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a b s t r a c t 

Computed tomography (CT) is a widely used imaging modality for screening and diagnosis. However, 

the deleterious effects of radiation exposure inherent in CT imaging require the development of image 

reconstruction methods which can reduce exposure levels. The development of iterative reconstruction 

techniques is now enabling the acquisition of low-dose CT images whose quality is comparable to that 

of CT images acquired with much higher radiation dosages. However, the characterization and calibration 

of the CT signal due to changes in dosage and reconstruction approaches is crucial to provide clinically 

relevant data. Although CT scanners are calibrated as part of the imaging workflow, the calibration is lim- 

ited to select global reference values and does not consider other inherent factors of the acquisition that 

depend on the subject scanned (e.g. photon starvation, partial volume effect, beam hardening) and result 

in a non-stationary noise response. In this work, we analyze the effect of reconstruction biases caused 

by non-stationary noise and propose an autocalibration methodology to compensate it. Our contributions 

are: 1) the derivation of a functional relationship between observed bias and non-stationary noise, 2) a 

robust and accurate method to estimate the local variance, 3) an autocalibration methodology that does 

not necessarily rely on a calibration phantom, attenuates the bias caused by noise and removes the sys- 

tematic bias observed in devices from different vendors. The validation of the proposed methodology was 

performed with a physical phantom and clinical CT scans acquired with different configurations (kernels, 

doses, algorithms including iterative reconstruction). The results confirmed the suitability of the proposed 

methods for removing the intra-device and inter-device reconstruction biases. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

Computed tomographic imaging has become almost universally

vailable in clinical and research settings. Since its introduction, it

as grown to be part of routine clinical practice, and it is esti-

ated that over 80 million CT scans are performed each year in

he United States ( Hess et al., 2014 ). While it continues to provide

ew insight into the characterization and prognostication of dis-

ase, this high utilization has also raised concerns about the impli-

ations of radiation exposure to clinical populations ( Brenner and

all, 2007 ). Those concerns have tempered the growth in CT imag-

ng studies ( Hess et al., 2014 ) and propelled technological innova-

ions for the implementation of low-dose and ultra-low-dose tech-

iques in clinical practice ( Mayo-Smith et al., 2014 ). 

The characterization and calibration of the CT signal due to

hanges in dosage and reconstruction approaches is crucial for the

dvent of quantitative imaging as a clinically relevant tool. Quan-
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itative imaging (QI) is the process of reducing functional, biologi-

al and morphological processes to a measurable quantity employ-

ng medical imaging. The uses of QI are even greater in the light

f a new healthcare delivery system that becomes more person-

lized and tries to tailor therapies to the underlying pathophysi-

logy. QI contributes to the radiological interpretation by assess-

ng the degree of a given condition ( Buckler et al., 2011 ). QI has

een adopted in clinical studies and trials to obtain more sensi-

ive and precise endpoints. The advancement in techniques to au-

omatically interpret and quantify medical images has been recog-

ized by regulatory agencies that have now proposed guidelines

or the qualification of image-based biomarkers to be used as valid

ndpoints in clinical trials (e.g. the Quantitative Imaging Biomark-

rs Alliance, QIBA, at www.rsna.org/qiba ). However, the utility of

uantitative imaging is hampered by the lack of standardization

mong vendors due to the variations in the acquisition and re-

onstruction processes such as signal-to-noise ratio, spatial resolu-

ion, slice thickness, image reconstruction algorithms among oth-

rs ( Mulshine et al., 2015 ). 

https://doi.org/10.1016/j.media.2017.12.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2017.12.004&domain=pdf
mailto:gvegas@bwh.havard.edu
http://www.rsna.org/qiba
https://doi.org/10.1016/j.media.2017.12.004
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The characterization and calibration of the CT signal due to

changes in dosage and reconstruction approaches are foundational

for the transition of quantitative image analysis from biomedi-

cal research to clinical care ( Sieren et al., 2012 ). This transition

has heretofore been limited by inter- and intra-scanner variabil-

ity which has inhibited effort s to perform and interpret large-

scale cross-sectional and longitudinal studies ( Chen-Mayer et al.,

2017; Parr et al., 2004 ). Any observed variability in such effort s

has been ascribed to an inseparable admixture of poor standard-

ization and biology. The current approach to this challenge is to

create larger cohorts of subjects for clinical investigation with the

hope that sample size will allow to detect biological effects despite

the noise ( Regan et al., 2011 ). 

Although CT scanners are calibrated as part of the imaging

workflow, the calibration is typically based on selecting global ref-

erence values such as air and water ( Millner et al., 1978 ). These

limited calibration points are unable to account for inherent fac-

tors of the acquisition (e.g. photon starvation, partial volume ef-

fect, beam hardening) and so the resulting CT signal is more vari-

able than desired ( Hsieh, 2003 ). These effects are particularly im-

portant to account for when creating a quantitative metric that is

consistent among vendors and free of confounding factors due to

changes in patient weight and size to fulfill requirements of accu-

racy and precision ( Uppot et al., 2007 ). Recent validation studies

comparing different low-dose reconstruction approaches show the

variability of quantitative traits, therefore, suggesting the need for

calibration procedures ( Choo et al., 2014 ). 

Among all those issues, a clear effect of low-dose and ultra-low-

dose CT protocols is the increase of image noise ( Kim et al., 2015 ).

CT noise is a major factor that has been carefully studied during

the last decades at the detector level as part of the transmission

process ( Whiting, 2002 ). The non-monochromatic nature of the X-

ray signal, the amount of total X-ray energy defined by tube cur-

rent coupled with the effects of the reconstruction and the inter-

action between X-ray and matter within the scanning field of view

make the noise characterization in the reconstructed image a com-

plex process. One of the main effects of this complexity is the lack

of stationarity. It is well understood that fan-beam tomography in-

troduces non-stationary frequency components and non-stationary

noise by the nature of the scanning geometry ( Zeng, 2004 ). 

The advent of iterative methods to deal with ultra-low-dose re-

construction provides a more complex scenario in which the un-

derlying preprocessing affects differently the reconstructed signal.

Those reconstruction methods affect the attenuation levels differ-

ently depending on their assumptions and may result in a de-

viation of the desired calibration as commonly seen in PET at-

tenuation correction techniques using ultra-low dose CT proto-

cols ( Xia et al., 2012 ). 

The aforementioned factors highlight the many challenges

present in the quantitative comparison of CT images acquired un-

der different conditions. This paper analyzes the effect of recon-

struction inconsistencies depending on the dose, reconstruction al-

gorithm, and acquisition parameters. The analysis is especially fo-

cused on the effect of the non-stationarity of noise, which is a

signal-dependent source of variability that cannot be prevented

due to the physics of the acquisition. The effect of bias due to

the non-stationary variance has been observed in the literature due

to the strong deviations perceived in the attenuation level for the

air cavities such as the trachea ( Parr et al., 2004 ). On the other

hand, the kernels and iterative algorithms used for reconstruction

may arbitrarily affect the average intensities. If these effects are

not considered, the reconstructions become useless for multicen-

ter studies or the analysis of disease progression. 

