; 2016 ), comparing the outputs with manual annotations only

in most of the important vessels (with intensities higher than

−200 Hounsfield Units) measuring, for each vessel, the percentage

of centerline voxels correctly classified, achieving an accuracy rat-

ing of 90.7%. Another interesting approach was recently published,

proposing the construction of a minimum-spanning tree using lo-

cal information from vessels that can be split in a set of subtrees

sharing the same AV classification ( Park et al., 2013 ). Although this

method does not address the AV segmentation itself, authors eval-

uated the potential utility of the tool in a semiautomatic scheme

where the user could label each subtree manually, by checking

how accurately each subtree is composed by only arteries or only

veins in 10 different pulmonary segments. A visual pseudo-score

was reported in 10 noncontrast CT images (9.18 out of 10), and

volumetric-based accuracy scores were computed in two of the

cases by manually extracting the volume of vessel segments mis-

classified, obtaining accuracies between 75 and 100% in each pul-

monary segment. 

The most recent contributions regarding AV segmentation

( Payer et al., 2015; 2016; Charbonnier et al., 2016 ) explored the

same idea of dividing the whole vessel tree into multiple subtrees,

and classifying them using the interesting fact that arteries and

veins tend to be uniformly distributed within the lung, approach-

ing a common alveolar sac. Payer et al. (2015, 2016) used inte-

ger programming to extract subtrees, and also to label them from

an arterialness score based on closeness to airways and distribu-

tion within the lung. The evaluation using 25 contrast-enhanced

and only one noncontrast CT image, where voxel-based labels were

manually created (calibre higher than 2 mm and −400 HU), re-

ported 91.1% of voxel-based, and a fairer not calibre-dependent

90.9% of centerline-based labelling agreement (using only manual

and automatic common voxels). In Charbonnier et al. (2016) , an it-

erative pruning and detection of AV attachments based on branch-

ing angles perform the subtrees extraction, which are later classi-

fied based on their distribution and the difference between final
 w  
rterial and venous volumes. Evaluation was performed in 2365

nnotated vessels from 55 noncontrast CT images, and full vascu-

ar manual separations (annotated from the extracted subtrees) on

 subset of 10 scans, achieving a mean accuracy of 89%. 

.2. Our contribution 

The main objective of this work is the design, development,

nd validation of a new framework to approach the separation

f tree-like structures using local information and a specially de-

igned graph-cut methodology that ensures connectivity as well

s spatial and directional consistency of the derived subtrees. This

ramework has been applied to the AV classification of pulmonary

essels images from CT, addressing the clinical need of retrieving

etailed vascular information in the study of cardiopulmonary dis-

ases. This automated approach should allow to pull out critical

nformation from the massive amount of data produced by new

iomedical imaging technologies, that is unfeasible to extract dur-

ng the daily clinical routine. The output could become a potential

ew source of knowledge for prognostic, diagnostic and treatment

ecisions in cardiopulmonary pathologies. 

We present a fully automatic framework for AV classification

n pulmonary CT images. The approach starts from an initial pul-

onary vessel extraction using scale-space particles, and performs

heir posterior AV classification based on Graph-Cuts (GC) incorpo-

ating: i) AV similarity scores obtained exploiting local information

ith a random forest (RF) pre-classification step and ii) spatial and

irectional consistency as well as particle-connectivity information.

e evaluate the system by assessing the accuracy of vessel parti-

les classification in a set of clinical and synthetically generated

oncontrast CT cases. 

In Section 2 , we describe the methodology proposed to address

he AV segmentation/separation problem in CT images, including

 first segmentation of structures and the posterior classification

f pulmonary vessels into arteries or veins. Section 3 presents the

xperimental setup, comprising the description of the datasets, val-

dation strategy, parameter optimization of the method, and the

hree experiments carried out. Finally, the results and conclusions

re detailed in Sections 4 and 5 , respectively. 

. Methods 

In this work, we present a method combining both local prior

nowledge and connectivity information along with spatial, and di-

ectional consistency to perform the classification of detected par-

icles located in tree-like structures. Concretely we approach the

lassification of the pulmonary vascular arterial and venous sub-

rees. This framework can be formulated as an energy minimiza-

ion problem with the form of a binary first-order Markov random

eld (MRF): 

(p) = 

∑ 

i 

U i (p i ) + α
∑ 

(i, j) 

P i, j (p i , p j ) (1)

here p i are vessel particles (a centreline discretization of arterial

nd venous trees) that need to be classified as arteries or veins

 p i ∈ {0, 1}); U i in the unary term representing the compatibility of

he data with a specific label; and P i, j is the pairwise term repre-

enting the compatibility of neighbouring labels. 

This formulation can also be expressed in terms of GC

 Boykov et al., 2001 ): MRF variables can be described as a set of

ertices V in an undirected graph G = 〈V, E〉 , where the weights

f the set of edges G are derived from a pairwise term, also

amed as boundary term. Two special nodes (sink t , and source

 ) are connected to V creating edges ( E t = { (s, v i ) ∪ (v i , t) | v i ∈ V} )
ith weights derived from a unary term, named as regional term.



D. Jimenez-Carretero, D. Bermejo-Peláez and P. Nardelli et al. / Medical Image Analysis 52 (2019) 144–159 147 

Fig. 2. Graphical scheme of the proposed framework for the automatic AV segmentation algorithm. AV classification is performed over a set of scale-space vessel particles 

coming from the initial segmentation. Connectivity and structural information is used to compute neighbour coherence, forming the boundary term ( n-links , purple lines); 

and RF pre-classification based on local features extracted from vascular and bronchial information is used to compute arterial/venous similarity scores, forming the regional 

term ( t-links , red/blue links) of the graph-cut. The final AV classification is obtained by computing the minimum-cut. Circles depict vessel particles, thickness of connections 

represent the weight of the links, and circumference colors show the preferential class for each particle. For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article. 
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here is a one-to-one correspondence between binary classifica-

ions, configurations of the MRF, and cuts (partitions of the graph

nto two connected components, S and T , containing s and t

odes, respectively). Solving the MRF problem is equivalent to find-

ng the min-cut , C min , with the minimum cost E(S, T ) (sum of all

eights from edges that are removed to obtain a partition). Thus,

he solution of Eq. (1) can be reformulated to minimize the combi-

ation of two energies correspondent to boundary and the regional

erms of the graph G, that can be solved exactly using linear pro-

ramming ( Boykov and Veksler, 2006 ): 

 min = argmin 

S, T 

(
E(S, T ) 

)
= argmin 

S, T 

(
E bound (S, T ) + α · E reg (S, T ) 

)
(2) 

here the α parameter balances the weight of the regional and

oundary terms: 

 bound (S, T ) = 

∑ 

p 1 ∈S,p 2 ∈T 
(p 1 ,p 2 ) ∈E 

w bound (p 1 , p 2 ) 

E reg (S, T ) = 

( ∑ 

p 1 ∈S 
w reg (p 1 , t) + 

∑ 

p 2 ∈T 
w reg (p 2 , s ) 

)
(3) 

The use of GC in the presented AV problem is a quite direct

nd reasonable strategy: a) arterial and venous irrigations follow

 natural tree structure, which is a specific type of graph; b) the

article-based representation of vessel segmentations provide a di-

ect correspondence between particles and nodes; c) the spatial re-

ationship between particles can be represented in the boundary

erm —n-links , neighborhood links— ; d) prior information about

article classes can be incorporated in the regional term —t-links ,

erminal links— ( s and t representing the ideal artery and the ideal

ein); e) the minimal-cut provides a direct binary classification of

articles into arteries and veins. In our system, the boundary term

nvolves connectivity and structural information of particles, and
egional term comes from an RF-based pre-classification step based

n local features, providing an AV similarity score. 

