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a b s t r a c t

Magnetic Resonance Imaging (MRI), a reference examination for cardiac morphology and function in
humans, allows to image the cardiac right ventricle (RV) with high spatial resolution. The segmentation
of the RV is a difficult task due to the variable shape of the RV and its ill-defined borders in these images.
The aim of this paper is to evaluate several RV segmentation algorithms on common data. More precisely,
we report here the results of the Right Ventricle Segmentation Challenge (RVSC), concretized during the
MICCAI’12 Conference with an on-site competition. Seven automated and semi-automated methods have
been considered, along them three atlas-based methods, two prior based methods, and two prior-free,
image-driven methods that make use of cardiac motion. The obtained contours were compared against
a manual tracing by an expert cardiac radiologist, taken as a reference, using Dice metric and Hausdorff
distance. We herein describe the cardiac data composed of 48 patients, the evaluation protocol and the
results. Best results show that an average 80% Dice accuracy and a 1 cm Hausdorff distance can be
expected from semi-automated algorithms for this challenging task on the datasets, and that an auto-
mated algorithm can reach similar performance, at the expense of a high computational burden. Data
are now publicly available and the website remains open for new submissions (http://www.litislab.eu/
rvsc/).

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Evaluation of right ventricular (RV) structure and function is of
great importance in the management of most cardiac disorders,
such as pulmonary hypertension, coronary heart disease, dysplasia
and cardiomyopathies (Caudron et al., 2011). RV imaging is consid-
ered challenging, mainly because of the complex motion and
anatomy of the RV. Magnetic resonance imaging (MRI) is increas-
ingly used as a standard tool in the evaluation of the RV function
(Haddad et al., 2008; Attili et al., 2010). As a prerequisite to the
computation of functional parameters with MRI, the segmentation
of the RV cavity on MR images is a necessary step.

The RV segmentation is challenging because (i) fuzziness of the
cavity borders due to blood flow and partial volume effect, (ii) the
presence of trabeculations (wall irregularities) in the cavity, which
have the same gray level as the surrounding myocardium, and (iii)
the complex crescent shape of the RV, which varies according to
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Fig. 1. The RV endocardium and epicardium are manually delineated in green and red respectively, at (a) end diastole and (b) end systole, in consecutive SA slices. Note that
apical and basal slices may differ between ED and ES. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the imaging slice level. The segmentation of the RV is thus cur-
rently performed manually in clinical routine. This lengthy and
tedious task requires about 15 min by a clinician and is also prone
to intra and inter-expert variability (Caudron et al., 2012;
Bonnemains et al., 2012).

As a consequence, RV functional assessment has long been con-
sidered secondary compared to that of the LV, leaving the problem
of RV segmentation wide open. The segmentation of the LV in car-
diac MRI has even given rise to three segmentation competitions.1

The goal of such competitions is to compare different algorithms for
a particular task on the same (clinically representative) data, using
the same evaluation protocol. Indeed, medical image analysis papers
require today solid experiments to prove the usefulness of their pro-
posed methods. However, experiments are often performed on data
selected by the researchers, which may come from different institu-
tions, scanners and populations; evaluated with different measures,
which make published methods difficult to compare. This has
resulted in a growing interest in competitions in medical image anal-
ysis. The format of a competition or challenge is usually as follows:
given a clinically relevant question, a set of data is collected by a
research group, together with its gold standard (i.e. manual annota-
tions). The image data is then made available to volunteering
research groups and companies. After performing experiments on
the image data, they return the results of their algorithms. Compre-
hensive and dedicated evaluation tools are then employed for an
objective assessment of the algorithm performance, as compared
to the gold standard.

RV segmentation algorithms have never been evaluated on
common data. The aim of the Right Ventricle Segmentation Chal-
lenge (RVSC) is to propose a common evaluation framework, that
includes MR datasets, a reference segmentation and standard eval-
uation measures. More precisely, the task is to delineate the RV
endocardium, or endocardium and epicardium, on short-axis
views, on end diastole (ED) and end systole (ES) phases (Fig. 1).
1 The Cardiac MR Left Ventricle Segmentation Challenge during MICCAI’09: http://
smial.sri.utoronto.ca/LV_Challenge/, STACOM’11 Cardiac Left Ventricular Segmenta-
tion Challenge during MICCAI’11: http://cilab2.upf.edu/stacom_cesc11/ and the SATA
Segmentation Challenge for LV myocardium during MICCAI’13: https://
masi.vuse.vanderbilt.edu/workshop2013/index.php/Segmentation_Challenge_Details.
These websites, as well as up-to-date information about other challenges may be
found at: http://www.grand-challenge.org/.
In this paper, based on the challenge results, we attempt to
address the following questions: what accuracy can be expected
from semi-automated and automated algorithms for RV endocar-
dium and epicardium segmentation, this latter case being known
to be particularly problematic? How do automated algorithms
compare to semi-automated ones? What type of methods per-
forms best? Are 3D methods really the most appropriate? With
the open availability of both the data and the evaluation frame-
work, we hope to encourage researchers to contribute to this chal-
lenging task in the future.