Several effort s have been coordinated to conduct phantom stud-

ies in a variety of scanner models to establish a baseline for as-

sessing the variations in patient studies that can be attributed to
canner calibration and measurement uncertainty. One of those is

hen-Mayer et al. (2017) , in which a phantom study provides an

ssessment of the accuracy and precision of the density metrics

cross platforms due to machine calibration. This study, however,

oes not consider the potential effects of non-stationary noise and

patially variant biases as the ones observed in Parr et al. (2004) . 

In our previous work Vegas-Sánchez-Ferrero et al. (2017) , we

roposed a statistical framework to describe the non-stationary

ehavior of noise and proposed a stabilization scheme to trans-

orm it into a stationary Gaussian process, enabling the local com-

arison of histograms between different doses and reconstruction

ernels. This methodology would suffice to standardize scanners

nder the same calibration assuming the reconstruction methods

o not introduce any bias. However, the non-stationary and posi-

ively skewed nature of noise also introduces an intrinsic bias that

epends spatially on the object scanned. Even the same imaging

evice exhibits different bias fields depending on the subject be-

ng imaged. This fact is further complicated in multivendor studies

here different systematic biases may be observed ( Sieren et al.,

012 ). 

To define and correct the aforementioned effect, we performed

 bias study through a statistical exploratory data analysis in a se-

ies of acquisitions provided with different devices, reconstruction

ernels, and doses. Then, we establish a functional relationship be-

ween the observed attenuation level and the local moments. This

elationship paves the way for the derivation of an autocalibration

ethod. The local variance has to be carefully estimated to remove

he spatial dependence between bias and noise. We propose a ro-

ust methodology to estimate the local variance that avoids arti-

acts due to tissue boundaries and non-homogeneities based on

he statistical characterization and variance stabilization methods

ecently proposed in Vegas-Sánchez-Ferrero et al. (2017) . Then, an

utocalibration scheme is proposed to establish a common frame-

ork for comparison of studies. This method successfully removes

he bias caused by non-stationary noise and calibrates according

o certain reference attenuation levels (e.g. anatomical references

r well-defined homogeneous materials). The proposed methodol-

gy does not require any phantom, and it is designed to deal with

tudies with heterogeneous calibrations that may differ remarkably

n their reconstruction methods or doses without the need for any

arameter specification such as the reconstruction method. This

ethod makes use of anatomical regions to establish common ref-

rences and successfully removes the bias due to spatially-variant

oise. The systematic bias induced by reconstruction methods and

evices is also successfully corrected. 

The contributions of this paper are: 1) The derivation of a func-

ional relationship between the bias and non-stationary variance,

) a robust method to calculate non-stationary variance, and 3) the

utocalibration methodology. 

The evaluation of the methods is performed with phantom ac-

uisitions for different doses, reconstruction methods, and devices.

he bias due to noise is successfully removed with a reduction

ver 90% in most of the cases, and the systematic bias is suc-

essfully removed. The evaluation with clinical CT scans is tested

onsidering low-dose acquisitions, different reconstruction kernels,

nd iterative reconstruction methods. The observed intensities in

ell-defined anatomical structures such as trachea show a sig-

ificant discrepancy in non-calibrated images. The autocalibration

ethodology successfully removes the bias and provides a uniform

esponse across the different acquisition conditions. 

The paper is structured as follows: Section 2 presents the ex-

loratory data analysis of a phantom acquired with different ker-

els, doses, and devices. The exploratory analysis carefully tests the

unctional relationships between the statistics of noise and the ob-

erved attenuation level. The descriptive analysis leads to the def-

nition of a functional relationship between observed attenuation
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Fig. 1. Scheme of the cylindrical phantom studied. The legend specifies in descend- 

ing order the different attenuation levels per material. 
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Fig. 2. Axial view of the acquired 3D volumes with different devices (Top: General 

Electric; Bottom: Siemens) for different kernels and doses. a) STD HD, b) STD LD, c) 

BONE HD, d) BONE LD, e) B31f HD, f) B31f LD, g) B45f HD, h) B45f LD. 
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nd local variance of noise ( Section 2.1 ). The methods to estimate

ocal moments and the non-stationary variance are described in

ection 3.1 . Then, in Section 3.3 , the autocalibration methodology

s described. The validation of the proposed methodology is given

n Section 4 . Finally, in Section 5 we present our conclusions. 

. Exploratory data analysis of bias 

The exploratory analysis is carried out in a physical phantom

o see the deviations from the nominal attenuation value given by

anufacturers. The deviations will be studied considering the non-

tationary nature of noise, which is signal dependent. 

We used the 8-step linearity module of the Lung Cancer Screen-

ng CT Phantom . 1 The phantom is schematically described in Fig. 1 .

t consists of a cylindrical structure (200 mm diameter, 100 mm

eight) made of a homogeneous material that contains other 8

oncentric cylindrical structures with different attenuation levels

from 340 HUs to −10 0 0 HUs). 

The phantom was acquired with two different devices with the

ollowing reconstruction protocol: 

• General Electric Discovery STE. Four volumes of size

512 × 512 × 313 were acquired at Brigham and Women’s

Hospital with various doses (40 0 mA and 10 0 mA) and recon-

struction kernels (Standard, Bone). All of them with a KVP:

120 kV, slice thickness 0.625, pixel spacing 0.7 × 0.7, with soft-

ware 07MWDVCT36.4. We will refer to these volumes as STD

HD, STD LD, BONE HD, BONE LD for the different arrangements

of kernels and doses (HD: high dose; LD: low dose). 
• Siemens Definition. Similarly, four volumes of size

512 × 512 × 313 were acquired at Brigham and Women’s Hospi-

tal for the same configurations of doses (40 0 mA and 10 0 mA)

and reconstruction kernels B31f, B45f. All of them with a KVP:

120 kV, slice thickness 0.75, pixel spacing 0.98 × 0.98, with

software Syngo .CT 2007C. Following the same convention as

before, we will refer to them as B31f HD, B31f LD, B45f HD,

B45f LD. 

Fig. 2 shows an example of the acquired images for all the ker-

els, devices, and doses considered. 

In what follows we will denote X : � → R as the CT volume de-

ned in �, the location coordinates as r = (x, y, z) ∈ �, and �n ⊂�

he locations of the n -th homogeneous material. 

