
Medical Image Analysis 24 (2015) 90–105

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

A maximum likelihood approach to diffeomorphic speckle tracking for

3D strain estimation in echocardiography

Ariel H. Curiale a,∗, Gonzalo Vegas-Sánchez-Ferrero b,c, Johan G. Bosch d,
Santiago Aja-Fernández a

a Laboratorio de Procesado de Imagen (LPI), E.T.S. Ingenieros de Telecomunicación, Universidad de Valladolid, Valladolid, Spain
b Applied Chest Imaging Laboratory (ACIL), Brigham and Womens Hospital, Harvard Medical School, 1249 Boylston St., Boston, MA 02115, USA
c Biomedical Image Technologies Laboratory (BIT), ETSI Telecomunicacion, Universidad Politecnica de Madrid, and CIBER-BBN, Avenida Complutense 30, Madrid,

28040, Spain
d Thoraxcenter Biomedical Engineering, Erasmus University Medical Center, Rotterdam, The Netherlands

a r t i c l e i n f o

Article history:

Received 21 November 2014

Revised 11 February 2015

Accepted 4 May 2015

Available online 23 May 2015

Keywords:

Strain and motion estimation

Speckle tracking

Maximum likelihood

Mixture model

Diffeomorphic registration

a b s t r a c t

The strain and strain-rate measures are commonly used for the analysis and assessment of regional myocar-

dial function. In echocardiography (EC), the strain analysis became possible using Tissue Doppler Imaging

(TDI). Unfortunately, this modality shows an important limitation: the angle between the myocardial move-

ment and the ultrasound beam should be small to provide reliable measures. This constraint makes it difficult

to provide strain measures of the entire myocardium. Alternative non-Doppler techniques such as Speckle

Tracking (ST) can provide strain measures without angle constraints. However, the spatial resolution and the

noisy appearance of speckle still make the strain estimation a challenging task in EC. Several maximum like-

lihood approaches have been proposed to statistically characterize the behavior of speckle, which results in

a better performance of speckle tracking. However, those models do not consider common transformations

to achieve the final B-mode image (e.g. interpolation). This paper proposes a new maximum likelihood ap-

proach for speckle tracking which effectively characterizes speckle of the final B-mode image. Its formulation

provides a diffeomorphic scheme than can be efficiently optimized with a second-order method. The novelty

of the method is threefold: First, the statistical characterization of speckle generalizes conventional speckle

models (Rayleigh, Nakagami and Gamma) to a more versatile model for real data. Second, the formulation

includes local correlation to increase the efficiency of frame-to-frame speckle tracking. Third, a probabilistic

myocardial tissue characterization is used to automatically identify more reliable myocardial motions. The

accuracy and agreement assessment was evaluated on a set of 16 synthetic image sequences for three differ-

ent scenarios: normal, acute ischemia and acute dyssynchrony. The proposed method was compared to six

speckle tracking methods. Results revealed that the proposed method is the most accurate method to mea-

sure the motion and strain with an average median motion error of 0.42 mm and a median strain error of

2.0 ± 0.9%, 2.1 ± 1.3% and 7.1 ± 4.9% for circumferential, longitudinal and radial strain respectively. It also

showed its capability to identify abnormal segments with reduced cardiac function and timing differences

for the dyssynchrony cases. These results indicate that the proposed diffeomorphic speckle tracking method

provides robust and accurate motion and strain estimation.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Regional heart function plays an important role in the treatment

and diagnosis of different cardiac pathologies such as mitral regurgi-

tation (Messas et al., 2001), ischemia (Voigt et al., 2003; Yeon et al.,

2001) and dyssynchrony (Suffoletto et al., 2006). The early detection
∗ Corresponding author.

E-mail address: ariel@lpi.tel.uva.es, curiale@gmail.com (A.H. Curiale).
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nd treatment of regional abnormalities could predict and prevent

lobal functional changes and it has shown important clinical impli-

ations (Abraham et al., 2007). In particular, the strain (tissue defor-

ation) and strain rate (speed at which deformation occurs) are com-

only used to assess the regional myocardial function (Dandel et al.,

009). For example, Messas et al. (2001) showed that papillary mus-

le (PM) can decrease the mitral regurgitation by reducing leaflets

ethering. In their work, they made use of the strain rate to assess

he longitudinal PM contraction non-invasively, without PM instru-

entation. Voigt et al. (2003) studied the regional strain and strain

http://dx.doi.org/10.1016/j.media.2015.05.001
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ate to differentiate ischemic and nonischemic regional ischemia dur-

ng dobutamine stress echocardiography. Likewise, Suffoletto et al.

2006) showed that strain can be used to quantify dyssynchrony and

o predict immediate and long-term response to cardiac resynchro-

ization therapy.

In echocardiography, the strain and strain rate can be measured by

sing Doppler-based techniques, Tissue Doppler Imaging (TDI), or non-

oppler techniques known as Strain Imaging (SI) and Speckle Tracking

ST). Similar to the conventional blood velocity Doppler techniques,

issue Doppler comes in a number of varieties: Pulsed wave spectral

oppler measures myocardial velocities at a single position, 2D Color

oppler within an image region of interest. However, all Doppler

echniques can only assess the velocity component along the direc-

ion of the ultrasound beam. Thus, all these techniques suffer from

ngle dependence in the assessment of tissue velocities. This is one

f the explanations why this technique has not become standard in

aily Praxis (Dandel et al., 2009). In contrast, ST and SI techniques

an estimate angle independent tissue velocities in the entire image,

ince they are not based on the Doppler principles (Amundsen et al.,

006).

Ultrasound (US) data in EC is generated by the reflection of trans-

itted coherent ultrasound waves at fixed frequencies. The result of

he interaction between those waves and different types of tissues

ive rise to the interference phenomenon known as speckle. This in-

erference pattern, though it is textured with noisy visual aspect, re-

ains unaltered under the same acquisition conditions, i.e. the same

ransducer aperture, pulse length and transducer angle. This behav-

or exhibits an inherent relationship with the tissue structure that

an be tracked to estimate the motion and deformation of the heart

Burckhardt, 1978). The methods that analyze motion by tracking

he intensity or the interference patterns produced by speckle along

he temporal sequences of a US acquisition in B-mode are known

s Speckle Tracking methods. These methods have proved to be use-

ul tools to obtain quantitative and qualitative information regard-

ng myocardial deformation, motion and function assessment (Helle-

alle et al., 2005; Notomi et al., 2005). In the particular case when the

otion is analyzed by tracking the speckle from the RF signal, these

ethods are referred as Strain Imaging (Konofagou and Ophir, 1998;

opata et al., 2011; O’Donnell et al., 1994).

In the US community, a particular methodology for motion

stimation, known as block-matching, has received special attention

ue to its simplicity and performance (Bohs et al., 2000; Cohen and

instein, 2002; Nesser et al., 2009; Strintzis and Kokkinidis, 1997;

uffoletto et al., 2006). However, this methodology is confined to esti-

ate the motion in a particular search block, which results in a disad-

antage for big complex motions. Recently, several authors proposed

ew speckle tracking methods by using more flexible approaches to

vercome this limitation. Most of them use a variational optical flow

pproach (Alessandrini et al., 2013; Somphone et al., 2013; Tautz

t al., 2013) or a Free-Form Deformation approach (FFD) (Curiale

t al., 2013; Heyde et al., 2013; Myronenko et al., 2009; Piella et al.,

013).

An interesting contribution to motion estimation in US with

lock-matching was proposed by Strintzis and Kokkinidis (1997),

here a maximum likelihood (ML) methodology was used to provide

suitable metric for US images based on a multiplicative Rayleigh

haracterization. Cohen and Dinstein (2002) extended the proposal

o include the relationship between the multiplicative Rayleigh

haracterizations of consecutive frames, which resulted in a bet-

er performance for speckle tracking. However, these approaches

resent the inherent problems of the original block-matching: they

annot follow the complex deformation due to its block-wise anal-

sis. Besides, some effects of processing during the acquisition of US

ata cause a deviation from the Rayleigh assumption that reduces its

uitability for the description of speckle statistics.
These limitations were avoided by the proposals of Myronenko

t al. (2009) and Curiale et al. (2013), which adapted different ML

pproaches to FFD schemes based on b-splines and more realistic

tatistical models. Specifically, Myronenko et al. (2009) considered

hat the backscattered signal is received in the probe as a result

f the integration in some area of the detector. Thus, the Rayleigh

peckle model is no longer valid. Instead, they proposed a bivariate

akagami distribution with a temporal correlation between frames.

n contrast, Curiale et al. (2013) proposed a Gamma model to char-

cterize the integration of different Rayleigh distributed signals,

hich has shown better fitting behavior than the Nakagami model

Vegas-Sánchez-Ferrero et al., 2010).