The remainder of the paper is as follows. A brief state-of-the-art
of RV segmentation in cardiac MRI is given in Section 2. In Section 4,
the cardiac data and the manual reference are described. Evalua-
tion measures and scoring methodology are given in Section 3.
The outline of the challenge at MICCAI’12 is presented in Section 5.
The 7 participating methods are introduced in Section 6 and the
results are detailed and analyzed in Section 7. We finally conclude
with a discussion about the methods and the results, and the per-
spectives in Sections 8 and 9.

2. Previous work

The literature of RV segmentation is much less abundant than
the one of LV segmentation (Petitjean and Dacher, 2011; Zhuang,
2013). A number of techniques have indeed been applied to the
LV segmentation: in particular thresholding, deformable models
and level sets, graph cuts as well as knowledge-based approaches,
such as active and appearance shape models or atlas-based meth-
ods. Among them, some take advantage of cardiac motion. All these
methods are well suited to the MR image characteristics and to the
LV geometry and still may give some insight about what tech-
niques could be successful with RV segmentation. In the RV seg-
mentation field, deformable models and, active shape models and
their variants, are indeed particularly popular. Note that most of
the methods are based on a joint segmentation of both ventricles
– only a few methods focus exclusively on RV segmentation
(Abi-Nahed et al., 2006; Mahapatra and Buhmann, 2013). Joint seg-
mentation methods take benefit from the similarity of the gray lev-
els in their respective blood cavities and from the stability of the
relative positions of both ventricles, and can thus perform a joint
segmentation of cardiac ventricles. This kind of information may
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SpaceBetweenSlices = 8.4 mm for all patients. This value is the absolute

difference between SliceLocation DICOM fields in 2 adjacent images.
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be used within the active contours (Pluempitiwiriyawej et al.,
2004; Grosgeorge et al., 2011) or the graph cuts (Mahapatra and
Buhmann, 2013) framework, within an image-driven framework
combining thresholding, clustering and morphological operations
(Cocosco et al., 2008) or through prior anatomical information used
to guide the segmentation process. A priori information can be
introduced in the form of a biomechanical model (Sermesant
et al., 2003), a 3D heart model (Peters et al., 2007), atlases
(Lorenzo-Valdes et al., 2004; Kirisli et al., 2010; Bai et al., 2013),
or statistical shape models (Mitchell et al., 2001; Ordas et al.,
2003; Lötjönen et al., 2004; Abi-Nahed et al., 2006; Sun et al.,
2010; ElBaz and Fahmy, 2012).

Atlas-based segmentation approaches make use of an intensity
and a labeled image (denoted atlas) that describes the different
structures present in a given type of image. The segmentation of
the ventricles is obtained by registering a single (Lorenzo-Valdes
et al., 2004) or multiple atlases (Kirisli et al., 2010; Bai et al.,
2013) onto the image to be segmented. The main drawback of this
technique is its dependence on the quality of the registration, par-
ticularly when a single atlas is used.

Statistical shape models have been widely explored in cardiac
segmentation (Mitchell et al., 2001; Ordas et al., 2003). They typi-
cally consist of three steps: alignment of manually segmented con-
tours, model construction through a technique such as principal
component analysis (PCA) and usage of the model for segmentation.
Statistical models have been used within the well-known active
shape and appearance modeling framework (Cootes et al., 1995).
This technique ensures to have a realistic solution since only shapes
similar to the training set are allowed, but at the expense of building
a training data set with manually generated segmentations.

With the emergence of machine learning techniques in the
medical image domain, a novel method was proposed by Lu et al.
(2011) in which the a priori model is learnt via probabilistic boost-
ing trees. In Mahapatra and Buhmann (2013), the random forests
algorithm is used to generate RV probability maps that were then
used within the graph cuts framework for segmentation. Although
these methods have proven to be robust, they remain to depend on
the quality and amount of annotated training data.