.1. Functional dependence on local variance 

The study was performed in a set of samples collected from

ach tissue identified by the numbered regions from 1 to 9 of the

T images (see the designation of regions in Fig. 1 ). The samples

ere acquired by manually selecting a circular region in the ax-

al view laying within each tissue type. More than 20,0 0 0 samples

ere obtained in each region. 
1 www.kyotokagaku.com . 

 

u  

w  
The deviations from the nominal attenuation level per region

ere firstly analyzed by considering the spatial mean and (unbi-

sed) variance estimators computed in the longitudinal direction

s: 

̂ (x, y ) = 

1 

N 

N ∑ 

z=1 

X (x, y, z) (1) 

̂ 

2 (x, y ) = 

1 

N − 1 

N ∑ 

z=1 

( X (x, y, z) − ̂ μ(x, y ) ) 
2 

(2) 

here X ( x, y, z ) is the voxel value at location (x,y,z), and N is the

umber of slices considered. Note that this calculation takes ad-

antage of the invariance in the z-axis due to the cylindrical shape

f the phantom. This analysis allows us to obtain the functional re-

ationship between the mean attenuation level and the local noise

ariance. Fig. 3 shows this relationship between 

̂ μ and 

̂ σ 2 for the

ifferent regions, doses, and devices. 

At first sight, the average attenuation levels seem to be inde-

endent of the local variance. However, as lower densities are con-

idered, both the mean and variance become more related. We

ave zoomed in the samples of the lowest attenuation level and

uperimposed the regression line for a better visual inspection.

ote that the observed correlation exhibits an increasing bias as

he variance grows. This bias will be more noticeable in those ac-

uisitions with more intrinsic noise (e.g. low-dose or sharper ker-

els) or near high-density structures. 

On the other hand, the observed correlation decreases for

igher densities, meaning that local variance introduces a bias

n tissues typically characterized by lower attenuation levels such

hose related to air (e.g. lung parenchyma, airways). 

This bias is due to the lower limit imposed by the physics of

he acquisition, which assigns -10 0 0 HU to the minimum attenua-

ion perceived –corresponding to air– and 0 HU to the attenuation

evel of water ( Hsieh, 2003 ). Obviously, this constraint on the lower

ttenuation level enforces a positive skewness in the distribution

f noise. The positive skewness was confirmed in Vegas-Sánchez-

errero et al. (2017) , where the statistical response of noise was

tudied for different doses, reconstruction kernels, and devices. In

ig. 4 we show the probability density functions observed for both

he GE and Siemens devices where the overall statistical behavior

an be observed. Note that the density functions may take values

elow −10 0 0 HU. This is because the least attenuation level is set

o −10 0 0 HU on average. Usually, vendors set a lower attenuation

imit to a value below −10 0 0 HU. We will refer to this value as δ
nd, in our particular case, δ = −1024 HU. 

It is also worth mentioning that, in some cases, the lower atten-

ation value set by vendors may generate a truncated distribution,

hich clearly has a positive skewness (the distributions depicted in

http://www.kyotokagaku.com
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Fig. 3. Functional relationship of local variance and local mean for the different tissue regions and different arrangements of devices, kernels, and doses. Top: GE, Bottom: 

Siemens. The regression lines are superimposed to the samples as dashed lines. The zoomed region shows the positive bias introduced by the increase of variance. 
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Table 1 

Linear regression between variance and mean. 

Regression Line Bias interval R 2 p-value 

95% (HU) 

STD LD ˆ μ = 0 . 05 σ 2 − 1006 . 18 [ −0 . 97 , 8 . 24] 0.39 < 10 −4 

STD HD ˆ μ = 0 . 12 σ 2 − 1002 . 86 [ −0 . 52 , 6 . 71] 0.26 < 10 −4 

BONE LD ˆ μ = 0 . 02 σ 2 − 1009 . 67 [0.34, 16.55] 0.58 < 10 −4 

BONE HD ˆ μ = 0 . 04 σ 2 − 1006 . 62 [ −1 . 55 , 8 . 80] 0.24 < 10 −4 

B31f LD ˆ μ = 0 . 02 σ 2 − 1003 . 18 [ −1 . 36 , 4 . 52] 0.20 < 10 −4 

B31f HD ˆ μ = 0 . 02 σ 2 − 1001 . 44 [ −0 . 97 , 0 . 77] 0.07 < 10 −4 

B45f LD ˆ μ = 0 . 02 σ 2 − 1003 . 79 [0.36, 15.27] 0.45 < 10 −4 

B45f HD ˆ μ = 0 . 03 σ 2 − 1004 . 21 [ −1 . 88 , 5 . 47] 0.17 < 10 −4 

n  

a  

l  
Fig. 4 do not show this effect, but other configurations with higher

noise may exhibit truncated distributions). 

In both possible scenarios, the skewness will link the CT num-

ber with the local variance of noise resulting in a non-stationary

bias that strongly affects the lower attenuation levels. 

The positive skewness can contribute to the bias in several

functional ways. For simplicity, we test the linear relationship be-

tween the mean and the variance with a linear regression model.

The results gathered for the regression analyses in air regions are

shown in Table 1 and the regression lines are depicted as dashed

lines in Fig. 3 . We exclude the rest of tissues because the coeffi-

cient of determination rapidly decreases for higher densities, re-

sulting in a negligible bias due to the rapid reduction of skewness

for higher densities. 

The increasing bias with the variance of noise is confirmed with

an F-test for the null hypothesis “H 0 : The average attenuation level

does not depend on the local variance.” The coefficient of determi-
e  
ation R -squared that accounts for the explained variance shows

 strong linear relationship between the attenuation level and the

ocal variance with up to 58% of the variance explained by a lin-

ar model. Finally, the p-value obtained for the F-test confirms
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Fig. 5. Functional dependence of bias for the linear coefficient of bias (kernels B31f 

and STD were omitted for brevity, although the behavior is the same). 
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a  
ith a strong evidence ( p -value < 10 −4 ) that both parameters –

ttenuation and local variance– exhibit a linear relationship and,

herefore, the null hypothesis can be rejected. Note that although

he linear coefficient may seem small, the variance observed in

he images make this factor non-negligible. Actually, the bias in-

erval calculated for the 95% of confidence may go up to 15 HU

see Table 1 ), which is a remarkably high number that may affect

uantitative measures based on thresholding such as emphysema

r gas trapping ( Parr et al., 2004 ). 