The main advantage of Myronenko’s in contrast to Cohen’s and

uriale’s models is that it exploits the high correlation between two

onsecutive frames. However, the Nakagami approach can be sub-

tantially improved with more suitable statistical models that suc-

essfully generalize Nakagami and Gamma distributions, such as the

eneralized Gamma model (Vegas-Sanchez-Ferrero et al., 2012). Be-

ides, Myronenko’s shows an important limitation since it assumes

homogeneous correlation between consecutive frames, which is

learly a non-realistic assumption since the speckle in the blood pool

ould not show the same correlation as other regions with a more

table speckle response. As a result of this, the correlation between

rames should be carefully estimated considering a spatially variant

ehavior. The aim of our proposal is to successfully generalize the

onventional speckle models (Rayleigh (Cohen and Dinstein, 2002;

trintzis and Kokkinidis, 1997), Nakagami (Myronenko et al., 2009)

nd Gamma (Curiale et al., 2013)) with the inclusion of an adap-

ive temporal correlation between consecutive frames. The statis-

ical characterization is also used to automatically identify reliable

yocardial motions. This is an important contribution that provides

ore accurate estimates of the strain and strain rate measures. In

his way, the main advantages of a suitable and versatile statistical

odel and the temporal coherence are considered throughout the

peckle tracking process. Additionally, to provide a smooth and in-

ertible (diffeomorphic) motion field, the proposed method leads to a

ormulation which can be efficiently implemented in a diffeomorphic

emons approach instead of the FFD technique used by Myronenko

t al. (2009) and Curiale et al. (2013).

In conclusion, this paper proposes an accurate diffeomorphic

peckle tracking methodology for 3D strain estimation in final EC

-mode images, which presents three main contributions: First, we

rovide a speckle model and a formulation that generalizes the pre-

ious speckle models (Rayleigh, Nakagami and Gamma) into a more

ersatile one, better adaptable to real data (Vegas-Sanchez-Ferrero

t al., 2012). The formulation derived perspective allows to provide

wo different similarity measures to deal with data in different steps

f the acquisition (prior and post log-compression). Furthermore, the

peckle model allows to define a diffeomorphic demons-based ap-

roach with an efficient second-order minimization scheme. Second,

e introduce a formulation which considers an adaptive temporal

orrelation to improve the speckle tracking. To the best of our knowl-

dge, this is the first time that the correlation is adaptively estimated.

hird, a probabilistic myocardial tissue characterization is used to au-

omatically identify more reliable myocardial motions. In particular,

his contribution reduces the negative effect of unreliable myocardial

otions such as those introduced by the blood pool or shadowing

rtifacts by means of a probabilistic regularization according to the

eliability of motions.

The proposed methodology was evaluated in the Straus dataset

roposed by De Craene et al. (2013), which provides a realistic cardiac

eometry and a complex motion for different ischemia and dyssyn-

hrony types, and normal cases with different signal to noise ratios.

esides, it provides results of five different and relevant speckle track-

ng algorithms, leading to reproducible studies.
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2. Background

This section briefly describes the methodologies under compar-

ison in this paper. In particular we will describe the classical dif-

feomorphic demons method proposed by Vercauteren et al. (2009),

which leads to derive the diffeomorphic formulation of the proposed

method used for comparison.

2.1. Demons registration

Inspired by the optical flow equation (Beauchemin and Barron,

1995), Thirion (1998) proposed to consider non-rigid registration as a

diffusion process. In his work, he introduced the idea of demons that

push according to the local characteristics of the images in a similar

way Maxwell did for solving the Gibbs paradox. In each iteration, the

demons forces are introducing a displacement update into the mo-

tion field. In general, this algorithm alternates between computation

of forces and a regularization step. Vercauteren et al. (2009) showed

that the demons algorithms could be seen as an optimization proce-

dure for a global energy on the entire space of displacement fields.

Also, they showed that the demons algorithm could be adapted to

provide a non-parametric diffeomorphic transformation. The differ-

ence with respect to the original approach amounts to how the Ja-

cobian is computed and how the instant update is considered. In the

classical demons, the update is a dense displacement field, whereas

in the diffeomorphic demons the update is considered as a speed

vector field. Moreover, when the images are aligned with the opti-

mal spatial transformation, the fixed image and the warped images

as well as their gradient should be very close to each other. In that

case, the symmetric forces could be linked to the efficient second-

order minimization framework, which is one of the most useful con-

tributions proposed by Vercauteren et al. (2009) and it will be used

in our proposal.

2.2. Speckle tracking methods

Philips: Somphone et al. (2013) propose a fast implementation of

a demons-like algorithm. In their proposal, the similarity measure is

the sum of squared intensity difference (SSD) and the motion esti-

mation is confined to the myocardial tissue by using a manual seg-

mentation and normalized convolution (Knutsson and Westin, 1993).

Furthermore, the optimization is performed in a variational approach

by using a gradient descent within a multiresolution refinement

approach.

Creatis: Alessandrini et al. (2013) propose a monogenic phase mo-

tion estimation algorithm based on a variational optical flow. This

technique uses the monogenic phase of the image for extracting im-

age features instead of using the image intensities. The motion is esti-

mated by solving the optical flow equation locally on a sliding spatial

window. Also, several B-spline windows are defined at different scale

and the motion transformation is assumed to be locally affine. Finally,

the motion is iteratively refined by using a coarse-to-fine multireso-

lution scheme.

KU Leuven: Heyde et al. (2013) propose to use an anatomical FFD

model for motion estimation. The motion transformation is mod-

eled by using B-splines and the basis functions are locally oriented

along the radial, longitudinal and circumferential direction of the en-

docardium. They use the SSD as similarity measure and a bound-

constrained optimizer (Byrd et al., 1995). The motion estimation was

then projected back into the cartesian coordinates to compute the

strain.

UPF: Piella et al. (2013) propose a diffeomorphic FFD algorithm

to handle the temporal dimension. In their proposal, the similar-

ity measure takes into account sequential and fixed-reference terms.

The sequential term makes use of a Rayleigh speckle model between
onsecutive images (Cohen and Dinstein, 2002), while the fixed-

eference term uses the SSD between each image and the first image

n the sequence. The fixed-reference term provides a drift correction

n the whole motion estimation. Similarly to the KU Leuven approach,

his method use B-splines for modeling the motion transformation

nd a large-scale bound constrained (LBFGSB) algorithm for optimiz-

ng the temporal similarity measure.

Mevis: Tautz et al. (2013) propose another monogenic phase mo-

ion estimation algorithm. In particular, his proposal is based on the

orphons algorithm originally proposed by Knutsson and Andersson

2005). In this technique, the quadrature filter provides a certainty

ap which is used to iteratively refine the motion estimation. Instead

f processing the whole 3D volume at once, the displacements are

omputed for 2D slices, and then, the final 3D motion is created by

ombining the 2D contributions.

. Proposed method

The proposed method is intentionally designed to measure the

train and strain rate by identifying reliable myocardial motions and

y taking into account the US images acquisition and formation. With

his aim, a flexible and general statistical model is needed in order to

eal with the effect of the signal integration in the detector and the

emporal correlation between consecutive frames. According to the

esults shown in Vegas-Sanchez-Ferrero et al. (2012), the General-

zed Gamma offers a versatile model that effectively generalizes the

amma or Nakagami speckle model. The inclusion of the temporal

orrelation between consecutive frames can be included within the

tatistical model by means of the relationship of a Bivariate Gener-

lized Gamma, whose joint distribution presents a correlation factor

hat must be estimated. This fact substantially entangles the parame-

er estimation of the statistical model, however, this difficulty can be

fficiently avoided, as we explain in further sections, by the applica-

ion of a Generalized Gamma mixture model (Vegas-Sanchez-Ferrero

t al., 2012) jointly with a local estimation of the correlation coef-

cient. The use of mixture models not only leads to an efficient esti-

ation of the temporal correlation, but also provides important infor-

ation to identify more reliable myocardial motions, improving the

erformance of the method on measuring the strain and strain rate.