In the following subsections, we define the discretization of

essels into a set of particles to be classified, and the construction

f the graph G, edges and their corresponding weights represent-

ng the boundary and the regional terms, to form a suitable energy

unction for pulmonary AV classification ( Fig. 2 ). 

.1. Segmentation of pulmonary structures 

Prior to the differentiation between arteries and veins, a seg-

entation stage is necessary to separate structures of interest (ves-

els) from the background, simplifying and constraining the task.

oreover, lung and airway segmentations are also important in

rder to include constraints and extract relevant information that

ill be used into the system. 

Lung segmentations obtained with Ross et al. (2009) comprise

ung parenchyma including small vessels and airways, but ex-

luding mediastinum and principal vessels and airways passing

hrough it. 

The method used for segmenting airways is based on

 constrained energy minimization problem using scale-space

articles to densely sample intraparenchymal airway locations

 Estépar et al., 2012a ). A posterior clustering step using connected

omponents is applied, filtering results in a set of candidate air-

ay points situated in both physical space and scale. The output

s a discretization of the airways in centerline points with a radius

ssociated with the size of the airway structure in these locations. 

A similar strategy of scale-space particle filtering based on a

essian matrix response was used to extract the pulmonary vas-

ulature ( Estépar et al., 2012b ). 

The discretization of vessels (and airways) into a set of parti-

les allows not only the simplification of structures, but a better

epresentation for classification purposes, conferring the same
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Fig. 3. a) Representation of two bronchopulmonary segments displaying the spatial relationship between arteries a i (red), veins v i (blue) and airways b i (green), and their 

preferential directions u ai , u vi , and u bi , respectively. b) Distributions for arteries and veins are different for different vessel features, such as orientation with respect to airways, 

distance to closest airway locations, and distance between these closest bronchial locations. Given a particle in a vessel the N neigh closest airway points are computed. In this 

scheme, blue dotted lines identify those points ( N neigh = 4) for a vein particle, and the orange dotted lines the ones for an artery particle. As it can be observed, the mean 

distance to N neigh points and the mean distance among them are smaller for artery particles than for vein particles. For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article. 
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importance to every point in the vessel tree independently of the

calibre size, but dense enough to properly evaluate the algorithm

in the whole structure. 

2.2. Pulmonary AV classification with GC 

Once the pulmonary vessels are segmented and represented

with a set of scale-space particle points, we can proceed to their

classification into arteries and veins using the proposed GC ap-

proach. Briefly the steps in the proposed framework are the fol-

lowing: 

• Given the airway and vessel tree particle segmentations, the

area enclosing the bronchial tree is computed as the convex

hull of the airways subtree particles. 
• Within this convex hull the arteries run in parallel and close

to the airways. A pre-classification step based on these local

properties assigns to the vessel particles within this mask more

probability to belong to either arteries or veins. The particles

outside the convex hull will have equal prior probability to be-

long to arteries or veins subtrees (0.5 for to each of them). This

process allows the computation of the regional term of the GC

( Section 2.2.1 ). 
• Once the particles within the convex-hull are pre-classified, the

graph-cut is applied to all the vessel particles of the lung en-
suring spatial and directional consistency as well as connectiv-

ity forming tree-like structures (Boundary Term Section 2.2.2 ).

Therefore, the GC expands the pre-classification from the area

where airways are detected to all the vessel particles in the

lung or lobe (Section 2.2.5). 
• As the last step, particles that remain isolated are connected in

a refinement step to ensure that the vessel trees are complete

and no particles are disconnected ( Section 2.2.4 ). 

In the following subsections, we detail the construction of the

oundary and regional terms ( Eq. (3) ), establishing criteria to cre-

te edges between nodes of the graph G and their weights. 

In Section 2.2.1 , we define the regional term from AV similarity

cores obtained with an RF pre-classification. The individual classi-

cation of vessel particles may result in spatial labelling inconsis-

encies, connectivity/structural information is then incorporated in

he boundary term ( Section 2.2.2 ) to define the final GC architec-

ure for AV segmentation. 

.2.1. Regional term: RF pre-classification based on local features 

As explained before, the regional term of the GC, represented

y the edges E t , must include prior likelihood information about

he classification model. This role can be played by AV similarity

cores derived from imaging features that take advantage of the
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Fig. 4. a) The construction of the regional term is constrained to the convex hull, plus a security margin (purple volume), of the airway segmentation (green structure). b) 

Example with a schematic GC representation of the regional term where vessel particles (circles) inside the convex hull of the bronchial tree (purple area) are connected 

with the two special nodes representing ideal artery and vein with weights determined by AV similarity scores; and particles outside the convex hull do not incorporate any 

preferential AV classification in their t-links ( w reg (p i , t) = w reg (p i , s ) = 0 . 5 - solid thick lines). Thickness of connections represent the weight of the links and circumference 

colors show the preferential class for each particle. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article. 
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rior knowledge ( Section 1.1 ). An RF pre-classification using these

ocal features of particles is used to obtain the scores and, there-

ore, the weights of t-links in the regional term of the graph ( w reg ).

eature extraction . In our approach, the main source of informa-

ion for AV separation is the relation between vessel irrigations

nd the bronchial system ( Fig. 3 ). Moreover, some structural and

mage-based vessel features provide additional important knowl-

dge and the combination of all of them would allow the study

f vessel-airway relation differently depending on the variation of

he other properties. Because the classification is performed over

he individual vessel particles obtained in the segmentation stage,

he selected measurements are computed for each one of them. 

• Scale. The local radius of the vessel provides information about

the branch generation in the tree structure. 
• Hessian matrix eigenvalues. The local 3D geometry of the

structure eases the distinction between bifurcations, segmental

points, and vessel crossings. 
• Local intensity histogram. The local distribution of intensities

improves the differentiation between arteries and veins, par-

ticularly when contrast is used (in Computed Tomography Pul-

monary Angiography- CTPA databases). The normalized inten-

sity histogram of N 

I 
bins 

bins is computed in the 3D spherical

area defined by the local radius and centred on the particle

location. The normalized histogram is represented by 10 bins

leading to 10 features to describe the local distribution of the

intensity around the particle. 
• Distance to closest airway points. Mean and standard deviation

of Euclidean distance between the vessel particle and its N neigh 

closest airway particles provide the most critical information

for the classification task. 
• The Distance between closest airway points. Mean and standard

deviation of cross-distances between the selected N neigh airway
points associated with each vessel particle can also be valuable,

providing information about the existence of single/multiple

proximal bronchial branches. 
• Orientation similarity between vessels and closest airway

points. The study of the Hessian matrix also allows the com-

putation of a local preferential direction in each particle loca-

tion (at a specific scale) that is useful to assess the parallelism

between arteries/veins and their closest airways. By using the

preferential local direction of vessel, v ves , and each neighbour

airway particle, v air , we can compute an orientation similarity

score ( OSS ) based on the cosine-like distance, with values be-

tween 0 (perpendicular vectors) and 1 (parallel vectors), that

can be joined in an orientation similarity histogram of N 

O 
bins 

bins. 