Assuming the linear model μ = aσ 2 + b confirmed by the sta-

istical test, we now study the influence of the nominal attenua-

ion level on the linear coefficient, a , for each tissue n = { 1 , . . . , 9 } .
hen, the assumed linear model becomes: 

n = a n σ
2 + b n , (3)

The functional relationship of the linear coefficient with respect

o the nominal attenuation level can be derived by writing a n as

 function of the local mean and variance according to the linear

odel of Eq. (3) : 

 n = 

̂ μn − b n ̂ σ 2 
n 

, with n = 1 , . . . , 9 , (4)

here b n is the intercept coefficient of Table 1 and 

̂ μn and 

̂ σ 2 
n are

he local mean and variance for locations of each tissue type �n ,

.e. ̂ μn (x, y ) = ̂

 μ(x, y ) and 

̂ σ 2 
n (x, y ) = ̂

 σ 2 (x, y ) for ( x, y ) ∈ �n . The

esults for the different configurations of acquisitions are shown in

ig. 5 where the 95% confidence interval is shown in red. Note that

he value of a n rapidly decreases as the attenuation level grows.

his behavior is well described by an inversely proportional rela-

ionship with μ − δ, which always falls within the 95% of confi-

ence for all the different configurations (kernels and doses). 

According to this analysis, we can formulate a mathematical

odel describing the bias induced by non-stationary noise con-

idering the linear relationship with σ 2 previously tested and the

nverse relationship with μ − δ: 

 (r ) = μ(r ) + 

σ 2 (r ) 

μ(r ) − δ︸ ︷︷ ︸ 
non-stationary 

bias 

+ b ︸︷︷︸ 
systematic 

bias 

(5)
here μ( r ) is the actual attenuation coefficient and X the observed

ttenuation at location r ∈ �. The linear term with σ 2 ( r ) accounts

or the increasing bias with higher variance and the inverse rela-

ionship with μ( r ) shows a higher influence for lower attenuation

evels, whereas the systematic bias, b , depends on the calibration

f the device or the DC contribution of the reconstruction kernels. 

. Methods 

.1. CT signal model 

According to Eq. (5) , the bias correction will require the calcu-

ation of accurate estimates of local variance and local mean. This

s achieved by considering the statistical characterization of noise

roposed in Vegas-Sánchez-Ferrero et al. (2017) , which adopts a

on-central Gamma (nc- �) model as a suitable distribution that

odels the stochastic behavior of homogeneous tissues in CT scans

ith different reconstruction kernels, doses or devices. This model

s a three-parameter distribution whose density function (PDF) is

efined as: 

f X (x | α, β, δ) = 

(x − δ) α−1 

βα�(α) 
e −

x −δ
β , x ≥ δ and α, β > 0 , (6)

here �( x ) is the Euler Gamma function, α is the shape parame-

er, β is the scale parameter, and δ is defined as the least atten-

ation level (typically around −10 0 0 HU, in our case −1024 HU).

n Fig. 4 we show the nc- � distribution (continuous lines) fitted to

he data. 

Its generalization for describing the heterogeneous nature of

issues is formulated as a non-central Gamma Mixture model (nc-

MM), whose PDF reads as: 

p(x | �) = 

J ∑ 

j=1 

π j f X (x | � j ) , (7)

ith π j the weights of the mixture, and �j the parameters of

ach j th component. As in Vegas-Sánchez-Ferrero et al. (2017) ,

he mixture model parameters are estimated by Expectation-

aximization. 

The local moments of the observed intensity, X , are estimated

aking advantage of the tissue characterization provided by the

ixture model conditioned to each component: 

{ X (r ) k } = 

J ∑ 

j=1 

π j E{ X (r ) 
k | Z (r ) = j} ≈

J ∑ 

j=1 

π j 〈 X (r ) 
k | Z (r ) = j〉 , 

(8) 

here the variable Z ( r ) describes the membership of the random

ariable (RV) at location r to the different nature of tissues (e.g. air,

uscle, fat). Besides, the approximation to the local conditioned

oments is performed with the operator 〈 · | Z(r ) = j〉 in a neigh-

orhood η( r ) at location r : 

 X (r ) 
k | Z (r ) = j〉 = 

∑ 

s ∈ η(r ) x (s ) k γ j (s ) ∑ 

s ∈ η(r ) γ j (s ) 
, (9)

nd γ j ( r ) is the posterior probability for the j th tissue class derived

y the Bayes theorem as: 

j (r ) = p(Z(r ) = j| x (r ) , �) = 

p(x (r ) | � j ) p(Z(r ) = j| � j ) 

p(x (r ) | � j ) 
. (10)

.2. Homomorphic local variance estimation 

The non-stationarity of variance depends on the tissue nature

nd also on the nearby structures that may induce an increase
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Fig. 6. Local standard deviation of noise observed in the Phantom acquired with 

the BONE LD configuration in the GE scanner. a) sample standard deviation calcu- 

lated in the long-axis direction; b) Local estimate obtained from one single slice; c) 

Homomorphic estimation with the proposed method. 
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Fig. 7. Expectation of the log-stabilized signal log | N ( r )| as a function of the signal- 

to-noise ratio. The fast convergence to a −γ / 2 − log 
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2 allows applying the Gaus- 
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of variance due to photon starvation and beam hardening. Unfor-

tunately, the estimation of variance according to local neighbor-

hoods will show a significant deviation from the actual value in

the boundaries of structures. Fig. 6 .a shows the standard devia-

tion calculated in the longitudinal axis following Eqs. (1) and (2) ,

and can be considered as a gold standard due to the cylindrical

shape of the phantom. The local estimate of variance calculated

with Eqs. (8) –(10) over one single slice is shown in Fig. 6 .b. Note

that this estimate exhibits a particular granular pattern. This pat-

tern is due to the presence of different densities within the neigh-

borhood and the relatively low number of samples in the neigh-

borhood. As a result of this, it does not accurately describe the spa-

tial variation but the edges of structures within the local neighbor-

hood. To overcome this important limitation, we develop a homo-

morphic approach inspired by the methodology presented in Aja-

Fernandez et al. (2015) , where the authors apply a statistical model

of noise to provide a homomorphic decomposition for the non-

stationary variance (assumed to be smooth) and the noise fluctu-

ations themselves. The estimation is finally achieved by taking ad-

vantage of the Gaussian convergence as the signal-to-noise ratio

(SNR) increases. Additionally, some correction functions are pro-

vided for low SNRs. Pieciak et al. (2016) extended this approach by

increasing the converge to a Gaussian distribution by a functional

transformation. 

In our extension to CT scans, we adopt the nc- �MM character-

ization as the model of noise, and the stabilization scheme for nc-

�MM to increase the convergence range to a Gaussian distribution,

both proposed in Vegas-Sánchez-Ferrero et al. (2017) . 

Formally, let us suppose the image X : � → R is distributed as

a nc- �MM with central parameters δ j = δ and Y (r ) = X(r ) − δ the

centered Gamma mixture model. 