.1. Diffeomorphic maximum likelihood motion estimation

In US dynamics, ML has been successfully used to estimate the

otion between two images acquired under the same acquisition

onditions at consecutive time instances (Cohen and Dinstein, 2002;

uriale et al., 2013; Myronenko et al., 2009). This can be formalized

y considering Xt and Xt−1 as two motion related frames at time t

nd t − 1. Then, the transition of pixels between time t and t − 1 is

escribed by the transformation s : x → x + s(x) where x ∈ Xt and

+ s(x) ∈ Xt−1. Now, let �x = {x ∈ Xt |s−1(x) ∈ Xt−1} the overlap re-

ion between images, It = {It (x)}x∈�x
be the intensity image at time

and It−1 ◦ s = {It−1 ◦ s(x)}x∈�x
be the intensity image at time t − 1.

hen, the ML estimation of s, ŝML, is obtained by maximizing the fol-

owing likelihood (Strintzis and Kokkinidis, 1997):

ˆML = arg max
s

p(It−1|It , s)

= arg max
s

∏
x∈�x

p(It−1 ◦ s(x)|It (x), s), (1)

hich is equivalent to minimizing the normalized negative log-

ikelihood �(s):

(s) = 1

N

∑
x∈�x

− log(p(It−1 ◦ s(x)|It (x), s))

= 1

N

∑
x∈�x

ϕx(It , It−1 ◦ s), (2)
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here N is the overlap number of voxels. Note that all the condi-

ional probabilities are supposed to be independent and identically

istributed (IID).

A common model used for characterizing US images is to consider

he speckle as signal-dependent pattern. Consequently, the US image

ould be modeled as I(x) = a(x) η0(x), where η0(x) is a multiplica-

ive pattern with probability density function (PDF), pη( · ); and a(x)

s the true image intensity (Kotropoulos et al., 1994). Assuming that

he true value of the acquisition, a(x), remains unaltered after the de-

ormation, the following equality holds (Cohen and Dinstein, 2002):

t−1 ◦ s(x) = It (x) η (3)

here η = It−1 ◦ s(x)/It (x) = η1/η2 is the ratio between two random

ariables. Moreover, the likelihood of It−1 ◦ s(x) can be calculated as a

imple transformation of IID random variables, η, given It(x) and the

isplacement field s(x):

p(It−1 ◦ s(x)|It (x), s) = 1

It (x)
pη(n)

= 1

It (x)
pη

(
It−1 ◦ s(x)

It (x)

)
(4)

Similarly, taking the natural logarithm out of both sides of Eq. (3)

he underlying model is derived as follow:

t̂−1 ◦ s(x) = Ît (x) + η̂ (5)

here Ît = ln(It ) and η̂ = ln(η). In this case, the conditional proba-

ility density function is given by:

p(It−1 ◦ s(x)|It (x), s) = η pη(n)

= It−1 ◦ s(x)

It (x)
pη

(
It−1 ◦ s(x)

It (x)

)
(6)

Eqs. (4) and (6) can be calculated using the well-known Change of

ariables Theorem for random variables.

So far the formulation has been derived for random variables

hich follow generic probability distributions. In order to provide a

ersatile model for speckle the Generalized Gamma (GG) distribution

ntroduced in Stacy (1962) is adopted due to its suitability for mod-

ling real EC B-mode images (Vegas-Sanchez-Ferrero et al., 2012) .

his distribution is especially attractive since it generalizes in a nat-

ral way the conventional Gamma model and other commonly used

istributions such as Rayleigh, Nakagami and Weibull.

The temporal correlation is included in the statistical model by

ntroducing a bivariate GG speckle model with equal shape and scale

arameters which leads to a ratio between consecutive frames, η =
1/η2 = It−1 ◦ s(x)/It (x), where the joint distribution of η1 and η2 is

he bivariate GG distribution proposed in Piboongungon et al. (2005),

hose marginal distributions follow the conventional GG distribu-

ion proposed in Stacy (1962). With this probabilistic model, the ratio

is distributed as follows (Bithas et al., 2007):

pη(η) = β 22m

√
π (1 − ρ)−m

	(m + 0.5)

	(m)

· η2βm−1

(η2β + 1)2m

(
1 − 4 ρ η2β

(η2β + 1)2

)− 2m+1
2

(7)

here m and β are shape parameters (Bithas et al., 2007) and ρ is the

orrelation between different time frames It−1 and It defined as:

= cov(I2
t−1, I2

t )√
Var(I2

t−1
)Var(I2

t )
(8)

One important advantage of this statistical model is that the for-

ulation derived for the ratio of correlated GG distributions can be

asily adapted to the different steps of the acquisition process of the

mage. Specifically, it can be accommodated to the image intensities
efore and after the log-compression during the acquisition process.

hus, depending on the step of the formulation we want to model,

wo different similarity measures can be defined. In what follows,

GGS will refer to the similarity measure, without log-compression,

hereas ϕGGCS stands for the measure of log-compressed images.

The first similarity measure, ϕGGS, and its gradient can be derived

irectly from the ratio of two GG random variables substituting the

q. (7) into Eq. (4) as follows (the detailed derivation is presented in

ppendix A):

s
GGS(x) = log(It (x)) − (2 β m − 1) log(η) − log(η2β + 1)

+ (m + 0.5) log((η2β + 1)2 − 4 ρ η2β )

− log(It−1 ◦ s(x)) (9)

ϕs
GGS(x) = 2 β

It−1 ◦ s(x)[
−m + η2 β

(
2 (η2β + 1) − 4 ρ

(η2β + 1)2 − 4 ρ η2β

·(m + 0.5) − 1

η2β + 1

)]
∇J(x) (10)

here ∇J(x) = 1
2 (∇It (x) + ∇It−1 ◦ s(x)). This similarity measure

akes into account the interpolation done in the scanner to obtain the

nal B-mode image and the correlation between two consecutive im-

ges and it naturally generalizes the similarity measure proposed in

uriale et al. (2013) with the advantage of considering the temporal

orrelation between frames.

The second similarity measure proposed, ϕGGCS, and its gra-

ient can be derived from the ratio of two Generalized Gamma

andom variables after logarithmic compression (Eq. (6)) and leads

o the following formulation (the detailed derivation is explained in

ppendix B):

s
GGCS(x) = 2 m + 1

2
log(cosh

2
(η̂ β) − ρ)

− 1

2
log(cosh

2
(η̂ β)) (11)

ϕs
GGS(x) =

(
2 m + 1

cosh
2
(η̂ β) − ρ

− 1

cosh
2
(η̂ β)

)
·β cosh(η̂ β) sinh(η̂ β)∇J(x) (12)

here ∇J(x) = 1
2 (∇It (x) + ∇It−1 ◦ s(x)). This similarity measure

lso provides a natural generalization of the similarity measures

roposed in Myronenko et al. (2009) and Cohen and Dinstein (2002),

ith the advantage of considering the temporal correlation between

rames.

After defining the similarity measures, the normalized negative

og-likelihood, �, defined in Eq. (2) can be minimized by using sev-

ral methods such as the classical block-matching, as was done in

ohen and Dinstein (2002); gradient descent algorithm, as in Curiale

t al. (2013); or even the steepest descent method as in Myronenko

t al. (2009). However, instead of using these approaches, the derived

ormulation allows us to apply an efficient second-order minimiza-

ion scheme proposed by Vercauteren et al. (2009) for the demons

Thirion, 1998) approach. The rationale for this choice not only relies

n the advantages of the second-order optimization, but also with

he capability of providing a diffeomorphic registration, which is a

esired property when the deformations are considered for further

rocessing such as the calculation of the strain and strain rate mea-

ures. Thus, in our proposal, we adapt the original global energy func-

ion defined in the diffeomorphic demons algorithm as follows:

x(c, s) = 1

2|�x|
∑
x∈�x

∥∥ 1
σi
ϕx(It , It−1 ◦ c)

∥∥2

+ 1

σ 2
x

dist(s, c)2 + 1

σ 2
T

Reg(s) (13)



94 A.H. Curiale et al. / Medical Image Analysis 24 (2015) 90–105

3

m

e

f

p

m

a

t

i

s

c

r

w

�

a

f

w

s

w

(

o

u

l

B

ϒ

c

3

t

t

m

r

i

c

K

a

s

b

K

w

d

w

t

v

1 Note that the parametrization here used differs from the one followed in Vegas-

Sanchez-Ferrero et al. (2012), though they are totally equivalent.
where σ i accounts for the noise on the image intensity, σ x is the spa-

tial uncertainty on the correspondences, σ T controls the amount of

regularization, ϕx(.) corresponds to the similarity measure derived

from the ML approach to minimize (Eq. 2), c is a non-parametric spa-

tial transformation which is used to decouple the minimization into

simple and very efficient two steps (Vercauteren et al., 2009).