OSS(v v es , v air ) = 

| v v es · v air | 
‖ v v es ‖ 2 ‖ v air ‖ 2 

(4) 

redictive model . An RF approach ( Breiman, 2001 ) was selected

o perform the pre-classification of particles owing to their advan-

ages compared with other machine learning methods: robustness,

xcellent generalization capability, high speed, low memory use,

acility to understand and interpret the results and the manage-

ent of probabilistic estimates and, therefore, probabilistic simi-

arity scores for the different classes. Because the principal disad-

antage is the high dependence of the results depending on the

arameter selection, we decided to constrain the number of fea-

ures by using only those with high probability to be informative

or the AV classification (the ones presented above, coming from

rior biological and image-based knowledge). 

T independent estimators based on decision trees using

 feat << N feat random features (being N feat the total number of fea-

ures) were used to constitute the RF predictive model. 
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Fig. 5. a) Anisotropic connection strategy using a cylindrical confinement (green) along the preferential local direction of vessels impede inter-irrigation connections (dashed 

lines) between vessel particles (circles) that could be connected when using an isotropic strategy (blue area). b) Connectivity vector between particles can improve the 

definition of edge weights based on parallelism between preferential directions. Intertwined structures could report unreal parallelism between preferential directions ( v 1 
and v 2 ) of particles belonging to different irrigations ( p 1 and p 2 ) that can be minimized using the direction of connectivity vector ( v 1 −2 ). The instability in the definition of 

preferential directions ( v 3 ) in bifurcations ( p 3 ) may mask real coorientations ( p 3 and p 4 ) that can be enhanced using the connectivity vector ( v 3 −4 with v 4 ). For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article. 
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AV similarity scores . Once the model is created from the features

extracted in vessel particles from the training set, using the label

artery as positive class, it can be used to classify particles belong-

ing to new cases. 

The final classification scores obtained for each new particle are

probabilistic estimations, and therefore, they can be interpreted as

AV similarity measures, where values represent the probability of a

particle belonging to the arterial ( P art ) or venous ( P v ein ) irrigations,

with P art + P v ein = 1 . 

The probabilistic nature of the AV similarity measures allows a

direct conversion into a binary classification by simple threshold-

ing. A visual examination clearly reveals the existence of spatial

inconsistencies (Supplementary Figure S1), which support the ad-

dition of connectivity information and the use of the proposed GC

strategy, instead of a simple machine learning classification using

local features. 

t-links . The weights of the special edges ( t-links ), connecting ves-

sel particles and the virtual nodes, are directly fixed to the proba-

bilistic estimations: 

w reg (p i , s ) = P art (p i ) 

w reg (p i , t) = P v ein (p i ) = 1 − P art (p i ) (5)

where p i are vessel particles, and s and t are the virtual nodes rep-

resenting the ideal artery and vein. 

However, because local features used in the machine learning

pre-classification step essentially exploit the topological and struc-

tural relation of vessels with respect to airways, the probabilistic

similarity scores obtained in peripheral areas of the lung are less

reliable. Segmentations of the bronchial tree cannot reach these ar-

eas, and thus the absence of airway information implies huge lim-

itations on the classification power of small vessel particles and

those located far from airways. Similarly, particles located in main-

stem vessels offer low confidence levels of AV similarity scores ow-

ing to their abnormal spatial location at the hilum, where arteries,

veins, and airways lie together. 
For these reasons, as previously introduced, we decided to

imit the use of pre-classification scores to areas where reliable

ronchial information can be found: the convex hull (plus a

afety margin, m CHull ) of the available bronchial tree segmentation

 Fig. 4 ) and vessel particles not belonging to very small vessels

scale lower than r min 
v es ). The exclusion of hilum region can be

erformed by imposing a limitation on the vessel calibre r max 
v es .

nly vessel particles with sizes between these values and located

nside the convex hull are considered to construct their t − links

rom the probability scores. Note that the values of r min 
v es and

 

max 
v es need to be carefully selected (or omitted) owing to the high

nter-subject variability and the probable dependence of vessel

izes on pathological states. 

Therefore, the final weights of t-links connecting vessel parti-

les with the ideal artery and vein, are fixed to the probabilistic

stimations only if the particles comply with the previous restric-

ions; if not, we assume that there is not a preferential classifica-

ion as artery or vein for the particle, and the connectivity infor-

ation will drive its final classification: 

 reg (p i , s ) = 

{
P art (p i ) , if p i ∈ CHul l (V air ) & r min 

v es ≤ σi < r max 
v es 

0 . 5 , otherwise 

w reg (p i , t) = (1 − w reg (p i , s ) ) (6)

here σ i denotes the scale of vessel particle p i , and CHul l (V air )

epresents the dilated convex hull of all airway particle points

 air = { p air 
i 

∀ i } . 

.2.2. Boundary term: connectivity and structural information 

As described before, the boundary term of the GC, represented

y the edges E, must include information about the coherence be-

ween neighbouring nodes. In our system, this corresponds to the

onnectivity information between vessel particles. The rules to es-

ablish connections between nodes and the energy function to set

p their weights need to be defined in order to conform the final

-links of the graph. Both steps are important to minimize possible
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Fig. 6. a) Example of a forest with three connected components showing two isolated subtrees located outside the convex hull of airways (purple area). Consequently, the 

three cuts displayed need the same energy to be performed, rendering their selection as min-cut equally probable. b) Refinement of the graph results on the addition of 

new edges 1 and 2 (purple-green dashed lines) and the uniqueness of min-cut. For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article. 

Fig. 7. Examples of reference standards and CT images of bronchopulmonary phantom (a), anthropomorphic pulmonary CT phantom (b), and clinical noncontrast CT case 

(c). Arteries, veins, and airways are labelled in red, blue, and green, respectively. For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article. 
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w σ (p 1 , p 2 ) = | σ1 − σ2 | (9) 
iss-connections and to enhance the real topology of the vessel

rees, taking into account that events such as bifurcations or cross-

ngs are not explicitly defined in our system based on particles. 

onnectivity rules . Unawareness about real structural informa-

ion of particles, together with the previously reported problems

elated with the topology of arterial and venous trees (proximity

f irrigations, intertwined structures difficult to differentiate from

ifurcation points, etc.), hamper a proper definition of the ideal

onnectivity in our system (i.e., two-neighbour links except for

erminal and bifurcation points, with one and three connections,

espectively). For that reason, we follow a conservative structural

onnectivity strategy by initially allowing the generation of links

etween each particle and all the particles that are within a

ertain distance r neigh which is big enough to assure abundance

f links. However, excessive n-links could lead to intra-irrigation

artery-artery / vein-vein) and inter-irrigation (artery-vein) particle

onnections when irrigations are close. Two strategies are used to

vercome this difficulty: 

• Anisotropic connections: In order to ensure that the neighbour-

ing particles are located along the local preferential direction v̄
of the specific vessel particle p , we constrain the search inside

a cylinder along this preferential direction ( Fig. 5 a). 
• Stabilizing the number of links: fix a maximum number of con-

nections between particles. We create N con maximum n-links

between a vessel particle and its N con nearest neighbours in-

side the anisotropic area. In that way, each node in the graph
will have approximately N con edges, avoiding over-connections

of particles in vessel-intertwined areas. The cut of an edge will

depend more on the strength (weight) of the edges than on the

number of them. 