This mixture model can be transformed to a more treatable

mixture model with the stabilizing function proposed in Vegas-

Sánchez-Ferrero et al. (2017) for nc- �MM: 

f stab (Y (r )) = σ (r ) ·

√ 

Y (r ) − E 

{ √ 

Y (r ) 
} 

√ 

V ar 

{ √ 

Y (r ) 
} 

= σ (r ) · N(r ) , (11)

where σ ( r ) accounts for the unknown non-stationary standard de-

viation and N ( r ) is the estimate of the stabilized noise, i.e. zero

mean and standard deviation equals 1. This transformation shows

important features to obtain a good estimate of the non-stationary

variance: 

1. It transforms each component of the mixture model into

its corresponding stabilized counterpart, i.e. each component

shows a more independent behavior between mean and vari-

ance. 

2. The stabilization accelerates the Gaussian convergence as a

function of the signal-to-noise (SNR) ratio. 

The homomorphic filter can now be applied considering that

the non-stationary variance varies smoothly compared to the vari-
bility of noise itself (i.e. σ ( x ) is a low-frequency signal compared

o noise). The low-frequency contribution can be retrieved with a

ow-pass filter (LPF): 

PF { log | f stab (Y (r )) | } = log σ (x ) ︸ ︷︷ ︸ 
lower 

frequency 

+ LPF { log | N(r ) | ︸ ︷︷ ︸ 
higher 

frequency 

} . (12)

The LPF can be seen as a local averaging that approximates the

xpectation of the random variable: 

PF { log | f stab (Y (r )) | } ≈ log σ (x ) + E{ log | N(r ) | } . (13)

It is important to note that the calculation of E {log | N ( r )|} can

e done considering each of the components of the mixture model

eparately since the expectation is a linear operator and the PDF

f the transformed mixture model remains a mixture model (i.e.

he PDF is still a convex sum of the PDFs of the transformed

omponents). This way, for this derivation we can assume Y ( r ) to

e a central Gamma distribution with parameters α( r ) and β( r ),

nd W = 

√ 

Y (r ) becomes a generalized Gamma distribution ( Stacy,

962; Vegas-Sanchez-Ferrero et al., 2012 ) with PDF: 

f W 

(w ) = 2 

w 

2 α−1 

βα�(α) 
e 
−w 

2 

β , with α, β > 0 , (14)

nd moments: 

{ W 

k } = βk/ 2 
�(α) + 

k 
2 

�(α) 
. (15)

Therefore, the expectation of log | N ( r )| becomes: 

{ log | N(r ) | } = 

∫ ∞ 

0 

log 

∣∣∣∣w − �(α) + 1 / 2 

�(α) 

∣∣∣∣2 

w 

2 α−1 

βα�(α) 
e 
−w 

2 

β dw 

−1 

2 

log 

( 

α −
(

�(α + 1 / 2) 

�(α) 

)2 
) 

(16)

Note that Eq. (16) no longer depends on β due to the normal-

zation applied in the calculation of N ( r ). 

This integral was estimated by Monte Carlo trials of 10 5 sam-

les for SNR ∈ [10 −3 , 20] logarithmically sampled. Fig. 7 shows

he results where a fast convergence to − log 
√ 

2 − γ / 2 ≈ −0 . 6352

s clearly observed, being γ the Euler-Mascheroni constant. This

pecific value comes from the expectation of a Gaussian RV with

ero mean and σ 2 variance, N (0 , σ 2 ) , since E{ log |N (0 , σ 2 ) |} =
og σ − log 

√ 

2 − γ / 2 (see ( Aja-Fernandez et al., 2015 ) for more de-
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+

-

+
+

Fig. 8. Pipeline of σ ( r ) estimation assuming noise distributed as a nc- �MM. 

t  

b

 

E

E  

w

ϕ

 

o

σ

 

c  

b  

c

 

t  

q  

p  

t

 

u  

s  

o  

3  

o

3

 

b  

E

X  

w  

m

 

a  

e  

r  

T  

t  

t  

m

 

e  

i  

a  

g  

s  

o

Fig. 9. Posterior probability maps for a conventional CT scan, a) coronal view; b) 

posterior probability for air; c) Posterior probability for fat; d) posterior probability 

for blood/muscle. 
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ails). This fact exhibits the rapid convergence to a Gaussian distri-

ution of the stabilized random variable as the SNR increases. 2 

For practical purposes, we provide an approximating function of

q. (16) also represented in Fig. 7 : 

{ log | N(r ) | ; SNR = x } ≈ −
(
γ

2 

+ log 
√ 

2 

)
· ϕ(x ) (17)

ith 

(x ) = exp 

(
49 x 4 + 255 x 3 − 1808 x 2 + 665 x 1 + 2 

x 5 + 21287 x 4 − 6169 x 3 + 2060 x 2 + 365 x 

)
. (18) 

Finally, σ ( r ) is derived by rearranging Eq. (13) with the result

f Eq. (17) : ̂ (r ) = e LPF { log | f stab (Y (r )) | } +(γ / 2+ log 
√ 

2 ) ·ϕ( SNR ) (19) 

Note that this estimation requires the SNR as a parameter that

an be directly calculated with Eqs. (8) –(10) . This formulation can

e iteratively refined until convergence by introducing ̂ σ (r ) in the

alculation of the SNR in each iteration. 

The pipeline of this method is depicted in Figs. 8 and 6 .c shows

he estimate of σ ( r ) obtained in a single slice of the phantom ac-

uired in a GE scanner with the BONE LD configuration with the

roposed iterative scheme after convergence is reached (4 itera-

ions in this case to get a relative change below 1%). 

The mean squared error (MSE) of the estimate was calculated

sing the z-axis estimate shown in Fig. 6 .a as the reference. Re-

ults obtained with our approach ( Fig. 6 .c, MSE = 268.97) clearly

vercomes the previously mentioned limitations ( Fig. 6 .b, MSE =
36.87) and provides a smooth and reasonably accurate estimate

f the non-stationary variance. 

.3. Autocalibration 

The proposed autocalibration method for bias correction is

ased on the functional relationship derived in Section 2.1 . From

q. (5) we can remove the non-stationary bias as: 

˜ 

 (r ) = X (r ) − ̂ σ 2 (r ) ̂ μ(r ) − δ
(20)

here ̂ μ(r ) and 

̂ σ 2 (r ) are the local mean and local variance esti-

ates calculated with the conditioned moments of Eqs. (8) –(10) . 

The systematic bias is then removed by imposing the attenu-

tion levels of certain anatomical areas with well-defined refer-

nces. For chest scanners, air cavities offer a well-defined anatomic

eference in which air attenuation levels should be clearly present.

his attenuation is set to -10 0 0 HU according to the definition of

he Hounsfield unit scale. On the other hand, for higher attenua-

ion levels one can find relatively homogeneous regions either in

uscle, fat, or blood. 