The minimization of the regularization step in Eq. (13) is per-

formed by a single convolution when the regularization is quadratic

and uniform. Specifically, if Reg(s) = ||∇s||2, the optimal regularized

deformation field is obtained by a convolution of the deformation

field with a Gaussian Kernel (Vercauteren et al., 2009). Therefore, in

this work we focused on the first part of Eq. (13), by minimizing the

following energy function:

Ecorr
x (c) =

∥∥ϕx(It , It−1 ◦ c)
∥∥2 + σ 2

i

σ 2
x

||c − s||2 (14)

where dist(c, s) = ||c − s||. This energy function is rewritten in terms

of the displacement field, u, as follows:

Ecorr
x (u) = 1

2|�x|
∑
x∈�x

||ϕx(It , It−1 ◦ s ◦ exp(u))||2 + σ 2
i

σ 2
x

||u||2 (15)

Now, let us assume that the gradient of the similarity measure is

known. Then, the following linearization of the similarity measure,

ϕx, can be derived:

ϕs
x(u) ≈ ϕs

x(0) + Jx
ϕ.u (16)

where ϕs
x(0) = ϕx(It , It−1 ◦ s), ϕs

x(u) = ϕx(It , It−1 ◦ s ◦ exp(u)) and Jx
ϕ

is the gradient of the similarity function ϕx : R
n → R at u = 0. Then,

Eq. (15) can be rewritten as:

Ecorr
s (u) ≈ 1

2|�x|
∑
x∈�x

∥∥∥∥∥
[

ϕx(It , It−1 ◦ s)
0

]
+

[
Jx
ϕ

σi

σx
Id

]
.u

∥∥∥∥∥
2

(17)

Solving the normal equation and using the Sherman–Morrison for-

mula (Sherman and Morrison, 1950), in the same way as was used

in Vercauteren et al. (2009), the optimal update that minimizes the

energy function Ecorr
s is:

u(x) = −ϕx(It , It−1 ◦ s)JxT

ϕ

||Jx
ϕ||2 + σ 2

i

σ 2
x

(18)

and the maximum step length is controlled by σ x with ||u|| ≤ σ x/2.

Note that if we use σi = |ϕx| and ϕx = It−1 ◦ s − It , we end up with

the expression of the demons forces originally proposed by Thirion

(1998) and also note that an efficient second-order minimization

is achieved when Jx
ϕ = ∇ϕx(It , It−1 ◦ s)(∇It (x) + ∇It−1 ◦ s(x)) (see

Vercauteren et al. (2009) for more details).

3.2. Parameter estimation and regularization

During the derivation of the registration methodology the param-

eters of the Generalized Gamma distribution must be estimated. Note

that this estimation should consider two important facts: 1) the re-

sponse of tissues varies spatially; 2) the speckle of displaced locations

may present temporal correlation.

The main advantage of the bivariate GG model adopted to describe

the nature of speckle is that it allows to naturally split the estimation

of different response of tissues and the temporal correlation. This can

be achieved because the marginal distributions of the bivariate GG

random variable that describes consecutive frames can be marginal-

ized into two GG random variables (Bithas et al., 2007). This way, the

responses of each tissue and parameters of the marginalized GG dis-

tribution can be analyzed separately in each time frame without con-

sidering the temporal correlation, which can be estimated indepen-

dently.
.2.1. Estimation of marginal distributions

The different response of tissues can be effectively described by

eans of the GG mixture model proposed by Vegas-Sanchez-Ferrero

t al. (2012). This mixture model can describe the contribution of dif-

erent GG distributions in the speckle image and, thus, provides a

robabilistic information about the nature of each tissue. The mixture

odel can be calculated by means of the expectation-maximization

lgorithm (Moon, 1996), which maximizes the log-likelihood func-

ion for hidden discrete random variables, Z = {Zi}. Formally speak-

ng, let X = {xi}, 1 ≤ i ≤ N be an identical independent distribution

et of samples (pixel intensities) and xi belongs to the distributions

lass j when Zi = j. The mixture model considers that these variables

esult from the contributions of J distributions:

p(xi|�) =
J∑

j=1

π j fX (xi|� j) (19)

here � is a vector of parameters of the mixture model (π j, �j) and

j are the parameters of the GG distribution function,
∑J

j=1
π j = 1

nd fX is the PDF of the marginalized GG random variable with the

ollowing parametrization1:

fX (x|{
� j︷ ︸︸ ︷

aj, β j, mj}) = 2β jx
2β jmj−1

	(mj)

(
mj

aj

)mj

exp

(
−mj

aj

x2β j

)
(20)

here x ≥ 0, j ∈ {1, ���, J} and aj is a scale parameter and β j and mj are

hape parameters. In our case, a set of J = 2 classes (blood and tissue)

ere considered as it was described in Vegas-Sanchez-Ferrero et al.

2012).

Note that the mixture model formulation provides the probability

f belonging to each class (blood or tissue), which can be effectively

sed to identify reliable myocardial motions. The probability of be-

onging to the j-th class for sample xi is obtained by means of the

ayes’ theorem as:

j(xi) = P{Zi = j|xi} = fX (xi|� j)π j

p(xi|�)
(21)

In what follows, ϒ = {ϒ j} j=1...J will denote the set of probabilistic

haracterizations for all tissue classes.

.2.2. Regularization of reliable deformations

The probabilistic characterization provides suitable information

hat can be used to assess the reliability of myocardial motions. In

his way, the inherent regularization of the diffeomorphic demons

ethod can be probabilistically weighted to avoid the effect of less

eliable deformations in the blood pool that may bias deformations

n the myocardial tissue. In order to take advantage of the tissue

haracterization, the normalized convolution approach proposed by

nutsson and Westin (1993) provides an adequate tool to weight in

different way the contributions of deformations in different tis-

ues. Formally speaking, a deformation field v(x) can be regularized

y considering the probabilistic characterization Yj ∈ Y as:

� (v(x),ϒ j(x)) = K ∗ (v(x) · ϒ j(x))

K ∗ ϒ j(x)
(22)

here the operator � describes the normalized convolution of the

eformation field v weighted by the probabilistic characterization Yj

ith some kernel K. Note that the most appropriate weights are those

hat describe the characterization of tissue, since they have higher

alues in myocardial regions and lower in the blood pool.
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Fig. 1. Work flow of the methodology proposed for motion and strain estimation. The proposed method has four phases: (1) Parameters Estimation: a Generalized Gamma mixture

model and the local correlation coefficient were used to estimate the parameters involved into the Generalized Gamma speckle model; (2) Tissue Characterization: a probabilistic

tissue map is calculated for the myocardium; (3) Motion Estimation: a multiresolution scheme is used for motion estimation combined with a diffeomorphic demons-based

registration; (4) Strain Estimation: the strain is derived using the classical Cauchy formulation.
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.2.3. Adaptive temporal correlation

The temporal correlation defined in Eq. (8) for each location of the

mage is estimated by means of the Local Correlation Coefficient (LCC)

efined as follows:

(x) = LCC(I2
t−1(x), I2

t (x)) = I2
t−1

(x)I2
t (x) − I2

t−1
(x)I2

t (x)

σI2
t−1

σI2
t

(23)

here It and It−1 correspond to the image intensities and I2(x) de-

otes the sample mean value of I2 in a local neighborhood of x, which

an be computed as the local spatial average using a normalized and

ymmetric kernel Gη . i.e. I2
t (x) = ∑

k Gθ (x − k)I2
t (k). There are mul-

iple choices for the kernel Gθ ; in our case, we consider a normalized

aussian window with isotropic covariance θ2 in order to avoid any

irection preferences and to give more importance to those values

ear the location under study.