Although all of the works in the literature perform a quantitative
evaluation of their methods, there is not a unique and common
set of metrics among them. The Dice metric (Abi-Nahed et al.,
2006; Grosgeorge et al., 2011; Kirisli et al., 2010; Mahapatra
and Buhmann, 2013; Bai et al., 2013), surface-to-surface error
(Lötjönen et al., 2004; Lorenzo-Valdes et al., 2004; Kirisli et al.,
2010; ElBaz and Fahmy, 2012) (e.g. Hausdorff distance Grosgeorge
et al., 2011; Mahapatra and Buhmann, 2013), point-to-mesh distance
(Sun et al., 2010; Lu et al., 2011), false segmentation rate (Grosgeorge
et al., 2011), area and shape similarity measures (Pluempitiwiriyawej
et al., 2004), ventricle area difference (Mitchell et al., 2001; Ordas
et al., 2003), linear regression analyses of volumes (Lorenzo-Valdes
et al., 2004) and correlation with cardiac functional parameters
(Sermesant et al., 2003; Cocosco et al., 2008) have been reported.
This, in addition to the heterogeneity of the database size used for
evaluation, complicates a fair comparison among methods.

3. Evaluation measures

In this challenge, we propose to analyze the performance of the
methods technically, by computing the accuracy of the segmenta-
tion itself as compared to the gold standard, and clinically, by com-
paring global RV function indices.

3.1. Technical performance

A standard way to assess segmentation result when compared
to a reference, is to compute an overlap measure, such as the Dice
Metric, and a local, point-based distance measure, as they offer
complementary information. For the latter, we chose the 2D Haus-
dorff Distance (HD), which is less sensitive to contour sampling
contrary to some other measures such as mean point to curve error
or perpendicular distance between contours, but is sensitive to
outliers. The Hausdorff distance is a symmetric measure of dis-
tance between both contours (Huttenlocher et al., 1993). Let us
denote by A and B the two contours. The HD is defined as:

HDðA;BÞ ¼ max max
a2A
ðmin

b2B
dða; bÞÞ;max

b2B
ðmin

a2A
dða; bÞÞ

� �
ð1Þ

where dð�; �Þ denotes Euclidean distance. In the challenge, the Haus-
dorff distance is computed in mm with spatial resolution obtained
from the PixelSpacing DICOM field.

The Dice Metric (DM), based on the pixel labeling as the result
of a segmentation algorithm, is a measure of area overlap, defined
as the ratio of the intersection by the sum of the two surfaces. Let
us denote by U and V the areas enclosed by the two contours. The
DM is defined as:

DMðU;VÞ ¼ 2
U \ V
U þ V

ð2Þ

The DM varies from 0 (total mismatch) to 1 (perfect match).
The DM is computed from a polygon obtained from the contour

points, which makes it little influenced by the contour sampling.
HD is also little influenced by the contour sampling, since it is
determined by the largest error between two curves. Both error
measures (HD and DM) are computed in a multiple 2D way, i.e.
one error computed for one slice and one phase, and independently
for the endocardium and for the epicardium. Then, errors are aver-
aged over slices, phases (i.e. ED and ES), and patients.

3.2. Clinical performance

Segmentation methods are also evaluated on the accuracy of
the clinical indices based on the provided contours. One of the
major clinical indices is the ejection fraction (EF), the best evalua-
tion tool of RV systolic function. For instance, in young adults, RV
EF can be used as a marker of systolic dysfunction, following tetral-
ogy of Fallot surgery, to decide for secondary correction of pulmon-
ary regurgitation. In right ventricular dysplasia, a RV EF value
inferior to 40% as measured by MRI is one of the major diagnostic
criteria for this pathology (Marcus et al., 2010). Another indicator is
the RV mass, whose evaluation is required in some post-operative
situations where the RV acts as the LV and vice versa; for example
in the case of a systemic RV, after senning or mustard correction of
transposition of the great vessels (Lorenz et al., 1995). Tetralogy of
Fallot, following a pulmonary stenosis, is also a major indication
for RV mass evaluation (Davlouros et al., 2002). In this case, the
free wall of the RV is often thickened, thus easing its segmentation
on MR images.

Ventricular volumes are also of interest. Endocardial volumes at
ED and ES (denoted resp. VED

endo and VES
endo) are computed (in ml) as

the sum of all endocardial areas multiplied by the SpaceBetw-

eenSlices value.2 The definitions of the ejection fraction EF and
ventricular mass vm (in g) are based on ventricular volumes, as
follows:

EF ¼ ðV
ED
endo � VES

endoÞ
VED

endo

ð3Þ

vm ¼ q � ðVED
epi � VED

endoÞ ð4Þ
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where q is the density equal to 1.05 g/cm3 (Bogaert et al., 2005). The
vm is evaluated at ED, based on the convention used for the LV. RV
volumes, EF and mass are obtained for both automated and manual
contours. They may be compared through the computation of the
correlation coefficient R, linear regression fitting and Bland–Altman
analysis.
4. Cardiac data and manual reference