In summary, the final set of n-links is defined as: 

 = { (p 1 , p 2 ) | p 1 , p 2 ∈ V n −t & p 2 ∈ kN N (p 1 , ̄v 1 ) } (7)

here k = N con and: 

N N (p, ̄v ) = { p ′ i | p ′ i , p ′ j ∈ B r neigh 
(p) 

⋂ 

C 

r neigh 
2 

(p, ̄v ) 

& dist(p, p ′ i ) < dist(p, p ′ j ) , ∀ i = 1 .k, ∀ j > i } (8) 

eing B r and C r (p, ̄v ) the spherical area of radius r around loca-

ion p , and the cylindrical area of radius r centred at p and with

rientation v̄ , respectively. 

-links . The strength of the connections between particles, de-

icted in the graph by the weight of the n-links , will represent

 probability-like estimation of being neighbours in the vascular

ree for couples of vessel particles. These weights are defined us-

ng three critical features: 

• Scale consistency: difference between local scales of particles.

The more similar the scale of close particles, the higher the

probability of being neighbours. 
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• Particle proximity: Euclidean distance between them. The closer

two particles are located, the higher the probability of being

neighbours in the arterial or venous trees. 

w dist (p 1 , p 2 ) = ‖ p 1 − p 2 ‖ (10)

• Direction consistency: the angle between preferential direc-

tions. The parallelism between vectors can be represented nu-

merically by a cosine-based distance varying from 0 (perpen-

dicular vectors) to 1 (parallel vectors): 

ˆ w ‖ ( ̄u 1 , ū 2 ) = cos (min (φ( ̄u 1 , ū 2 ) , π − φ( ̄u 1 , ū 2 )) 

= | cos (φ( ̄u 1 , ū 2 )) | = 

| ̄u 1 · ū 2 | 
‖ ̄u 1 ‖‖ ̄u 2 ‖ 

(11)

where φ( ̄u 1 , ū 2 ) represents the angle between both vectors in

the range [0, π ]. 

The direction of tubular structures changes smoothly and con-

tinuously along the vessels, so neighbouring particles belong-

ing to the same tree branch should share a similar preferential

direction. However, we also need to take care of some prob-

lems regarding bifurcation points, where the definition of pref-

erential direction is unstable. In these areas, the criterion based

only in parallelism between preferential directions could lead

to small weights in bifurcation edges. The use of a connectiv-

ity vector between particles (representing the direction of the

potential vessel passing through both particle locations) over-

comes the problem ( Fig. 5 b): 

v̄ con (p 1 , p 2 ) = p 1 − p 2 (12)

Therefore, a proper and robust way to define the direction con-
sistency is using the parallelism between the connectivity vec-
tor and the individual preferential local directions at the corre-
sponding particles: 

w ‖ (p 1 , p 2 ) = g 

(
w ‖ ( ̄v 1 , ̄v 2 ) , ˆ w ‖ ( ̄v 1 , ̄v con (p 1 , p 2 ) , ˆ w ‖ ( ̄v 2 , ̄v con (p 1 , p 2 )) 

)
(13)

where v̄ i represents the local preferential direction of particle

p i , and g any function combining all or some of these variables.

By using the three sources of information, we can construct dif-

ferent weighting functions w bound to define the strength of the n-

links : 

w bound (p 1 , p 2 ) = f 

(
w σ (p 1 , p 2 ) , w dist (p 1 , p 2 ) , w ‖ (p 1 , p 2 ) 

)
(14)

where f is any function combining all or some of these variables.

Section 3.3 describes how 9 different functions were tested and

which function was finally used. 

2.2.3. Refining the GC 

The restrictions introduced in the construction of n-links may

impede the full connection of all vessel particles into a graph with

a single connected component, resulting in a forest F , with some

isolated subtrees. These isolated subtrees of particles occur mainly

in peripheral areas where vessel segmentation may present dis-

continuities specifically due to the small scale of the vessels. If a

subtree is located outside the convex hull of airways (where no

suggestion of AV labels is included using t-links ) several cuts of

the graph with minimum energy exist, being equally probable the

classification of every particle in these isolated subgraphs as either

arterial or venous ones ( Fig. 6 a). 

The assurance of only one connected graph G would avoid these

uncertainty problems related with isolated subtrees, providing a

unique classification coming from a global minimum for all par-

ticles in the vascular tree. Converting the forest F into a one-

connected-component graph G also allows for the application of

the proposed AV method with vessel segmentations presenting
arge discontinuities between segments in the tree, a common

roblem with many methods in bifurcations and high-generation

essels. 

The employed strategy connects subtrees iteratively depending

n the minimum distances between them, repeating the following

teps until the graph is composed of only one connected compo-

ent ( Fig. 6 b): a) select the biggest connected component as the

rincipal one; b) compute the Euclidean distances from particles of

econdary subtrees to particles belonging to the principal one; c)

elect the minimum distance and create the edge connecting both

articles with the cost determined by the specific weighting func-

ion w bound ( p 1 , p 2 ) ( Eq. (14) ). 

.2.4. GC classification: min-cut/max-flow algorithm 

Once the final graph is completed, the minimum-cut, C min , is

omputed using the min-cut/max-flow algorithm ( Boykov et al.,

001 ) versioned by Delong et al. (2012) to solve Eq. (2) , provid-

ng a partition of the graph G into two connected components G 1 
nd G 2 and, therefore, the final binary AV classification. 

. Experimental methods 

In the following subsections, we detail the datasets used in our

xperiments ( Section 3.1 ), present the strategy used for validation

 Section 3.2 ), and describe the different experiments performed to

roperly adjust the parameters ( Section 3.3 ) and to evaluate the AV

egmentation results ( Section 3.4 ). 

.1. Data description 

The extraordinary complexity and density of pulmonary vessels

nd airways render the performance of manual segmentations dif-

cult, limiting the access to accurate AV reference standards, which

re critical for training and validation. The use of synthetic CT im-

ges of the lung could overcome these difficulties by providing a

atabase of pseudorealistic cases in a constrained and controlled

cenario where each part of the lung is differentiated unequivo-

ally. Jimenez-Carretero et al. (2016) presented a method to gener-

te computational pulmonary CT phantoms automatically, by syn-

hesizing lung structures (arteries, veins, airways) and parenchyma

n a realistic way. In that work, two versions of each phantom were

ynthesized, with different curvature conditions for vessels and air-

ays obtained by the exclusion/inclusion of a deformation stage.

he database of the final pulmonary CT phantoms is available on-

ine via Zenodo ( Jimenez-Carretero et al., 2015a; 2015b ). 

In our experiments, a set of clinical and synthetic cases were

sed to evaluate the performance of the proposed AV segmenta-

ion method in a relatively large number of cases ( Fig. 7 ). Real

ases correspond to noncontrast CT images, and the synthetic ones

nclude: a) simpler bronchopulmonary segment phantoms and b)

ealistic and complete anthropomorphic pulmonary CT phantoms.

or each individual lung, a voxel-based AV reference standard was

lready available (phantoms) or manually created (clinical cases). 