.3. Summary and implementation details

Our proposal for motion and strain estimation can be summarized

n the following four phases, also described in Fig. 1, where a mul-

iresolution scheme is applied:

1. Parameters Estimation: A GG mixture model is used to estimate the

parameters of the marginal GG distributions of Eq. (20) involved

in the proposed speckle model π j,� j = {a j, β j, m j} for j = 1, 2.

The correlation between two consecutive images in the cardiac

phase is estimated using the local correlation by Eq. (23).

2. Tissue Characterization: The parameters estimated in the Parame-

ters Estimation phase are used to calculate the probabilistic tissue

characterization for the myocardium by means of Eq. (21).

3. Motion Estimation: The motion field estimation is achieved by us-

ing a ML motion estimation for a bivariate Generalized Gamma

speckle model through a diffeomorphic demons registration as

follows:

(a) Similarity measures: The similarity measures derived from a

ML approach for a bivariate GG speckle model are calculated

by using Eqs. (9) and (10) in the case of non-compressed im-

ages or Eqs. (11) and (12) for log-compressed images.

(b) Diffeomorphic demons-based scheme: The motion field estima-

tion is achieved by minimizing the normalized log-likelihood
(Eq. 2) using the diffeomorphic demons-based scheme

(Eq. 18), where the motion transformation, s, is updated by us-

ing s◦exp (u).

(c) Regularization: The motion and strain estimation is refined by

only using reliable information of the myocardial tissue. This

is done by using the normalized convolution of Eq. (22) and

the probabilistic myocardial tissue characterization calculated

in the Tissue Characterization phase.

4. Strain Estimation: The strain is derived using the classical Cauchy

formula:

ε = 1

2
[(∇xs + I)T (∇xs + I) − I] (24)

The longitudinal, circumferential and radial strains are calculated

by projecting ε on the local cardiac coordinate system.

he algorithm details are described in Algorithm 1.

First the initial deformation s0 is set to 0 and the local tem-

oral correlation between consecutive images It , It−1 is calculated.

hen, the set of parameters of the GG mixture model is estimated

or J = 2 components in Generalized Gamma Mixture Model. Specifi-

ally, π = {π1, π2} and � j = (a j, m j, β j) for j = 1, 2. Now, the tissue

haracterizations, Y, are calculated in Create Tissue Characterization.

mong all the probabilistic characterizations, only that one of tissue

enoted as Ytiss ∈ Y will be considered for regularization purposes.

Now, the multiresolution scheme can be implemented for nLevels

ifferent levels, where It = {Ii
t}nLevels

i=1
, It−1 = {Ii

t−1
}nLevels

i=1
and ϒtiss =

ϒ i
tiss

}nLevels
i=1

are the sets of images and probabilistic characteriza-

ion for different resolutions. In each resolution step, the deforma-

ion field si−1 adapted to the dimensions of the image under study Ii
t

y spatial interpolation.

Afterwards, the similarity measures between the warped image
w
t−1

= Ii
t−1

◦ si and Ii
t are computed as described in Eqs. (9) and (10)

n the case of non-compressed images or Eqs. (11) and (12) for log-

ompressed images. Thus, the deformation update is calculated by

q. (18).

The classical demons algorithm considers now a fluid-like reg-

larization of the update with a kernel Kfluid. In this step we in-

roduce the probabilistic characterization to avoid contributions of

ess reliable deformations by means of the normalized convolution.

fter fluid-like regularization, the diffeomorphic transformation is
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Algorithm 1 Diffeomorphic speckle tracking.

1: procedure GGSpeckleTracking(It , It−1, nLevels)

2: ρ ← LCC(I2
t , I2

t−1) � Eq. (23)

3: � ← GGMixtureModel(It , J = 2)

4: ϒ ← TissueCharacterization(It ,�) � Eq. (21)

5: It , It−1,ϒtiss ← Pyramid(It , It−1,ϒtiss, nLevels)

6: for i = 1, s0 = 0; i ≥ nLevels; i + + do

7: Ii
t , Ii

t−1
,ϒ i

tiss
← GetLevel(It , It−1,ϒtiss, i)

8: si ← SpatialInterpolation(si−1, GetDim(Ii
t ))

9: repeat

10: Iw
t−1

← Ii
t−1

◦ si

11: Compute u for ϕs
GGS

or ϕs
GGCS

� Eq. (18)

12: if fluid-like regularization then

13: u ← Kfluid � (u,ϒ i
tiss

)

14: end if

15: c ← si ◦ exp(u)

16: if diffusion-like regularization then

17: si ← Kdiff � (c,ϒi)

18: else

19: si ← c

20: end if

21: until steady state

22: end for

23: end procedure

Fig. 2. Benchmark data set Straus. Synthetic ultrasound, 3D image for the normal

synchronous case without pericardium presented in three orthogonal views. Also the

shape model is depicted in the bottom-right corner.

Fig. 3. Ischemic areas used for creating the ischemic cases provided by the data set

Straus.
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derived as c = si ◦ exp(u), which can be efficiently calculated by

means of the fast vector field algorithm for exponentials proposed in

Vercauteren et al. (2009). This transformation can be also smoothed

for a diffusion-like regularization, where the probabilistic characteri-

zation is again considered.

The deformation field is updated until some steady state is

reached, e.g. ||si − si−1|| ≤ TOL for some desired tolerance (TOL),

and/or a maximum number of iteration.

4. Results

Two sets of experiments are conducted to evaluate the pro-

posed methodology on the synthetic benchmark Straus proposed by

De Craene et al. (2013). First, the motion accuracy is evaluated by

studying the spatial motion accuracy at end-systole, the error distri-

bution, the effect of the loss of contrast in the myocardial tissue, and

the global displacement error. Second, the strain accuracy is evalu-

ated by studying the global strain accuracy, the spatial strain, accord-

ing to the 17 segment model recommended by the American Heart

Association (AHA), the timing difference for the dyssynchrony case

and the loss of contrast for the myocardial tissue. In both cases, the

Euclidean distance between the estimation and the ground truth for

the left ventricle is used for evaluation.

4.1. Synthetic data

The Straus data set provides a realistic 3D geometry of 297 × 297 ×
297 pixels with an isotropic resolution of 0.3367 mm (Fig. 2). The ul-

trasound images were obtained from the segmentation of cine mag-

netic resonance images, which were used to simulate conventional

US images. The data set provides a complex motion in three differ-

ent scenarios: normal (no lesion), acute ischemia and acute dyssyn-

chrony. The ultrasound speckle structure was synthetically generated

by using a sampling at 50 MHz with a phased array transducer cen-

tered at 3.3 MHz and transmitting a Gaussian pulse with a -6 dB rela-

tive bandwidth of 65%. A symmetric transverse two-way beam profile

was assumed, focusing at 80 mm. The simulated images consisted of

107 × 80 lines in azimuth and elevation direction over an angle of

80 × 80 degrees, resulting in a frame rate of 30 Hz due to the use of
arallel beam forming. A set of 16 image sequences was considered.

our ischemic cases were simulated by modifying peak contractil-

ty and stiffness values in diseased segments (Fig. 3). For the normal

nd ischemic cases, the benchmark dataset provides ten image se-

uences in total, with and without pericardium. Also, three dyssyn-

hrony cases were modeled by progressively removing areas of early

ctivation from the left ventricle (Synchronous, Partial LBBB and Total

BBB). Finally, this dataset includes three extra images where a loss of

ontrast between the myocardium and blood pool was simulated for

he normal case without pericardium. These cases were generated to

imulate different signal to noise ratio (SNR) by modifying the rela-

ive amplitude of tissue, α, with respect to blood pool scatters (Fig. 4)

ee De Craene et al. (2013) for further details. A detailed description

f the data setup can be found in De Craene et al. (2013).