4.1. Cardiac MR data

4.1.1. Patients
From June 2008 to August 2008, all patients referred to our cen-

ter (Rouen University Hospital) with a clinical indication of cardiac
MR were invited to participate in the study. The institutional review
board approved the study and all patients gave written informed
consent. Exclusion criteria were as follows: age <18 years; contra
indication to MR; arrhythmias during MR examination; congenital
heart disease; and patients referred for an examination that did not
include ventricular function analysis (i.e. MR angiography of pul-
monary veins or thoracic aorta). A total of 48 patients were
included; mean patients’ age was 52.1 ± 18.1 years and 36 (75%)
were males. Clinical indications were represented by a panel of
the currently most frequent cardiac MRI indications in patients
with acquired heart diseases: myocarditis, ischaemic cardiomyopa-
thy, suspicion of arrhythmogenic right ventricular dysplasia,
dilated cardiomyopathy, hypertrophic cardiomyopathy, aortic ste-
nosis (Caudron et al., 2012).
4.1.2. Cardiac MR protocol
Cardiac MR examinations were performed at 1.5T (Symphony

Tim, Siemens Medical Systems, Erlangen, Germany). A dedicated
eight-element phased-array cardiac coil was used. Retrospectively
synchronized balanced steady-state free precession sequences
were performed for cine analysis, with repeated breath-holds of
10–15 s. Since the subject could not hold the breath at exactly
the same position each time, there may be a shift in the slices. This
inter-slice shift was not corrected. All conventional planes (2-, 3-
and 4-chamber views) were acquired and a total of 10–14 contig-
uous cine short axis slices were performed from the base to the
apex of the ventricles. Sequence parameters were as follows:
TR = 50 ms; TE = 1.7 ms; flip angle = 55�; slice thickness = 7 mm;
matrix size = 256 � 216; Field of view (FOV) = 360 mm � 420 mm;
20 images per cardiac cycle.
4.1.3. Selection of MR datasets for training and test sets
Cardiac images have been zoomed and cropped to a 256 � 216

(or 216 � 256) pixel ROI. On each MRI dataset, the LV was left vis-
ible for joint ventricle segmentation, if necessary. Each patient
examination typically includes between 200 and 280 images, with
20 images per cardiac cycle. Spatial resolution is originally 1.6 mm/
pixel (as seen from the FOV and matrix size values above) but
decreases down to around 0.75 mm/pixel depending on the
patient, after zooming and cropping. The MR data is divided into
a Training set (16 patients), a Test1 set (16 patients) and a Test2
set (16 patients). Data is anonymized, formatted and named fol-
lowing the naming convention of the MICCAI’09 LV segmentation
challenge.
3 In particular, tracing tricuspid valve and pulmonary valve planes within SA
images for the selection of basal and apical slices is a difficult task. Some guidelines
may be found in (Prakken et al., 2008).
4.1.4. Selection of basal and apical slices
Basal and apical slices have been selected by a cardiac radiolo-

gist before the data were released to the participants. The basal and
apical slice numbers were provided to the participants. This selec-
tion task was thus not part of the challenge.
4.2. Manual RV segmentation methodology

Even though conventions are used to guide cardiac radiologists
for their manual delineation, manual segmentation is known to be
quite observer-dependent3 (Caudron et al., 2012,). The following
conventions were used in this challenge:

4.2.1. End-diastole (ED) and end-systole (ES) definitions
ED was defined as the first temporal image of each stack, i.e. the

first cine phase of the R-wave triggered acquisition (Fig. 1a)
whereas ES was defined on a mid short axis slice as the image with
the smallest ventricular cavity area (Fig. 1b).

4.2.2. Definition of basal and apical slices
The basal slice of the RV at ED and ES was inferred from the

position of the tricuspid annulus as defined on the 4-chamber view
at ED/ES. Apical slice was defined as the last slice with a detectable
ventricular cavity.