.1.1. Bronchopulmonary phantoms 

A bronchopulmonary segment represents a repetitive anatomi-

al and functional structure that exhibits a vascular pattern inside

he lung, where arteries run along with the ventilating bronchi

eveloping close and in parallel whereas veins lie in the interval

etween segments, as far away from the airways as possible. For

hat reason, simulated CT of bronchopulmonary segment phantoms

resented in Jimenez-Carretero et al. (2016) were suitable for ini-

ial tests in the development of the algorithm, including the pos-

ibility of studying the dependency of results regarding different

urvature conditions for vessels and different densities of bronchial

nformation. 
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Fig. 8. Example of AV segmentations in synthetic cases. Each row displays from left to right: a volumetric representation of the reference standard (showing scale of 

particles), the final particle-based AV classification, its evaluation against the gold standard, and a zoom on a specific area showing some improvements of results in 

subsequent stages of the algorithm. In the first two columns, arteries, veins and airways are shown in red, blue, and green respectively. Red: arteries, blue: veins, green: 

correct classification (airways in first column), pink: misclassification. For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article. 
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curvatures. 
Six groups of phantoms were used (64 cases/group), combining

hree different densities of synthetic airways ( N art = N v ein = N air /F A

ith FA ∈ {1, 2, 3}, where N i represents the number of terminal

oints for arterial, venous, and bronchial trees, respectively) and

wo different curvature conditions for vessels and airways (nonde-

ormed/deformed). N art = N v ein varies from 30 to 100. 
.1.2. Anthropomorphic pulmonary CT phantoms 

The dataset of synthetic CT images representing whole lungs

resented in Jimenez-Carretero et al. (2016) were used to mitigate

he limitation in the availability of clinical CT cases with proper AV

eference standards, allowing to test the effect of different vessel
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Fig. 9. Example of AV segmentation in clinical noncontrast CT #5 (best result). First 

row: volumetric and particle-based representations of the reference standard (red: 

arteries, blue: veins, green: airways). The second row: AV classification after each 

stage: RF, GC, and refined GC. Third row: evaluations (green: correctly classified, 

pink: errors). Misclassifications are located in some small-calibre subtrees, and in 

areas close to the hilum where all air and blood flows run very closely. Moreover, 

our method shows a robust behaviour in the presence of segmentation inaccura- 

cies. F1 scores: RF = 82.7%, GC = 95.5%, Refined GC = 97.1%. The electronic version 

contains high-resolution color images to ease visualization of results. For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Example of AV segmentation in clinical noncontrast CT #1 (worst result). In 

this case, misclassifications located in important vessels in RF stage limited the cor- 

rect behaviour of the GC strategy, which is not able to correct them and propagates 

the errors to other particles. F1 scores: RF = 74.8%, GC = 78%, Refined GC = 81%. 

Electronic version contains high-resolution color images to ease the visualization of 

the results. 
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A total of 48 synthetic lungs were used: 24 pulmonary phan-

toms and their corresponding versions with a realistic curvature of

vessels and airways (nondeformed/deformed). 

3.1.3. Noncontrast CT cases: dataset 1 fully AV-labelled 

Three CT cases used in this work were acquired as part of the

COPDGene study ( Regan et al., 2011 ). COPDGene centres obtained

approval from their Institutional Review Boards and all subjects

provided written informed consent. The data were anonymized by

the COPDGene study data coordinating centre before sharing them.

Images correspond to noncontrast CT from patients suffering

from COPD. A total of six different lungs were available, with pixel

spacings between 0.5859 and 0.7031 mm, and slice thicknesses be-

tween 0.5 and 0.625 mm. 

A slow but necessary voxel-based manual labelling process was

used to obtain the AV reference standards for these six lungs. This

extremely time-consuming task was performed using ITK-Snap 

2 
2 www.itksnap.org . 

t  

T  

S  
n two stages. In the first step, a pre-classification was carried

ut by two trained engineers ( ≈ 15 effective hours per lung) us-

ng a slice-by-slice manual labelling process over the CT images

ith the original sub-millimetre resolution and following a deep-

rst strategy. In the second step, a radiologist with broad exper-

ise in lung imaging checked and corrected classification errors us-

ng the same strategy. During the entire process, the labelling was

onstrained to the voxel-based vessel segmentation obtained after

phere-inflation from the particle-based segmentation described in

ection 2.1 . As a consequence, the accuracy of the general vessel

egmentation could not be evaluated, but we assure the abundance

f vessels from multiple generations (up to 4th or 5th branching

evels), implying the enrichment in the evaluation of the AV clas-

ification method. 

.1.4. Noncontrast CT cases: dataset 2 partially AV-labelled 

An additional independent dataset was created for repeatabil-

ty and generalization purposes, comprised of twenty new cases

orresponding to right lungs of patients coming from COPDGene

tudy ( Regan et al., 2011 ), where vessels and airways were seg-

ented in both the upper and lower-right lobes. A denser segmen-

ation of vessels was performed up to 5th or 6th branching levels.

he reference standard was created using the strategy explained in

ection 3.1.2 , but performing segmentations and labelling particles

http://www.itksnap.org
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4

sing Chest Imaging Platform (CIP 3 , Brigham and Women’s Hospi-

al, Boston, USA). 

.2. Validation strategy 

In this work, the AV segmentation has been addressed like a bi-

ary particle-based classification problem. Thus, the F1-scores al-

ow the study of the exactness and completeness of the specific

lgorithm in a very robust way. 

Although the desired readout is the final AV classification, the

ntermediate classifications can be also examined to evaluate dif-

erent stages of the algorithm. In our case, three evaluations have

een performed corresponding to: i) pre-classification using RF CHull 

ased on local features (only evaluated for the particles inside the

onvex hull of the airways); ii) classification with GC before ap-

lying the refinement stage; and iii) final AV classification with re-

ned GC. Additionally, to understand the benefit of the graph-cut

pproach with respect to an RF classification in the full lung, (RF)

s reported as reference for the experiments dealing with clinical

ases. The RF CHull provides the accuracy of the pre-classification

tep that will be used as regional term in the GC stage. Differ-

nces between the refined and nonrefined versions of GC illustrate

he effect of graph disconnections in the results at the full lung

evels. 

.3. Parameter optimization 

The whole AV workflow depends on several parameters that in-

uence the results as well as the performance or the efficiency of

he algorithm. Therefore, these parameters need to be optimized to

btain acceptable classification results. We used one half of the set

f the bronchopulmonary phantoms, 32 cases/group ( Section 3.1.1 ),

o perform this task. 

ocal features parameters . N neig = 20 , N 

I 
bins 

= 10 and N 

O 
bins 

= 5

ere fixed experimentally by running several tests. The selected

nal values showed a good balance between efficiency and classi-

cation power. 

F parameters . A grid search strategy was followed to

est and select the best combination of parameters: n f eat ∈
 

√ 

N f eat , log 2 (N f eat ) + 1 } and T ∈ { 2 n | n = 0 .. 10 } ). A leave-one-out

ross-validation strategy in the dataset of bronchopulmonary

hantoms reported that the best model was created with

 f eat = 

√ 

N f eat and an appropriate balance between efficiency 

nd performance can be reached with T = 500 (Supplementary

ig. S2). 