The proposed methodology is applied to the Straus dataset follow-

ng Algorithm 1, where nLevels = 3 and the steady state is reached af-

er a maximum of 30 iterations per level or when the tolerance TOL =
e − 7 is reached. The standard deviation values used in the regular-

zation (σ fluid and σ diff) and the maximum step length σ x (Eq. 18)

ere determined using an independent linear search between [1,

] mm for the regularization and [0.5, 5.5] mm for the maximum step.

his study shows that the most accurate measures were found for

x = 5 mm, σ = 6 mm and σ = 7.5 mm. The proposed method
fluid diff
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Fig. 4. Example of ultrasound images with different signal-to-noise ratio simulated by

modifying the relative amplitude of tissue, α, with respect to blood pool.

Fig. 5. Spatial motion accuracy at end-systole for the normal synchronous case with-

out pericardium for the proposed methods in three orthogonal views.
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Table 1

Processing time and memory for a volume corresponding to the normal case with-

out pericardium. GGMM: Runtime for the Generalized Gamma mixture model;

Tissue: Runtime for the tissue characterization.

Runtime Memory

Motion estimation Temporal correlation GGMM Tissue

13 min 10.5 s 14 s 2 s 448 MB
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as implemented in C++. The time to process a volume in the normal

ase without pericardium was about 13 min. on a quad-core AMD

erver 1 GHz with 16 processors. Table 1 shows a detailed description

f the runtime and the memory used. The proposed method has not

een optimized and these times can be improved.
ig. 6. Spatial motion accuracy at end-systole for ischemic cases without pericardium for th

isualization of the ischemic segments.
.2. Motion accuracy

Spatial motion accuracy: Results for the spatial motion accuracy

xperiment at end-systole for the normal synchronous case without

ericardium are presented in Fig. 5. These results show that both sim-

larity measures, ϕGGS (GGS) and ϕGGCS (GGCS), have similar displace-

ent error for the normal case without pericardium at end-systole,

hile the tracking error seems to be spread in basal and mid seg-

ents. This effect is mainly due to loss of spatial resolution when

he distance increases with respect to the transducer, as stated in

e Craene et al. (2013). Furthermore, due to the effect of the regu-

arization, errors are higher in the subendocardial layer of basal and

id segments than inside the myocardium.

To refine this analysis, we compare the displacement error for

ach ischemic case without pericardium at end-systole, see Fig. 6. A

ark grid is plotted over the displacement error for an easier visu-

lization of the ischemic tissue. As expected, the displacement error

ecreases in the ischemic tissue, where a more stalled motion occurs.

n the other hand, in most of the cases, the regularization amplifies

he errors at the boundary between healthy and ischemic tissue.

Error distribution: The error distribution is studied by concatenat-

ng the average displacement error for each of the 17 AHA segments

boxplots in Fig. 7). For comparison purposes, we include the motion

ccuracy of the classical diffeomorphic demons (efficient second-

rder minimization) method proposed in Vercauteren et al. (2009)

named Diff in this work) and the different speckle tracking methods

reviously described in Section 2: Philips, Creatis, KU Lueven, UPF

nd Mevis.

First, note that the displacement errors shown in Fig. 7 (GGS and

GCS) are higher at late diastole than in the early diastole phase, due

o the design decision of preserving the temporal resolution instead

f avoiding the frame to frame error accumulation. The highest error
e proposed methods. A dark grid is plotted over the displacement error for an easier
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Fig. 7. Motion error along the cardiac phase for different signal to noise ratio. The boxplot corresponds to the highest signal to noise ratio (α = 0.5) for the normal synchronous

case without pericardium. The color curves show the evolution of the median error along the cardiac phase for a different signal to noise ratio. The cardiac frame at end-systole is

show as vertical dash line.
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shown for the normal case at different SNR values is found two frames

after end-systole for the similarity measure GGCS; and six frames af-

ter end-systole for GGS. Similar results are found for KULeuven, Cre-

atis, Philips, Diff and Mevis at frames 13, 14, 14, 17 and 18 respec-

tively. For the proposed methods, there is an increase of the variance

after end-systole (shown as a vertical dash line in Fig. 7) that is gener-

ated by the error accumulation. On the other hand, note that, for both
ethods, the maximum error is not located on the same frame. Since

he same parameters have been used in both methods, this difference

an only be explained by the compression used in the speckle model,

hat affects each method differently.

Effect of the loss of contrast: Next, we study the effect of a loss of

ontrast between the myocardium and the blood pool. The loss of

ontrast is directly related to a decay in the SNR. See, for instance,
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Fig. 8. Global average motion error for all the cases by method. The vertical dash line

corresponds to the cardiac frame at end-systole.
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Fig. 9. Global displacement accuracy for all datasets within a group: ischemy without

pericardium (5 sequences), ischemy (5 sequences) and dyssynchrony (3 sequences).
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he example depicted in Fig. 4, where the myocardium and blood are

asier identified for the α = 0.5 case.

Fig. 7 plots the median accuracy curves from the highest SNR

α = 0.5) to the lowest (α = 1.5). As expected, the displacement er-

or is higher when a loss of contrast occurs, i.e. for the lowest SNR.

ccording to the results, the proposed method GGCS is the most ac-

urate and robust method in terms of minimum error for all the SNR

onsidered. When a high SNR scenario is considered, i.e. α = 0.5,

ther methods show a similar behavior in terms of median error, as

GS and KULeuven. Furthermore, Philips and the proposed methods

how a median error preservation for the different SNR levels with

he exception of the lowest SNR, i.e. from α = 0.5 to α = 1.0. These

hree methods are the only ones with a median error (with the ex-

eption of the lowest SNR) below the third quartile of the higher SNR

α = 0.5).

The different behavior of GGS and GGCS at the lowest SNR, can be

xplained by the logarithmic compression assumed in the underlying

peckle model. In this case, the logarithmic compression transforms

he ratio of intensity into a difference which is less sensitive to the

oss of SNR.

Global displacement error: The displacement error is studied along

he cardiac phase and globally. The global motion accuracy (Fig. 9) is

easured by concatenating the average displacement error for each

egment at all time points for all datasets within a group: ischemy

5 sequences), ischemy without pericardium (5 sequences) and

yssynchrony (3 sequences). Also, global motion accuracy is mea-

ured along the entire cardiac phase by concatenating the aver-

ge displacement error for each of the 17 segments for all datasets

Fig. 8).

According to Figs. 9 and 8, the proposed method GGCS shows

he best motion accuracy for the ischemic case with and without

ericardium (median error of 0.42 and 0.4 mm, respectively); and

t also provides a remarkable motion accuracy for the dyssynchrony

ase (median error of 0.46 mm). Moreover, these results show that

he proposed method GGS is close to the best motion accuracy,

.48 mm for the ischemic case with and without pericardium; and

.54 mm for the dyssynchrony case, only overtaken by the GGCS and

ULeuven.

An interesting result is obtained when the results for the two

schemic groups are compared. Methods that use a myocardial tissue

egmentation, GGC, GGCS, KULeuven and Philips, are more robust to

he pericardium inclusion, as expected. In addition, GGC and GGCS,
resent the advantage of using an automatic tissue characterization.

espite the UPF method shows no difference between both ischemic

roups for the median error, the violin plot reveals that the error dis-

ribution changes and becomes centered around the median for the

schemic case with pericardium. In contrast, the error distribution for

he proposed methods (GGS and GGCS), KULeuven and Philips remain

he same. Another interesting result is obtained by comparing the

schemic and dyssynchrony groups. It is observed that all the meth-

ds tend to increase the error for the dyssynchrony cases, mainly

aused by an excessive regularization. As it was stated in De Craene

t al. (2013) this error increase cannot be attributed to image quality

ince ultrasound simulation parameters were kept identical in the

wo groups. In addition, the violin plot for the dyssynchrony group

eveals that the error probability density seems to be more centered



100 A.H. Curiale et al. / Medical Image Analysis 24 (2015) 90–105

Table 2

Global strain accuracy for all methods. Mean and standard deviation

errors are reported for all dataset at all data points. The best values are

in bold (best value + 0.3%)

Radial error [%] Circ. error [%] Long. error [%]

μ ± SD μ ± SD μ ± SD

GGS 7.1 ± 4.9 2.1 ± 1.1 2.1 ± 1.3

GGCS 7.9 ± 6.2 2.0 ± 0.9 2.2 ± 1.3

KULeuven 7.1 ± 4.9 2.2 ± 1.1 2.7 ± 1.8

diff 8.5 ± 6.7 2.3 ± 1.2 2.3 ± 1.7

Mevis 8.3 ± 6.3 2.9 ± 1.7 3.0 ± 2.5

Philips 9.9 ± 7.1 2.5 ± 1.3 2.8 ± 2.1

Upf 9.7 ± 6.3 3.8 ± 2.4 4.0 ± 5.4

creatis 8.8 ± 8.1 2.5 ± 1.3 3.0 ± 2.7

4

b

s

T

g

c

p

b

a

l

m

m

e

f

s

a

p

around the median for the proposed methods (GGS and GGCS)

and Mevis with respect to the ischemic cases (Fig. 9). These results

show that the average error for the dyssynchrony cases increased

considerably with respect to the ischemic cases for all methods with

the exception of the proposed methods (GGS and GGCS) and the

KULeuven.
 d

Table 3

Global strain accuracy for all methods. Mean and standard deviation errors are repo

ischemy with pericardium and dyssynchrony. The best values are in bold (best value +

Radial error (μ ± SD) [%] Circ. error (μ ± SD)

Isch. no pc. Isch. with pc. Dyssynchrony Isch. no pc. Isch.