Although the selection of fairly homogeneous regions can be

asily achieved by manual segmentation, the statistical character-

zation proposed in Vegas-Sánchez-Ferrero et al. (2017) provides

 suitable way that enables the automatic detection of those re-

ions. Note that we use the same formulation to characterize tis-

ues and to calculate conditioned moments in local neighborhoods.
2 In this case, we define the SNR as μ/ σ , which in terms of a Gamma distribution 

f parameters α and β becomes SNR = 

√ 

α. 

M  

w

hus, the classification of tissues (e.g. air and blood ) can be done

utomatically considering Eq. (10) with no extra cost. The results

an be defined as the regions �i are those locations with a pos-

erior probability higher than a certain threshold, t , for each tissue

lass: 

i = { r ∈ � : p(Z(r ) = j| y (r ) , �) > t} , with i = 1 , . . . , n (21)

ith Y (r ) = X(r ) − δ the centered random variable at location r

nd y ( r ) its observed realization. 

In Fig. 9 we show the automatic selection of different regions

ccording to the tissue characterization provided by the mixture

odel of Eq. (7) proposed in Vegas-Sánchez-Ferrero et al. (2017) .

he resulting posterior probabilities clearly define the trachea as

n air cavity, while the visceral fat and muscle are also identified. 

The removal of the systematic bias is extended to the whole

ange of attenuation levels by a piecewise linear interpolation

hich centers the average attenuation of each of the reference re-

ions �i to their respective nominal value, μi , as follows: ̂ 

 (r ) = ̃

 X (r ) − E 
{˜ X (r ) 

}
+ ̂

 b 
(˜ X (r ) 

)
, (22)

here the calibrated region is set according to the local average by

he piecewise function ̂

 b (·) : R → R defined for { �i } n i =1 
regions is:

 

 

(˜ X (r ) 
)

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

M 1 ( ̃  X (r )) if ˜ X < E{ ̃  X | �2 } 
. . . 

M i ( ̃  X (r )) if E{ ̃  X | �i } ≤ ˜ X < E{ ̃  X | �i +1 } 
. . . 

M n −1 ( ̃  X (r )) if E{ ̃  X | �n −1 } ≤ ˜ X 

(23) 

here E{ ̃  X | �i } is defined in Eq. (9) , and M i ( · ) is the linear inter-

olator defined as: 

 i ( ̃  X ) = μi + (μi +1 − μi ) 
˜ X − E{ ̃  X | �i } 

E{ ̃  X | �i +1 } − E{ ̃  X | �i } 
(24)

ith μ the nominal attenuation level for region � . 
i i 
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Variance
Estimation

Correction of Systematic Bias

a) b) c) d)

e)
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Spatially Variant Bias
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Fig. 10. Autocalibration scheme considering three nominal attenuation levels { μi } 3 i =1 
. a) The autocalibration is accomplished considering three different regions, { �i } 3 i =1 

, 

defined by the tissue characterization of Eq. (7) . b) The variance estimate is computed following the scheme shown in Fig. 8 . c) the correction of the spatially variant bias is 

accomplished by applying the functional relation of Eq. (20) . d) The systematic bias is corrected by assigning the nominal values { μi } 3 i =1 
to the observed average attenuation 

levels after non-stationary bias correction with a piecewise linear interpolation. e) The autocalibrated image. 
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Table 2 

Correction of bias due to non-stationary noise. 

Air Density Non-calibrated Calibrated Bias 

Bias interval 95% (HU) Bias interval 95% (HU) Reduction 

STD LD [ −3 . 79 , 11 . 81] [ −0 . 41 , 1 . 88] 84.09% 

STD HD [1.09, 9.91] [ −1 . 79 , 0 . 13] 81.91% 

BONE LD [0.98, 14.31] [ −0 . 28 , 4 . 07] 71.17% 

BONE HD [1.04, 8.32] [ −0 . 23 , 0 . 41] 95.04% 

B31f LD [ −0 . 97 , 3 . 09] [ −0 . 01 , 0 . 04] 98.68% 

B31f HD [ −0 . 59 , 1 . 54] [ −0 . 04 , 0 . 01] 97.64% 

B45f LD [2.58, 10.49] [0.05, 1.67] 84.12% 

B45f HD [ −0 . 08 , 3 . 54] [ −0 . 13 , 0 . 01] 96.32% 

Water Density Non-calibrated Calibrated Bias 

Bias interval 95% (HU) Bias interval 95% (HU) Reduction 

STD LD [ −11 . 12 , −8 . 40] [ −0 . 25 , 0 . 50] 95.52% 

STD HD [ −12 . 43 , −9 . 65] [ −0 . 11 , 0 . 05] 99.08% 

BONE LD [ −9 . 82 , −7 . 27] [ −0 . 62 , 0 . 68] 93.04% 

BONE HD [ −14 . 07 , −7 . 89] [ −0 . 31 , 0 . 32] 97.70% 

B31f LD [ −11 . 03 , 1 . 86] [ −0 . 25 , 0 . 21] 97.76% 

B31f HD [ −6 . 61 , 3 . 62] [ −0 . 09 , 0 . 33] 95.00% 

B45f LD [ −12 . 84 , 1 . 89] [0.09, 0.27] 97.94% 

B45f HD [ −10 . 23 , 3 . 48] [0.07, 0.26] 97.48% 
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3 The data was obtained at Brigham and Women’s Hospital (Boston, MA, USA) 

with the approval of its ethics committee and informed consent of the subject. 
4 http://stnava.github.io/ANTs/ . 
A comprehensive scheme of the proposed autocalibration

method is described in Fig. 10 , where we show the different

steps of the for the calibration considering three different regions,

{ �i } 3 i =1 
, defined by the tissue characterization of Eq. (7) ( Fig. 10 .a).

In Fig. 10 .b, the variance estimate is computed by following the

scheme shown in Fig. 8 . Then, in Fig. 10 .c, the correction of the

spatially variant bias is accomplished by applying Eq. (20) . Fi-

nally, the systematic bias is corrected by assigning the nominal val-

ues { μi } 3 i =1 
to the observed average attenuation levels after non-

stationary bias correction with a piecewise linear interpolation,

Fig. 10 .d. The resulting image, Fig. 10 .e, is now calibrated with no

stationary bias introduced by noise. 

4. Results 

The autocalibration methodology is validated firstly evaluating

the reduction of the intra-device bias due to non-stationary noise.

This is performed in the phantom acquired with different config-

urations per device. Then, we carry out a similar evaluation with

a subject acquired with different configurations (doses and recon-

struction methods) by evaluating the bias within the trachea. Fi-

nally, we test the performance of the autocalibration to correct the

inter-device bias. 

4.1. Intra-device validation 

4.1.1. Phantom study 

The autocalibration methodology proposed in Section 3.3 is

evaluated with the Phantom already introduced in the exploratory

analysis of bias. This evaluation will demonstrate the robustness

of our methodology, the importance of the bias due to the non-

stationary variance for low attenuation level, and the efficiency of

the suggested scheme in removing systematic biases that depend

on the device. Two regions were considered for the autocalibra-

tion: water density (0 HU) and air ( −10 0 0 HU). The regions �water 

and �air were automatically selected as described in Eq. (21) for

 = 0 . 9 . 