4.2.3. Manual endocardial and epicardial delineation
The expert manually delineated endocardial and epicardial bor-

ders of the RV on short axis slices at ED and ES. Trabeculae and
papillary muscles were included in the ventricular cavity. On the
septum specifically, the convention is not to include the interven-
tricular septum in the RV mass, and thus to draw the epicardial
border stuck to the endocardial one. Even it was the radiologist
intention to follow this convention, the drawing software tool
would not fully allow it, thus resulting in a minimal distance
between the epicardial and the endocardial borders, especially as
the duration of the delineation activity was kept compatible with
clinical practice. Processing time per patient was indeed around
15 min.
5. MICCAI 2012 challenge outline

The RVSC, organized by five of the authors (CP, DG, SR, JND and
JC), was launched in March 2012 with the electronic invitation of a
large number of researchers working on cardiac MR segmentation
to visit the website and to participate in the challenge, and the
announcements on various mailing lists. The RVSC went through
different stages of data distribution and result submission and
finally ended up with the ‘‘3D Cardiovascular Imaging: a MICCAI
segmentation challenge’’ workshop that was organized in conjunc-
tion with the 15th International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI), held
on October 1st, 2012 in Nice Sophia Antipolis, France, that included
an on-site competition. 47 teams initially registered to the chal-
lenge and 7 of them submitted results and participated to the
on-site challenge. The 7 evaluated algorithms are described in Sec-
tion 6 and more details can be found in the full paper version,
available on our website (http://www.litislab.eu/rvsc/).

5.1. Phase 1 (Training)

In March 2012, participants were provided with a Training set
that included the whole MR examination of 16 patients, i.e. all
DICOM MR images, a list of images to be segmented (correspond-
ing to selected images at ED and ES phases), and associated refer-
ence manual contours. It means that the participants did not have
to choose by themselves apical and basal slices, as well as ED and
ES phases. A Matlab evaluation code was provided to participants,

http://www.litislab.eu/rvsc/
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intended to help them assessing their segmentation method per-
formance on the Training dataset, with the same evaluation tool
subsequently used by the organizers during Test1 and Test2 stages.
This code yields DM and HD measures for each image and averaged
(mean and standard deviation) for each patient and each phase (ED
and ES), as well as correlation coefficient, linear regression fitting
and Bland–Altman analysis as described in Section 3.

5.2. Phase 2 (Test1)

At the beginning of June 2012, participants were provided with
a Test1 set, that included MR images of other 16 patients, and a list
of images to be segmented. Participants entered their best algo-
rithm to find either the RV endocardium, or the RV endocardium
and epicardium automatically, with little or no user intervention.
In order to assess the performance of their algorithm on the Test1
set, participants were invited to send their automatic contours to
the RVSC organizers, who in return, provided them with the perfor-
mance measures using the same evaluation code proposed during
the Training phase. Participants had then until July 5th to submit
their papers describing their methods and results obtained on
the Test1 set. These papers are now part of our workshop proceed-
ing (available at http://www.litislab.eu/rvsc/). The results were
published on the website, anonymously at that time (see Section 7
for the results).

5.3. Phase 3 (Test2)

On the day of the workshop (October 1st 2012, at MICCAI), chal-
lengers were provided a new Test2 set of 16 patients. A 3-h time-
slot was dedicated to the on-site competition. For some algorithms,
segmentation of large datasets could be technically challenging in
terms of processing power and memory requirements. Thus chal-
lengers were allowed to perform the segmentations using remotely
located hardware. Results were computed and presented by the
organizers during the conference. Note that challengers were
allowed to improve their algorithm between the Test1 submission
and the day of the challenge.

6. Methods

Methods presented by the 7 challenger teams include three
atlas-based methods, two prior based methods, and two prior-free,
image-driven methods that make use of the temporal dimension of
the data, as shown in Table 1, with some of them processing 3D
data and some others 2D data. A majority of them (5) include prior
knowledge in their segmentation framework while 2 algorithms
were image driven, specifically designed for RV segmentation,
but based on cardiac motion. Our panel of methods show the cur-
rent interest for atlas registration based segmentation.

As stated in the Introduction, the RVSC offered the possibility to
segment either the endocardium only (2 methods), or the epicar-
dium and the endocardium of the RV (5 methods). For these two
Table 1
List of challengers. A: Automatic, SA: Semi-automatic.

Team Method principle

CMIC, UK (Zuluaga et al., 2013) 2D multi-atlas regis
NTUST, Taiwan (Wang et al., 2012) 2D clustering and m
SBIA,⁄ USA (Ou et al., 2011) 3D multi-atlas regis
BIT-UPM, Spain (Maier et al., 2012) 4D watershed graph
GEWU,⁄ Canada (Nambakhsh et al., 2013) 3D distribution mat
ICL, UK (Bai et al., 2013) 3D multi-atlas regis
LITIS, France (Grosgeorge et al., 2013) 2D shape prior grap

⁄ Team not present at the workshop for the on-site challenge.
tasks, automated and semi-automated algorithms (3 vs 4 resp.)
are distinguished. An automated algorithm does not require land-
marks, ROIs, thresholds or similar settings to be defined by the user
manually prior to starting the algorithm. A semi-automated algo-
rithm would have some small number of manual steps prior to ini-
tiating the algorithm. The contours (unadjusted) that are output by
the algorithm are the results that are evaluated.