GGS 7.1 ± 4.8 6.5 ± 4.5 8.3 ± 5.7 2.1 ± 0.9 2.0 ±
GGCS 7.8 ± 6.4 7.0 ± 5.6 10.1 ± 6.8 2.0 ± 0.9 1.9 ±
KULeuven 7.3 ± 5.0 6.7 ± 4.3 7.8 ± 5.9 2.1 ± 1.0 2.2 ±
diff 8.3 ± 6.9 7.6 ± 6.0 10.8 ± 7.1 2.2 ± 1.1 2.3 ±
Mevis 8.4 ± 6.5 7.6 ± 5.9 9.8 ± 6.5 2.8 ± 1.3 2.8 ±
Philips 9.1 ± 6.2 9.2 ± 6.0 13.1 ± 9.9 2.5 ± 1.3 2.4 ±
Upf 9.3 ± 5.7 10.3 ± 6.6 9.5 ± 6.5 3.9 ± 2.2 3.8 ±
creatis 8.3 ± 6.8 8.8 ± 9.6 10.0 ± 7.0 2.3 ± 1.0 2.6 ±

Fig. 10. Global average accuracy for radial (Radial), longitudinal (Long.) and circumferentia

end-systole.
.3. Strain accuracy

Global strain accuracy: The global strain accuracy is evaluated

y concatenating the average strain error for each of the 17 AHA

egments for cardiac phases and all datasets. Results are shown in

able 2. In Table 3 we have detailed the strain accuracy within three

roups: ischemic case without pericardium, ischemic case with peri-

ardium and dyssynchrony case.

According to the results, the best accuracy for the radial strain was

rovided by GGS and KULeuven. However, this accuracy is too low to

e used for discriminating healthy from diseased segments. The low

ccuracy for the radial strain is due to the fact that the torsional and

ongitudinal motion provided by the benchmark are higher than the

yocardial compression. Therefore, the regularization used by the

ethods will reduce the compression and it will increase the radial

rror.

The longitudinal strain, on the other hand, can only be used

or the proposed methods (GGS and GGCS), Philips and KULeuven,

ince these methods are the only ones having a standard deviation

round 2%, which is appropriate to be used for discrimination pur-

oses (Table 3 Dyssynchrony case). However, the normal longitu-

inal strain provided by the Straus benchmark presents low values
rted for all dataset at all data points by group: ischemy without pericardium,

0.3%)

[%] Long. error (μ ± SD) [%]

with pc. Dyssynchrony Isch. no pc. Isch. with pc. Dyssynchrony

0.9 2.3 ± 1.6 2.2 ± 1.3 2.0 ± 1.2 2.1 ± 1.3

0.9 2.0 ± 1.0 2.3 ± 1.4 2.2 ± 1.3 1.9 ± 1.1

1.1 2.1 ± 1.1 2.7 ± 1.8 2.9 ± 1.9 2.5 ± 1.4

1.2 2.4 ± 1.4 2.1 ± 1.3 2.1 ± 1.3 3.2 ± 2.7

1.4 3.4 ± 2.5 2.7 ± 1.6 2.7 ± 1.7 4.3 ± 4.5

1.3 2.5 ± 1.5 2.7 ± 1.9 2.9 ± 2.2 2.7 ± 2.2

2.3 3.7 ± 3.0 3.3 ± 2.0 3.4 ± 2.2 6.9 ± 11.4

1.3 2.9 ± 1.6 2.6 ± 1.5 2.9 ± 2.0 3.9 ± 4.9

l strain (Circ.) by method. The vertical dash line corresponds to the cardiac frame at
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Fig. 11. End-systolic Bland–Altman plots of circumferential (top) and longitudinal (bottom) strain for the proposed methods (GGS and GGCS).
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Fig. 12. End-systolic strain values of the normal case without pericardium for the pro-

posed methods (GGS and GGCS) and the ground truth. The strain values were grouped

by the 17 segment model.

s

c

s

t

T

ith respect to normal deformation ranges reported in the litera-

ure, thus, the longitudinal strain is also excluded for discriminating

urpose.

Finally, the proposed methods show similar accuracy for the cir-

umferential strain (Fig. 10). In contrast to radial and longitudinal

train, all methods show a high accuracy level for the circumferen-

ial strain (a standard deviation around 2% or less) which suffices to

e used for discrimination purposes.

The average strain error is studied for the entire cardiac phase

Fig. 10). Results suggest that GGS and GGCS are the most accurate

ethods to measure the longitudinal and circumferential strain. De-

pite presenting very similar results, GGCS shows better longitudinal

nd circumferential accuracy than GGS. In contrast, GGCS presents a

ower radial accuracy than GGS, which has a high radial accuracy with

espect to the methods studied.

The highest global strain error was found at end-systole as

xpected, since the highest global displacement error is located

here. In addition, the Bland–Altman plots (Fig. 11) reveal a small

ias for the proposed methods GGS and GGCS (0.26 and 0% for

he circumferential strain, and -0.16 and -0.83% for the longitudi-

al strain respectively). These plots were created by concatenating

he average strain in each segment for all dataset (except ones at

ow SNRs).

Spatial strain accuracy: The spatial strain distribution is studied

ithin the 17 segment model using the “bull’s eye” maps. These re-

ults are presented in Figs. 12 and 13. The resulting maps for the

ormal case show that the proposed method with the GGS similar-

ty measure is more accurate than the GGCS for radial and longitu-

inal strain while they both have similar circumferential strain, as

escribed in the previous section, Global strain accuracy. Moreover,

his result reveals an underestimation of the radial strain by GGS and

GCS.

By comparing the bull’s eye map for the LCX and LADdist ischemic

ases without pericardium (Figs. 12 and 13), there is no doubt that

he ischemic segments are well discriminated by the circumferential
train. These segments show a difference of more than 10% for cir-

umferential strain. A lower difference was found for the longitudinal

train (less than 5%), though, these segments are also properly dis-

inguished. The small bias and standard deviation error (Fig. 11 and

ables 2 and 3) confirm the visual results.
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Fig. 13. End-systolic strain values of the LCX (left) and LADdist (right) ischemic cases without pericardium for the proposed methods (GGS and GGCS) and the ground truth. The

strain values were grouped by the 17 segment model and the ischemic segments are outlined in bold.

Fig. 14. Radial, longitudinal and circumferential, strain of the Total LBBB ischemic case without pericardium for the segments 9 and 12 according to the 17 segment model. The

ground truth is presented in dash line.
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Timing difference: In order to study dyssynchrony pathologies, the

strain curves for two opposed segments at mid-level are depicted in

Fig. 14. For the sake of comparison, only the inferoseptal and antero-

lateral (segments 9 and 12) were considered. The strain curves are ob-

tained from the Total LBBB dyssynchrony case with the goal to iden-

tify the timing difference and the possibility to recover the timing

difference between the dyssynchronous walls. In the radial direction,

time-to-peaks values were not accurate enough for quantifying the

dyssynchrony due to an underestimation of radial strain. However,

longitudinal and circumferential strain are good enough for observ-

ing delays between septal and lateral strain curves.
Effect of the loss of contrast: Last, similar to the motion estimation,

e study the effect of the loss of contrast between the myocardium

nd the blood pool for the circumferential, longitudinal and radial

train. The absolute error was concatenated for all data points and

ll times to make a boxplot for each SNR value (Fig. 15). Generally,

ll methods show an error increase when the contrast becomes too

ow, i.e α = 1.5. GGS, GGCS, KULeuven and Philips seem to be the

ost robust methods due to the median preservation for different

NR values. However, the highest strain accuracy was achieved by

GS and GGCS for the circumferential and longitudinal strain. In par-

icular, the radial strain showed a high sensibility to the different SNR
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Fig. 15. Circumferential, longitudinal and radial strain accuracy at different signal to

noise ratio by method.
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or all method with the exception of the proposed method with the

imilarity measure GGCS.