The analysis of bias due to noise was measured with respect

to the average attenuation level of each tissue in the regions de-

scribed in Fig. 1 for a 95% confidence interval. The reduction of

bias is shown in Table 2 and was calculated as: 

Bias Reduction = 100 ·
(

1 − max (| B w 

| ) 
max (| B w / o | ) 

)
% , (25)

were B w 

and B w/o are the bias intervals for 95% of confidence with

and without removal of non-stationary variance. 

Note that the bias is reduced in most of the cases to less than

a Hounsfield unit, which implies that the reduction is always over
0%. The worst scenario is the BONE low-dose reconstruction, that

hows a bias up to 4 HU, which is a fairly good result considering

he initial bias was over 14 HU. 

.1.2. Clinical CT scans 

In this experiment, we considered two different acquisitions of

he same subject with different doses (40 0 mA and 10 0 mA) in

he Siemens scanner 3 A coronal view of the subject is depicted in

ig. 9 .a. The reconstruction kernels applied to higher doses were

31f and B45f, whereas the B31f was used for the LD reconstruc-

ion. Additionally, three different implementations of the Siemens

terative reconstruction methods were applied for the LD acqui-

ition: I31f2, I44f2 and I31f5, providing a reconstruction from a

ofter to a sharper effect in the reconstruction respectively. Both

cquisitions were registered with Advanced Normalization Tools 4 for

asier comparison. 

The autocalibration was done considering regions with

lood/muscle density (30 HU ( Aubrey et al., 2014 )) and air (-

0 0 0 HU). The regions �air and �blood/muscle were automatically

elected as described in Eq. (21) for t = 0 . 9 (both regions are

epicted in Fig. 9 .b and d). A coronal view of the reconstructions

s shown in Fig. 11 jointly to the autocalibrated reconstruction

http://stnava.github.io/ANTs/
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Fig. 11. Coronal view of the reconstructed images with different configurations for visualization window [ −1024 , −500] HU. Columns are ordered by reconstruction config- 

urations (both with systematic and spatially-variant bias), while rows represent the non-calibrated (top) and calibrated (bottom) acquisitions (after systematic and spatially- 

variant bias correction). 

Fig. 12. Local standard deviation estimate (top row) and induced non-stationary bias (bottom row). The bias observed is especially affecting to the lung parenchyma and 

trachea due to the higher skewness of attenuations levels for low densities. Average biases observed in the trachea are: B31f HD 8.30 ± 1.83 HU; B45f HD 17.68 ± 4.87 

HU; I31f2 LD 21.36 ± 7.07 HU; I31f5 LD 9.38 ± 2.21 HU; I44f2 LD 11.65 ± 2.06 HU; B31f LD 31.65 ± 12.78 HU. 
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after the systematic and non-stationary bias correction) for an

ntensity window of [ −1024 , −500] HU to enhance the effect of

ias in lower attenuation levels. 

The local standard deviation, σ ( r ), estimated according to the

ethodology proposed in Section 3.1 is shown in Fig. 12 (top row).

he results show a remarkable increase of variance in the lower

art due to the higher densities of soft tissues compared to lung

arenchyma. The non-stationary bias induced by the local variance

s shown in the bottom row of Fig. 12 . As expected, the bias ob-

erved is especially affecting the lung parenchyma and trachea due

o the higher skewness of attenuations levels for low densities.

he effect of this bias is markedly higher in the B31f LD acqui-

ition, which does not take advantage of the iterative reconstruc-

ion methodologies. Iterative methods partially attenuate the bias

bserved with reconstruction kernels. However, the observed bias

n trachea and parenchyma are not negligible. The best case is for

31F5 showing an average bias in the trachea of 9.38 ± 2.06 HU,

hile the worst scenario was for I31f2 showing a bias of 21.36 ±
.07 HU which is comparable to the observed for the reconstruc-

ion kernel B31f for low-dose (31.65 ± 12.72 HU). 

A careful analysis of the local standard deviations and the re-

onstructed images shows the overall effect of the different recon-

truction methods. The low-dose reconstructions exhibit a higher

ariance of noise, which induces an increase of the local attenua-
 r  
ion level in the trachea. There is also a systematic bias introduced

y the iterative methods I31f2 and I44f2 that can be observed in

he overall reduction of contrast in the lung parenchyma. The his-

ograms in the trachea depicted in Fig. 13 quantitatively confirm

he bias introduced by the reconstruction methods and the spatial-

arying variance of noise (the sample histograms are represented

s dots, and the parametric approximation with the nc- � distribu-

ion is shown for a better visualization). Note that the low-dose ac-

uisitions are clearly shifted to higher values than those obtained

or high-dose. This behavior shows a clear inconsistency in the

ean value due to the different reconstruction methods. The box-

lots evidence the strong deviation with respect the nominal air

ttenuation level ( −10 0 0 HU) of more than 50 HU in each recon-

tructed image and the notable discrepancy among them. On the

ther hand, the autocalibration method is able to remove the de-

iations and exhibits a consistent attenuation level across all the

econstructions. 

.2. Inter-device study 

The analysis of the systematic bias introduced by the recon-

truction method in each device is studied by calculating the de-

iation from the nominal attenuation level in the phantom. The

esults for both devices are depicted in Fig. 14 , where the biases
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Table 3 

Bias observed for scanners without calibration (W/C) and autocalibrated (Cal) for the different acquisitions. Bias under 2 HU are marked in bold. The calibration reduces 

dramatically the deviations from the nominal attenuation levels, which now remains around 0 HU. 

Region STD LD STD HD BONE LD BONE HD B31f LD B31f HD B45f LD B45f HD 

W/C Cal W/C Cal W/C Cal W/C Cal W/C Cal W/C Cal W/C Cal W/C Cal 

1 24.81 0.24 23.57 −0.09 19.55 0.08 21.13 −0.13 12.41 −0.02 12.43 −0.08 8.21 −0.10 10.06 −0.10 

2 22.22 1.14 26.29 1.02 19.11 1.14 23.80 0.51 14.00 1.00 13.49 0.79 12.15 1.08 12.48 0.83 

3 3.85 −0.67 14.91 −0.07 2.50 −0.65 13.76 0.09 −0.09 −0.41 0.73 −0.20 −1.11 −0.49 −0.37 −0.18 

4 10.58 1.37 11.94 0.91 8.92 1.29 11.01 0.64 4.28 0.78 3.82 0.64 3.91 0.63 3.45 0.50 