C parameters . Some parameters used in the construction of

he GC were selected empirically after a relatively small num-

er of tests, taking into account mean distances between particles

nd prior knowledge from human lungs: r neigh = 3 mm, N con = 5 ,

 CHull = 20 mm, r max 
v es = 4 mm, r min 

v es = 1 . 5 mm. A grid search for

he combination of 9 different cost functions (Supplementary Sub-

ection: Weighting functions w bound ) w = { w i (p 1 , p 2 ) | i = 1 , . . . , 9 }
nd α = 6 , . . . , 12 revealed that the tendency of results remains

ery similar for every group of phantoms (different combinations

f airways density and curvature condition) reaching the best

esults when α = 8 and w bound = w 8 (p 1 , p 2 ) (Supplementary Fig.

3): 

 8 (p 1 , p 2 ) = 

ˆ w 

2 
‖ ( ̄v 1 , ̄v 2 ) ·

max ( ̂  w ‖ ( ̄v conn (p 1 , p 2 ) , ̄v 1 ) , ˆ w ‖ ( ̄v conn (p 1 , p 2 ) , ̄v 2 )) 2 
(15) 
2 + w dist (p 1 , p 2 ) 

3 www.chestimagingplatform.org . 
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.4. Experiments 

.4.1. Experiment 1: bronchopulmonary phantoms 

Bronchopulmonary phantoms used during parameter optimiza-

ion served as a training set for the construction of the RF classifier,

reating each of the six groups independently. The rest of the bron-

hopulmonary phantom cases were tested to evaluate and analyse

he effect of the curvature of pulmonary structures as well as the

ensity of airways in the final AV segmentation results. 

Taking advantage of the knowledge about the actual label of

ach part of the synthetic image, we constrained the particle-based

essel segmentation method into the regions defined by each spe-

ific structure (arteries and veins), improving the accuracy of seg-

entations and, consequently, reducing the misclassification errors

erived from segmentation problems, resulting in a more specific

nd accurate evaluation of the AV classification problem. 

.4.2. Experiment 2: anthropomorphic pulmonary CT phantoms 

All the 48 cases were used to properly validate the AV seg-

entation approach under a realistic scenario. Deformed and non-

eformed phantoms were treated separately using two strategies:

eave-one-out cross-validation (CV) and two-fold (keeping balance

n the number of right and left lungs, randomly selected for each

roup) to confirm previous results using a lower amount of data

or training. Again, the arterial and venous segmentations were

onducted separately using the knowledge about actual labels for

ach voxel inside the synthetic lungs. 

.4.3. Experiment 3: noncontrast CT cases 

The six lungs corresponding to clinical noncontrast CT images

ere evaluated using a leave-one-out CV and three-fold CV (‘leave-

ne-subject-out to exclude from training both the left and right

ungs coming from the same patients). In this case, all vessels were

egmented simultaneously to create a more realistic scenario for

he processing and evaluation of new clinical cases, where segmen-

ation and classification errors can occur. 

.4.4. Experiment 4: importance of airway segmentation 

A way to check the consequences of missing bronchial informa-

ion in clinical cases is to evaluate the AV separation method using

runed versions of the original airway tree segmentation. To that

nd, we iteratively removed airway particles with scale lower than

 specific value from the segmented bronchial trees of these six

ungs and reran the leave-one-out CV validation. 

.4.5. Experiment 5: replication set 

A final test to check the repeatability of results and general-

zation of the presented approach was performed on a completely

ndependent set of clinical cases. Furthermore, this experiment al-

ows to explore and validate the possibility of performing AV clas-

ification in incomplete lung cases. A leave-one-out cross valida-

ion experiment was performed. 

For these 20 cases, airway particles have been initialized us-

ng a binary mask created from the method recently proposed in

ardelli et al. (2017) . In particular, the airway feature strength is

rst extracted using Nardelli et al. (2017) . Then, a simple thresh-

lding of 0.7 is used to obtain a binary mask that is used as ini-

ialization of particles. This greatly improves the number of air-

ay particles normally extracted when using the filter proposed

y Frangi et al. (1998) to extract airway strength. 

. Results 

The automatic algorithm was developed combining Python and

atlab and executed on an AMD Athlon II X4 630 @ 2.8GHz with

http://www.chestimagingplatform.org
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Table 1 

Evaluation results on bronchopulmonary segment phantoms. Mean F1-score values [0–

100] and standard deviations are reported for both nondeformed and deformed ver- 

sions of the phantoms and three densities of airways (FA), in the three evaluation 

stages: random forest (RF), graph-cuts (GC), and final refined graph-cuts (Ref. GC). 

Non-deformed Deformed 

FA RF GC Ref. GC RF GC Ref. GC 

1 83.4 ± 2.4 97.9 ± 1.9 98.0 ± 1.9 83.3 ± 2.2 97.1 ± 2.7 97.4 ± 2.7 

2 78.9 ± 2.8 96.4 ± 3.7 96.3 ± 3.8 78.2 ± 3.1 95.5 ± 4.4 95.5 ± 4.5 

3 74.9 ± 4.0 94.0 ± 6.4 94.3 ± 6.6 74.5 ± 4.1 91.3 ± 6.7 92.0 ± 6.6 

Table 2 

Evaluation results on anthropomorphic pulmonary CT phantoms. Mean F1-score values 

[0–100] and standard deviations are reported for both nondeformed and deformed ver- 

sions using leave-one-out CV and 2-fold (2F) strategies, in the three evaluation stages. 

Nondeformed Deformed 

RF CHull GC Ref. GC RF CHull GC Ref. GC 

CV 73.4 ± 3.0 92.5 ± 3.5 93.4 ± 3.0 72.3 ± 3.4 90.3 ± 6.7 92.3 ± 5.9 

2F 73.6 ± 3.4 92.4 ± 3.6 94.0 ± 3.0 72.8 ± 3.7 90.9 ± 6.0 92.9 ± 4.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Evaluation results on clinical noncontrast CT cases. F1 scores are reported (leave- 

one-out and three-fold CV leaving one subject out) for the three evaluation stages: 

random forest (RF), graph-cuts (GC) and final refined graph-cuts (Ref. GC). The last 

two rows show the mean and standard deviation values. 

CV 3F 

Case RF CHull RF GC Ref. GC RF CHull RF GC Ref. GC 

1 74.8 56.8 78.0 81.0 74.3 55.2 76.7 79.8 

2 79.6 65.5 87.7 90.8 76.4 63.8 87.5 90.6 

3 80.3 59.6 88.7 89.4 79.8 59.7 88.9 89.7 

4 80.2 57.9 92.9 93.7 80.0 57.3 92.1 93.0 

5 82.7 66.7 95.5 97.1 79.3 64.4 92.0 93.7 

6 81.2 60.1 91.4 92.8 79.2 59.2 87.3 87.7 

Mean 79.8 61.1 89.1 90.8 78.2 59.9 87.4 89.1 

std 2.4 4.1 5.6 5.0 2.1 3.3 5.2 4.6 

Table 4 

Evaluation results on the independent and partially AV-labelled dataset of clinical 

noncontrast CT cases. Mean F1-score values [0–100] and standard deviations are 

reported in the three evaluation stages categorized by the quality of the airway 

tree segmentation as Complete, Partial and Incomplete. 