. Conclusions

In this paper, we have proposed a maximum likelihood diffeomor-

hic speckle tracking method for 3D strain estimation which is ap-

lied for detection of the regional abnormal areas through regional

yocardial strain assessment. Unlike previous maximum likelihood

pproaches, our method proposes a more realistic speckle model

ith the inclusion of an adaptive temporal correlation between con-

ecutive frames. Also, we provide a formulation that generalizes con-

entional speckle models (Rayleigh, Nakagami and Gamma) into one

ore versatile and adaptable model for real data. This approach

akes use of a probabilistic myocardial tissue characterization to dis-

inguish between more and less reliable myocardial motion; a bivari-

te Generalized Gamma speckle model to provide a more realistic
peckle model, which considers the temporal correlation between

rames; and a maximum likelihood methodology to provide a dif-

eomorphic motion estimation implemented in an efficient demons-

ike formulation, which allows to perform the registration before and

fter log-compression. For accuracy and agreement assessment, the

roposed method for both similarity measures (GGS and GGCS) were

valuated in a total of 16 image sequences grouped in three scenar-

os: normal (no lesion), acute ischemia and acute dyssynchrony. Ad-

itionally, the motion and strain accuracy were compared with six

ther speckle tracking methods.

For the experiments we conducted, our method produced the

est results in comparison to other methods for assessing motion

nd strain. Also, the results indicate that the proposed diffeomorphic

peckle tracking method provides robust motion and strain estima-

ion for different SNR levels.

Among all compared methods, the proposed one had the high-

st displacement accuracy with an average global median error of

.42 mm for the similarity measure GGCS. A similar motion accuracy

as observed for the similarity measure GGS with an average median

rror of 0.5 mm. This difference is due to the log-compression as-

umed into the underlying speckle model for the similarity measure

GCS. In this case, the log-compression transforms the ratio of inten-

ity into a difference which is more appropriate for motion due to its

umerical robustness in comparison to the ratio of image intensities.

owever, the median error preservation for the different SNR lev-

ls shows that the similarity measure GGS is one of the most robust

ethods, which evidences the adequacy of the GG speckle model for

peckle tracking.

Regarding strain, it was observed that the proposed method

ended to underestimate the radial strain. However, the global strain

ccuracy reveals that the proposed method GGS is the most accu-

ate method to measure the radial strain with a median error of

.1 ± 4.9%, follows by the GGCS (7.9 ± 6.2%.). The low accuracy for

he radial strain is due to the fact that the torsional and longitudi-

al motion provided by the benchmark is higher than the myocardial

ompression. The longitudinal and circumferential strain were accu-

ately quantified for the proposed methods with a median error of

.1 ± 1.3% and 2.2 ± 1.3% (GGS and GGCS); and 2.1 ± 1.1% and 2.0 ±

.9% (GGS and GGCS) for longitudinal and circumferential strain. The

tudy of regional abnormal areas reveals that the proposed methods

GS and GGCS are capable of identifying abnormal segments for a re-

uced cardiac function by measuring the circumferential and longitu-

inal strain. Furthermore, both strain measures are capable to detect

he timing difference for the dyssynchrony cases. Finally, the study

f different SNR values shows that the proposed method is the most

obust for measuring the longitudinal and circumferential strain.
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ppendix A. Bivariate Generalized Gamma similarity measure

GGS)

The similarity measure ϕGGS is derived from Eq. (4) as follows:

s
GGS = − log(

1

It (x)
pη(η))
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B

B

B

C

C

= − log

(
β 22m−1 	(m + 0.5)√
� (1 − ρ)−β 	(m)

)

+ log(It (x)) − log

(
η2βm−1

(η2β + 1)2m

)

− log

((
(η2β + 1)2 − 4 ρ η2β

(η2β + 1)2

)− 2m+1
2

)

ϕs
GGS = − log

(
β 22m 	(m + 0.5)√
� (1 − ρ)−β 	(m)

)
+ log(It (x)) − (2 β m − 1) log(η)

+ 2m + 1

2
log((η2β + 1)2 − 4 ρ η2β )

− log(η2β + 1)

where pη is the probability density function for the ratio of two cor-

related Generalized Gamma random variables and η = It−1◦s(x)

It (x)
is the

ratio of two random variables. After adding the compensation term to

remove the bias of the similarity measure when the optimal transfor-

mation is found, and removing constant values, the similarity mea-

sure (Eq. (9)) is as follows:

ϕs
GGS = log(It (x)) − (2 β m − 1) log(η)

+ 2m + 1

2
log((η2β + 1)2 − 4 ρ η2β )

− log(η2β + 1)

Finally, the gradient of the similarity measure with respect to the

transformation s(x) is derived as follow:

∇ϕs
GGS =

[
−2 β m − 1

η It (x)
+ (2 m + 1)

2 ((η2β + 1)2 − 4 ρ η2β )

·
(

2 (η2β + 1) 2 βη2β−1

It (x)
− 4 ρ 2 β η2β−1

It (x)

)

− 2 β η2β−1

It (x)
− 1

It−1(x)

]
∇J

=
[
− 2 β m

It−1(x)
− 2 β η2β

(η2β + 1) It−1(x)

+ 2m + 1

2

2 βη2β

It−1(x)

2 (η2β + 1) − 4 ρ

(η2β + 1)2 − 4 ρ η2β

]
∇J

where ∇J = 1
2 (∇It + ∇It−1 ◦ s) that leads to an efficient second order

minimization.

Appendix B. Bivariate Generalized Gamma similarity measure

with compression (GGCS)

The similarity measure ϕGGCS is derived taking into account the

image compression into Eq. (6) as follows:

ϕs
GGS = − log

(
η̂ pη

(
η̂
))

= − log

(
β 22m−1 	(m + 0.5)√
� (1 − ρ)−β 	(m)

)

− m log

(
η̂2β

(η̂2β + 1)2

)

+ 2m + 1

2
log

(
1 − 4 ρ η̂2β

(η̂2β + 1)2

)

ϕs
GGS = − log

(
β 22m−1 	(m + 0.5)√
� (1 − ρ)−β 	(m)

)
− m log(4)
+ m log

((
e2βη + 1

2 eβη

)2
)

+ 2m + 1

2
log

(
1 − ρ(

e2βη+1
2 eβη

)2

)

= − log

(
β 22m−1 	(m + 0.5)√
� (1 − ρ)−β 	(m)

)
− m log(4)

+ m log(cosh
2
(β η))

+ 2m + 1

2
log

(
cosh

2
(β η) − ρ

cosh
2
(β η)

)

= − log

(
β 22m−1 	(m + 0.5)√
� (1 − ρ)−β 	(m)

)
− m log(4)

+ 2m + 1

2
log(cosh

2
(β η) − ρ)

− 1

2
log(cosh

2
(β η))

here η = eη̂ . By removing constant values, the similarity measure

s:

s
GGS = 2m + 1

2
log(cosh

2
(β η) − ρ)

−1

2
log(cosh

2
(β η))

Finally, the gradient of the similarity measure with respect to the

ransformation s(x) is derived as follow:

ϕs
GGCS =

(
(2m + 1)

cosh(β η) sinh(β η)β

cosh
2
(β η) − ρ

− cosh(β η) sinh(β η)β

cosh
2
(β η)

)
∇J

=
(

2m + 1

cosh(β η) − ρ
− 1

cosh
2
(β η)

)
· cosh(β η) sinh(β η)β ∇J

here ∇J = 1
2 (∇It + ∇It−1 ◦ s) that leads to an efficient second order

inimization.
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