5 −35.72 −1.61 −28.51 −1.30 −34.81 −1.67 −27.97 −1.11 −13.41 −0.75 −15.33 −0.65 −11.70 −0.64 −13.94 −0.63 

6 −28.69 0.92 −26.26 0.55 −27.42 0.82 −24.99 0.47 −17.18 0.02 −17.53 0.03 −15.64 0.09 −16.27 −0.00 

7 −69.62 −1.98 −64.82 −1.84 −64.37 −1.73 −62.87 −1.60 −47.12 −1.74 −47.17 −1.70 −45.45 −1.52 −44.96 −1.46 

8 −52.78 0.06 −47.64 0.12 −50.45 −0.08 −46.26 0.05 −27.07 0.36 −26.50 0.40 −27.56 0.11 −26.90 −0.01 

9 −1.80 0.23 −4.04 0.16 −6.24 0.33 −4.09 0.21 −0.43 0.06 0.03 0.06 −5.35 0.07 −0.88 0.05 

B31f HD B45f HD I31f2 LD I31f5 LD I44f2 LD B31f LD
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Fig. 13. Histograms of the trachea region for the different reconstructions shown in 

Fig. 11 and Box-plots for non-calibrated and autocalibrated data. The non-calibrated 

histograms show a important discrepancy with the nominal attenuation level of 

air ( −10 0 0 HU) and an inconsistent bias depending on the reconstruction method 

and doses. Conversely, autocalibrated histograms show a consistent average location 

among them and with the nominal attenuation value of air. 
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Fig. 14. Systematic bias observed in each device. This bias depends on the calibra- 

tion of the device and the DC contribution of the reconstruction. 
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within devices are consistent across reconstruction kernels and

doses. However, the bias exhibits clear differences between both

devices that can be over 20 HU in some cases. This confirms the

importance of a common calibration in heterogeneous cohorts in

which different devices and reconstruction methods are applied. 

We evaluated the performance of the autocalibration method to

reduce the discrepancies between devices already shown in Fig. 14 .

The results are gathered in Table 3 . Note that the systematic bias
s virtually removed by the autocalibration method for both the

iemens and the GE acquisitions. 

It is worth noting that the observed bias for both devices shows

wo well-defined regions, one with a positive bias (for CT numbers

 0 HU ) and the other for negative bias (CT numbers < 0 HU ). This

nteresting behavior evidences that a non-linear response in the at-

enuation levels is fitted by a linear function with reference points

hose of the water and air attenuations. This behavior is consis-

ent with the common calibration protocols applied in the scan-

ers, that use the air and water references. A higher order poly-

omial behavior has been reported previously in the literature as

 result of the interplay between the Photoelectric and Compton

omponents of the attenuation coefficient ( Jackson and Hawkes,

983; Watanabe, 1999 ). 

. Conclusion 

This paper analyzes the effect of reconstruction inconsistencies

epending on the dose, reconstruction algorithm, and acquisition

arameters. These inconsistencies show a two-folded nature. First,

he variance of noise introduces a positive bias that artificially in-

reases the intensity values. This effect has been systematically no-

iced in the literature due to the strong deviations observed in the

ir cavities such as the trachea. Second, the kernels and iterative

lgorithms used for reconstruction may affect the average inten-

ities. This results in a strong intensity deviation that may differ

rom the nominal values in more than 50 HUs, making the re-

onstructions useless for multicenter studies or analysis of disease

rogression. 

The analysis was carried out through a statistical exploratory

ata analysis of bias in a series of acquisitions provided with dif-

erent devices, reconstruction kernels, and doses. The analysis con-

luded that the bias introduced by the local variance contributes

inearly to the mean attenuation level, being remarkably higher for

ower attenuations levels. This bias may increase the intensity level

p to 30 HUs in low-dose reconstructions. The linear relationship

ecreases quickly with higher tissue densities, i.e. the linear coeffi-

ient decreases with the nominal attenuation coefficient of tissues.

In the light of all these results, a functional dependence of the

bserved attenuation with the local variance can be established as

 useful model to retrieve the unbiased signal. As a first contribu-

ion, we propose a model that considers a positive bias as a func-

ion of the local moments. The model also considers the systematic

ias due to the different behaviors of reconstruction kernels or al-

orithms. 

The retrieval of the unbiased signal requires an accurate esti-

ate of the non-stationary local variance. Our second contribu-

ion is the derivation of an accurate and robust estimate of non-

tationary variance by adapting the probabilistic model of noise in

T scans proposed in Vegas-Sánchez-Ferrero et al. (2017) . 
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The functional relation adopted to model the bias allows us to

orrect the two different manif estations of bias. First, the spatially

ariant bias induced by the non-stationary noise. Second, the sys-

ematic bias introduced by different reconstruction methodologies

r doses. The proposed methodology does not require a phantom,

nd it is designed to establish a common framework for the analy-

is of CT scanners without a common calibration protocol, different

econstruction methodologies or doses. 

The autocalibration methodology was tested in a phantom re-

ulting in a bias removal of more than 90% in most of the cases

or the bias due to noise variance. Additionally, the systematic bias

as virtually removed. These results evidence the suitability of the

ias model proposed and the methodology for bias removal. 

The experiments carried out in clinical CT images considered

everal acquisition scenarios (two doses, different reconstruction

ernels and iterative methods). The biases originated by recon-

truction methods, and different doses are clear at first sight.

hese differences become more evident when a quantitative anal-

sis of an anatomical reference is performed. The autocalibration

as evaluated in the trachea to study the consistency across the

ifferent acquisitions. The non-calibrated signals showed a sys-

ematic bias higher than 50 HU compared to the nominal inten-

ity expected for air and an arbitrary behavior in terms of vari-

nce and location for the histogram due to the non-stationarity

f noise and undesired effects of the iterative reconstruction

ethods. After calibration, the histograms align around the nom-

nal intensity for air showing an excellent consistency across

cquisitions. 

The overall effect of autocalibration is an increase of the con-

rast in low-intensity values due to the positive bias introduced by

he local variance dependence. This effect makes easier to detect

ow attenuation lesions, such us emphysema in chronic pulmonary

bstruction disease (COPD) patients, due to the consistency across

ifferent conditions, and facilitates the analysis of progression. It is

orth noting that the proposed autocalibration scheme can be per-

ectly combined with other state-of-the-art methodologies to miti-

ate or stabilize the noise just after the autocalibration ( Kim et al.,

016; Vegas-Sánchez-Ferrero et al., 2017 ). 

We believe the methodologies provided in this paper will en-

ble the preprocessing of CT images before quantitative imaging

nalysis tasks are performed to control the accuracy of the ex-

racted biomarkers. Our results can be especially relevant to those

tudies that track the progression of a disease. The changes in

ransmission medium due to the reduction of dose in longitudi-

al studies or oncological situations make the consistency in the

ntensity levels critical. 
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