Airway segmentation RF CHull RF GC Ref. GC 

Complete (10 cases) 79.3 ± 4.8 56.1 ± 2.1 79.8 ± 6.2 83.0 ± 6.2 

Partial (7 cases) 76.0 ± 6.2 53.8 ± 3.3 76.8 ± 10.3 79.1 ± 9.4 

Incomplete (3 cases) 72.6 ± 10.5 53.3 ± 1.5 70.1 ± 8.9 71.4 ± 8.9 

All 76.9 ± 6.6 54.6 ± 2.8 77.0 ± 8.7 79.5 ± 8.6 
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12GB RAM under Ubuntu 12.04. The complete workflow exclud-

ing the initial segmentation of pulmonary structures was approxi-

mately 4 min for each complete lung; where half of the time was

used for the GC refinement stage. 

Table 1 presents the classification results of the six groups of

bronchopulmonary phantoms (Experiment 1). The performance be-

haves as expected when varying conditions: the accuracy of the

method significantly decreases together with the density of the

generated airways (higher FA) owing to the reduction in the avail-

able information of the vessel–airway relation that mainly drives

the RF classification step. Similarly, a higher deformation and cur-

vature in vessels and airways increases the uncertainty in the com-

putation of preferential directions and, therefore, a reduction in the

orientation similarity and direction consistency of neighbouring

particles, explaining the quite small but appreciable deterioration

of the algorithm performance. Similar results ( Table 2 ) were ob-

tained when using the anthropomorphic pulmonary CT phantoms

(Experiment 2), where the structure and density of vessels and air-

ways are more realistic. In both experiments, we can clearly ap-

preciate that subsequent stages of the algorithm incrementally im-

prove the AV classification results. Although the pre-classification

based on RF reports fairly good results ( F 1 > 74% and > 72% in ex-

periments 1 and 2, respectively), the incorporation of connectivity

information into the GC strategy highly increases the accuracy of

the classification ( F 1 > 91% and > 90%, respectively). GC not only

overcomes the spatial inconsistencies coming from the RF stage,

but also extends the classification to particles located outside the

convex hull of the airways in a suitable way. The final refined ver-

sion of the GC reports slightly better results ( F 1 > 92%), demon-

strating the improvement obtained when ensuring the proper con-

nectedness of the graph, but also showing the relatively small

prevalence of isolated subtrees in the phantoms. Some examples

are shown in Fig. 8 . 

Experiment 3 ( Table 3 ) reports better results for clinical cases

in the pre-classification step using RF CHull (around 78–80%). This

is because of the not fully realistic nature of air and vessel flow

systems in synthetic cases which render difficult the proper man-

agement of local features and vessel–airway relationship, which is

more stable in real lungs. Contrarily, although GC highly improves

the results (around 87–89% with GC and 89–91% with the refined

version), the accuracy of the classification is slightly lower than

in the phantoms, suggesting a higher complexity of air and blood

flow systems especially in peripheral areas in real lungs compared

with synthetic cases. The results using a three-fold cross validation

(  
leaving one subject out) resulted in slightly worse performance

han using CV. Figs. 9 and 10 show the performance of the AV seg-

entation algorithm in two interesting lungs corresponding to the

est and worst resulting classifications. 

Fig. 11 presents the results of experiment 4 checking the impor-

ance of using an accurate segmentation of airways to reach a good

V segmentation by progressively pruning the airway tree. Reason-

ble results are obtained when airways down to 1 mm of radius are

roperly segmented. 

Table 4 presents results from experiment 5. The evaluation on a

ompletely independent dataset reports lower performance, espe-

ially noticeable in the RF pre-classification stage, providing the GC

tages with a more unsuitable starting point to get an optimized

nal AV classification. This fact was further analyzed by supervis-

ng the quality of airways segmentation by two experts blinded to

he validation results. Three different groups of cases were identi-

ed: cases with complete airway tree, cases with partial airway tree

part of a main branch was missing) and incomplete (one or more
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Fig. 11. Importance of airways segmentation in AV results. a) Evolution of F1-scores when pruning airway segmentations by removing particles with scales lower than a 

specific value. Mean values (lines) and standard deviations (shadows) are displayed for the three evaluation stages. b) Example of an airway tree where the scale of particles 

at each bronchial location is represented. 
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ain branches missing). Table 4 shows the results within these

ategories showing that the effect of the quality of the airway seg-

entation is important. This experiment confirms the possibility of

sing the presented tool to process incomplete lungs with a denser

epresentation of the vessel trees (up to 5th or 6th branching lev-

ls) with competitive results especially when a good segmentation

f the airway tree can be guaranteed. 

. Discussion and conclusions 

This work presents an innovative framework to separated

ree structures from image data proposing a specifically designed

raph-cut methodology that exploits local features imposing the

onnectivity and the spatial and directional consistency required

o ensure complete trees. The proposed framework enables a com-

letely automatic AV segmentation/separation of the pulmonary

asculature represented as discrete particles that are pre-classified

ased on the vessel-airway relationship characteristic of the cen-

ral areas of the lung using an RF approach. However, the spatial

nconsistency of results when only a pre-classifier is used demands

he inclusion of connectivity information and spatial consistency

nto the system. As a consequence, a GC approach was followed to

erge both sources of information. Previous works used a similar

raph-based strategy for retinal AV segmentation in 2D fundus

hotography ( Joshi et al., 2014; Eppenhof et al., 2015 ) achieving

ery nice results. However, the classification is essentially based

n color-intensity properties, and connectivity information is

ntroduced mostly to distinguish between vessel crossings and

ifurcations that are typical for this 2D image modality. Our

ramework exploits these approaches in 3D overcoming different

hallenges such as the complexity of 3D tree structures, and

carce information coming from image intensities to distinguish

n our case arteries and veins. For that reason, energy functions

eed to include more complex local features and deal with more
eneral and smooth structural consistency. The same strategy and

ramework could be applied to other problems, for example, the

eparation of liver vasculature defining the specific local relations

mong the different vessel trees. 

The discretization of vessels with scale-space particles allows

he simplification of structures and a better representation for clas-

ification purposes as well as a representation of the vessel cal-

bre. This representation is flexible, and any external segmenta-

ion could be transformed into a particle-like segmentation. We

uggest an adjustment of parameters if the structure, distances,

nd disposition of the discrete vessel/airway particles change, in

rder to achieve an optimal performance of the method. In this

ork, we did not carry out a comprehensive comparative study

gainst other recent methods proposed in the literature owing to

he lack of open access to the corresponding algorithms. A meta-

valuation of the results presented in this work and other sug-

ests that our approach is competitive in terms of a combination

f usability, validation, and performance, by providing a: i) com-

letely automatic tool; ii) strong and rigorous evaluation using pre-

ise AV ground truths covering the whole lung and reaching high

enerations of the vasculature; and iii) validation of the method in

linical and synthetic scenarios, using a large number of data in-

luding 26 lungs from clinical noncontrast CT images and 48 syn-

hetic lungs from anthropomorphic pulmonary CT phantoms. Fur-

hermore, the proposed AV segmentation method has been fully

ncorporated in the CIP (Brigham and Women’s Hospital, Boston,

SA), a Python/C++ platform, allowing and easing future studies

nd comparative evaluations. 