6.1. CMIC (Zuluaga et al.)

This fully automated method is based on a coarse-to-fine strat-
egy. The segmentation of an unseen image is incrementally refined
by means of a multi-atlas propagation framework (Zuluaga et al.,
2013). The coarser segmentation obtained at each propagation level
is used as a mask to gradually improve the registration initialization
and accuracy. Through a three level process, the algorithm first
locates the heart, then obtains a rough segmentation of the RV and,
finally, obtains a refined segmentation of the epi- and endocardium.

First, the unseen image is globally registered to the atlases using
a block matching approach. The obtained transformations are
applied to the atlas labels, which are all fused using majority vot-
ing. This fusion yields a binary mask, which is used next to sup-
press structures that are not of interest and that might bias the
registration process (at this step, the mask covers the complete
heart, i.e. LV and RV). Second, the atlas are rigidly registered to
the masked unseen image, followed by a non-rigid alignment using
a fast free form deformation algorithm. As the segmentation is per-
formed on 2D slices and cardiac images can exhibit large variabil-
ity, it is necessary to perform an atlas selection that chooses the
best suited atlases for a particular unseen image slice. For this mat-
ter, a multi-label ranking criterion (Cardoso et al., 2013), based on
the local normalized cross correlation, is used to select the best 10%
atlases for label fusion. As a third step, all the label images are affi-
nely aligned to the estimated rough segmentation, and the trans-
formed label images are fused through majority voting. The
newly obtained mask is used to remove surrounding structures
in the final non-rigid registration step. The label images are non-
rigidly transformed and fused using the same multi-label fusion
algorithm. Typical computation time per patient is 12 min on a
PC with a 2.13 GHz quad-core processor.

6.2. NTUST (Wang et al.)

The principle of this automatic method is to use motion to
detect the LV and the RV. The endocardium contour is segmented
first on all images thanks to a binarization using the isodata algo-
rithm, and cleaned up with morphological operations. Then the
image sequence (denoted S) where ventricles are observed to be
the largest of all slice levels is identified (empirically determined
to be at the 4th slice level). For this S sequence, an exclusive or
between all binarized images yields a motion map, and repeated
motion maps are generated by overlapping consecutive motion
maps. Then, the repeated motion map allows to select the two larg-
A/SA Contours

tration A Endo + Epi
otion A Endo + Epi

tration A Endo + Epi
cut segmentation SA Endo
ching prior SA Endo
tration SA Endo + Epi
hcut segmentation SA Endo + Epi
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est connected components from the binary image, which are the LV
cavity on the right and the RV cavity on the left. The LV compo-
nents of the S sequence are used to find the LV contours in other
slice levels, by selecting components with the largest overlap.
The RV endocardial contours over the remaining slices are found
similarly, by finding components with a large overlap with the
RV cavities of the S sequence and with a low overlap with the LV
cavities of the S sequence. A dilatation of the endocardium contour
allows to obtain the epicardium contour. Typical computation time
per patient is 90.3 s on a PC with a 3.1 GHz dual core processor.
6.3. SBIA (Ou et al.)

This team has designed a fully automatic iterative segmentation
framework based on multi-atlas registration and label fusion (Ou
et al., 2012). Manual segmentations of RV of the atlases were
deformably registered onto the target image space using an attri-
bute-based general-purpose non-rigid registration algorithm (Ou
et al., 2011). A weighted majority voting strategy, which assigns
higher weights to atlases locally more similar to the target image,
is used for the label fusion. Note that there is no atlas selection.
Within the iterative framework, the initial segmentation is used
for (a) restricting the focus area to the vicinity of the target anat-
omy, i.e. RV and (b) selecting a subset of atlases that are globally
more similar to the target image within this restricted area, prior
to a second round of registrations. In this way, the negative effects
of large variations in images, mainly due to differences in field-of-
view and/or the anatomic variability of structures surrounding the
RV, have been partially reduced. In practice, the method converged
to a stable final RV segmentation at the end of two iterations.

The multi-atlas segmentation framework has several hyperpa-
rameters. They are: the choice of registration algorithms, the
weight for the smoothness of registration, the number of atlases
to be used, the choice of atlas selection and label fusion strategies.
A general-purpose attribute-based image registration algorithm
with the default weight for registration smoothness is chosen here.
The whole training set is used as atlases. Atlas-to-target registra-
tion each takes 2–3 min and the final label fusion takes around
10 s on a Linux OS with 2.8 GHz dual core CPU.
6.4. BIT-UPM (Maier et al.)