Visual examinations ( Figs. 8–10 ) revealed that classification

istakes appear in the peripheral and distal areas of the lung

isolated subtrees may exist), and in areas close to the hilum

where air and blood flow systems are close). Most bifurcations

re properly connected thanks to the connectivity rules included

n the boundary weighting function that takes into account both
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the parallelism with the vessel preferential direction and the

new potential vessel connection (connectivity vector). Given the

imposed connectivity and spatial consistency, if errors exist they

appear in the same subtrees keeping a classification consistency

through subsequent generations, which could be easily corrected

with an interactive tool requiring relatively low user burden. 

F1-scores have been reported in three different stages of the

algorithm: a first pre-classification of particles located in the con-

vex hull of airways, using RF based on local features (RF CHull ); a

complete vessel particle classification using the RF model used as

reference (RF), a complete vessel particle classification using GC

combining the RF pre-classification step with connectivity infor-

mation(GC); and a final AV classification using a refined version

of GC that addressed the disconnection of small-scale distal ves-

sels (Ref. GC). These results show a relevant improvement in the

accuracy ( ∼ 20%) of the vessel particle classification with the pro-

posed framework (GC and Ref. GC) with respect to using only the

pre-classification based on local information applied to the whole

area of the lung under study (RF). 

Bronchopulmonary segment phantoms were used to set up the

system and select the best parameters for the algorithm. Results

of these data reveal that the proposed approach can obtain almost

perfect AV separations in pseudo-realistic and simplified lung sce-

narios ( Table 1 ). 

An actual validation of the system was performed with anthro-

pomorphic pulmonary CT phantoms and clinical noncontrast CT

images. Results of both datasets suggest very good performance

of the algorithm in real and complex synthetic scenarios, report-

ing F1-scores up to 90% ( Tables 2 and 3 ). The disconnection of

small vessels subtrees, addressed by the refined version of the GC,

achieved important improvements at peripheral areas. 

As expected, experiments with phantoms ( Tables 1 and 2 )

probe that curvature of structures introduce changes in the defini-

tion of connectivity between particles that influences the accuracy

of the algorithm. At the same time, it shows that the robustness

of vessel segmentation and the detection of principal directions,

are vital for the proper definition of connectivity and therefore, to

maximize the classification power of the AV segmentation method.

Similarly, tests with clinical cases have demonstrated the impor-

tance of an accurate and sensitive method for airway segmenta-

tion to maximize the computation of vessel-airway relationships

that drive the final AV classification ( Fig. 11 ). When comparing re-

sults obtained with synthetic and real lungs ( Tables 2 and 3 ), the

AV segmentation method performed comparatively, reinforcing the

similarity between anthropomorphic pulmonary CT phantoms and

clinical non-contrast CT images. However, results also suggest the

existence of some differences between the performance on clin-

ical and synthetic cases that are related to higher complexity in

the real lungs, the lack of information from airway in some prin-

cipal bronchial locations, and the noise introduced by the vessel

segmentation step. 

The replication experiment using a completely independent set

of lungs partially segmented (two lobes) reinforces the evaluation

of the method and demonstrates the possibility of performing rea-

sonable AV segmentations in cases with incomplete information,

as well as a denser representation of the vessel trees (up to 5th

or 6th branching levels). The cross validation experiment confirms

the advantage of a larger training database to properly capture the

huge variability present in clinical cases, in order to improve the

performance of the method, especially of the RF pre-classification

stage. 

This independent dataset also allowed testing the methodology

in a realistic setting considering images of different quality and

derived airway segmentations. The dependence on the airway

segmentation is clearly a limitation of the concretely proposed

approach. As shown, subsegmentation of airways influence the
esults decreasing the accuracy ( Fig. 11 ), and analogously overseg-

entation of airways could lead to classification errors in the AV

eparation introducing a bias towards arteries in the correspond-

ng areas. The prerequisite of detecting bronchi down to 1 mm

o get good results is a reasonable requirement for any airway

egmentation algorithm. 

Our experiments have shown that the framework performs very

ell if the image quality and the initial segmentation of airways

uarantees that all the principal airway branches are segmented.

owever, as this dependency could hamper the application of

he current framework to other datasets with less quality to en-

ure proper airway segmentation, in parallel to this work we have

een exploring other pre-classification steps ( Nardelli et al., 2018 )

hat do not rely on an airway segmentation but exploit directly

he local image content through convolutional neural networks

 LeCun et al., 2015 ). Those results also report the improvement

n performance thanks to the spatial consistency imposed by the

raph-cut as detailed and described in this paper. 

Errors in vessel segmentation could also affect the results of

ur method. Oversegmentation could influence the results only

hen false positives lay out in a given arrangement that could

ead to a branch. Vessel subsegmentations are tackled by our al-

orithm thanks to the GC and the refined GC that ensure con-

ectivity even in the presence of gaps and isolated trees. Re-

ent developments of vessel segmentation techniques achieve high

ccuracy even for small vessels ( > 97%, Rudyanto et al. (2014) )

uaranteeing proper input to our algorithm. In this sense an-

ther possible future improvements includes the incorporation of

lobal information in order to extend the current pre-classification

f particles belonging to first vessel generations to more dis-

al particles close to the alveoli. Some examples are proposed in

ayer et al. (2016) and Charbonnier et al. (2016) , including global

eatures related to the organized peripheral distribution of arteries

nd veins. However, we decided not to incorporate this specific in-

ormation to keep the method relatively robust against segmenta-

ion errors (miss-segmentations may destabilize the topology), ab-

ormal AV distributions (pathological cases such as some isolated

rterial/venous pulmonary malinosculations ( Irodi et al., 2015 ), for

xample), and/or incomplete vessel information (lobe-based stud-

es with partial vessel segmentations, such as those evaluated in

he experiment of Section 3.4.4 , as well as abnormal or surgically

esected lungs). Further studies should be performed on data with

hese conditions as in this work we have only tackled pathological

ases with COPD. 

The performance of the algorithm has been tested on a set

f 20 independent clinical cases showing good overall results

pecifically when the quality of the airway segmentation is good.

e also considered the evaluation of the proposed method in the

ata from CARVE challenge ( Charbonnier et al., 2016 ). However,

he quality of the data would not guarantee a proper airway seg-

entation, as confirmed by imaging experts. Further analysis on

ata of higher quality would allow a more objective comparison

f different methods on a bigger set. Additionally, the proposed

ethods could be used in CTPA studies including contrast media to

nhance pulmonary vessels. We would expect similar or even bet-

er results in this scenario, where the local intensity distributions

f vessels would play an important role in the performance of the

lgorithm as it may distinguish the two irrigations. The extension

f the evaluation database would also allow the exploration and

alidation of different applications of the AV segmentation in the

linical field. For instance, AV separation could be used to avoid

alse positive detections of PE using CAD systems, by removing

enous locations that should not contain clots. Moreover, the

roposed AV segmentation system, and its availability through

he CIP, opens the possibility of studying different features such

s density, distribution, structure, and size of arteries and veins
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uantitatively and objectively in an automated fashion. Diseases

hat imply vasculature remodeling, such as PAH, could use these

easurements to check or even discover the phenotypical con-

equences on arterial and venous systems, that could lead to

he definition of new biomarkers. The potential benefits for the

nalysis of pulmonary diseases in the future are undeniable. 
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