The proposed 4D semi-automatic segmentation approach is
based on regions resulting from a watershed filter, merged through
a graph cuts strategy (Maier et al., 2012). The watershed filtering is
a popular solution to reduce the size of the graph, as voxel-based
graph cuts are known to be memory consuming.

The user is required to trace a contour inside of the RV wall in
four or five 2D slices of the ED phase (as shown in Table 2). The
manual delineation inside the RV wall is dilated and eroded to cre-
ate background and foreground markers respectively, and then
propagated forward and backward along the temporal dimension,
exploiting the cardiac cycle symmetry. Next, the 4D volume is pre-
segmented into many small regions using the watershed trans-
form. Finally, these regions are merged using 4D graph-cuts with
an intensity based boundary-term. This approach extends the
Table 2
Amount of user input for semi-automatic (SA) methods.

Team Contours User input

ICL SA Endo + Epi 5 landmarks per volume
LITIS SA Endo + Epi 2 landmarks per image
BIT-UPM SA Endo rough contouring of 4–5 2D slices of ED phase
GEWU SA Endo 1 landmark per patient
works of Li et al. (2004) and Stawiaski et al. (2008) to the fourth
dimension. Typical cardiac MRI volumes exhibit a significant
slice-to-slice discontinuity, because of the shift between two adja-
cent 2D slices (caused by breathing artifacts) and the large distance
between two slices (8.4 mm), while the temporal discontinuity is
less obvious. Whereas a 3D GC approach might have failed to seg-
ment two neighboring slices, the proposed 4D GC approach takes
advantage of the temporal consistency to impose a correct cut in
the spatial dimension. A complete 4D segmentation of the RV is
thus obtained in a single step. The method shows a strong
robustness: since the approach is prior-free, it is suitable for any
pathological cases and accounts for differences in MRI volumes
originating from scanners and acquisition protocols. The hyperpa-
rameters concern the foreground and background marker extrac-
tion (three parameters linked to dilatation and erosion) and the
graph cost function. They have been fixed once and for all on the
training set. Thanks to the robust process to build background
and foreground markers, results are little influenced by variable
manual delineation, as shown in the study of inter and intra-obser-
ver variability presented in Maier et al. (2012). The method
medium runtime is 2 min 15 s per patient on a 2.2 GHz quadcore
PC. Manual interaction requires an additional time of around
2 min.
6.5. GEWU (Nambakhsh et al.)

This method is a 3D segmentation via convex relaxation and
distribution matching. The algorithm requires a single subject for
training and a very simple user input, which amounts to one click
at about centroid of LV in one of the 2D slices (as seen in Table 2).
The RV endocardial contour is sought following the optimization of
a functional containing shape as well as intensity priors, each
based on a distribution matching measure, namely the Bhattachar-
yya measure. The shape prior evaluates the conformity between
the distributions of some distance/angle features within the target
right ventricular region (between RV contour points and the LV
centroid) and fixed model distributions learned a priori from a sin-
gle training subject. The intensity prior ensures that the image dis-
tribution within the target region most closely matches a model
learned interactively from user inputs. These priors are used in
conjunction with a standard total variation term, which regularizes
the segmentation boundaries and attract them towards strong
image edges. The overall functional is optimized with a convex
relaxation technique.

The method involves the parameters balancing the contribution
of the shape terms in the overall functional (four parameters
involved) and two parameters for computing the distributions,
one is the kernel width (a standard parameter in kernel density esti-
mates based on the Gaussian kernel) and the other is the number of
bins. The proposed algorithm relaxes the need of costly pose esti-
mation (or registration) procedures and large, manually-segmented
training sets. Furthermore, unlike related graph-cut approaches, it
can be parallelized. The parallelized implementation on a graphics
processing unit (GPU) demonstrates that the proposed algorithm
requires about 5 s for a typical cardiac MRI volume.
6.6. ICL (Bai et al.)

This team presents a 3D multi-atlas based segmentation
method which labels the RV myocardium and blood pool by
ensembling opinions from multiple atlases. It only requires an ini-
tial input in the form of a few landmarks per volume (typically 5
landmarks, as specified in Table 2). Each atlas is aligned with the
target image using landmark-based affine registration, followed
by B-spline non-rigid image registration. In order to estimate the
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label at a target voxel x, the labels from the atlas voxels are com-
bined using local weighted label fusion and defined as:

eLðxÞ ¼ arg max
l

XN

n¼1

X
Dx2S

PðIðxÞjInðxþ DxÞÞ � PðLðxÞ ¼ ljLnðxþ DxÞÞ ð5Þ

where N denotes the number of atlases, S denotes a search volume
centered at voxel x. The first weight term PðIðxÞjInðxþ DxÞÞ is deter-
mined by the intensity similarity between the target voxel x and the
atlas voxel xþ Dx and the second weight term PðLðxÞ ¼ ljLnðxþ DxÞÞ
is determined by the distance between the target and atlas voxels
(Bai et al., 2012, 2013). An atlas voxel with a similar intensity to
the target voxel and close to it will have a higher impact in deter-
mining its label than an atlas voxel less similar or far away from
the target voxel. The label with the highest summed weight will
be assigned to the target voxel. Regarding the parameter, both the
intensity similarity weight and the distance weight are modeled
using the Gaussian distribution. Main parameters of the method
are thus the bandwidth of the Gaussian kernels, which are tuned
on a small set of training images. Typical computation time per
patient is 5 min with a parallel run on a 32-core computing server.
6.7. LITIS (Grosgeorge et al.)

This semi-automatic method is based on the 2D graph cut seg-
mentation framework and uses a shape prior to guide the segmen-
tation process. Each endocardial contour of the training set is
transformed into a signed distance map (Tsai et al., 2003;
Grosgeorge et al., 2013) and rigidly aligned on an arbitrary refer-
ence shape. All training shapes are averaged into a mean shape.
Main variation axis of the endocardium are obtained via a PCA per-
formed on the set of centered endocardial shapes. A single prior
map is then derived from the PCA: areas of variations of the mean
shape are first identified by generating several highly deformed
shape instances for each variation axis and combined with the
mean shape distance map, to form a single map. This endocardial
shape prior is incorporated into the graph cut segmentation frame-
work (Boykov and Jolly, 2001). The cost function of the graph clas-
sically includes a region (intensity-based) term and the boundary
(regularization) term. In this approach, the shape prior contributes
to both terms. The prior also allows to define object and back-
ground areas as hard constraints, and yields a probability model
computed from the histogram of the mean shape, used in the
region term. The image to be segmented is affinely registered to
the shape model thanks to user input (two anatomical landmarks
on the junction of the interventricular septum, as specified in
Table 2). The prior-based graph cut approach allows to obtain
the endocardium, and a combination of dilatations allows to obtain
the epicardium. Parameters of the methods include the weighting
of the graph cost terms, fixed using the training set, and the num-
ber of shape models built according to different the slice levels (6
for ED, 5 for ES). The graph cut framework is computationally effi-
cient in 2D: typical computation time per patient is 45 s on a PC
laptop with 2.8 GHz processor.
4 In the SATA Segmentation Challenge mentioned in the Introduction, the best-
ranking DM for LV myocardium is about 0.8.
7. Results and analysis

The results presented in this section have been obtained during
Phase 2 (Test1) and Phase 3 (Test2). In particular, results obtained
on Test2 have been obtained during an on-site competition, by the
algorithms presented at the workshop. The method performance
on the Training set was not evaluated, since this set of images
was given only for training and parameter tuning purposes. As
specified in Section 4.1, the 48 patients have been equally divided
into the three datasets, yielding a number of 243 images for the
Training set, 248 for Test1 and 252 for Test2. We denote by Test
set the set of both Test1 and Test2.
7.1. Endocardium and epicardium segmentation accuracy

As a preamble, we have performed an inter-expert variability
study in order to better interpret the obtained DM values. This
study is expected to provide an indication of an acceptable accu-
racy for a (semi-) automated method. All ED phases from the Test1
set were delineated by another radiologist, using the same guide-
lines as specified in Section 4.2. Agreement between contours is
measured with a DM equal to 0.90 ± 0.10. From Table 3, it can be
seen that the DM values for endocardium ranges from 0.55 to
0.81, with high standard deviation, showing that performance
may vary much from one patient to another. The best DM obtained
by enrolled methods being around 0.8, one can say that room for
improvement is left, as compared to inter-expert variability
(0.90 ± 0.10). Nevertheless, the comparison to the companion task
of LV segmentation, for which the state-of-the-art DM is about 0.84

to 0.9 (Bai et al., 2013; Zhuang et al., 2010) shows that the best DM
obtained here for the RV is comparable to the state-of-the-art for LV.
Figs. 5–7 help to visually grasp the difference between DM of values
0.8 and 0.9.

From Table 3, one can see that minimal HD values are close to
1 cm. When compared to the HD value obtained with the inter-
expert study, i.e. 5.02 ± 2.87 mm, this value may seem large when
considered alone, especially in comparison to the RV size. A HD
value should actually be examined along with the corresponding
DM value. Two images can have similar HD and different DM,
see for example in Fig. 5, in which the LITIS-basal image (first
row) and the SBIA-mid image (second row) have similar HD values
(8.40 and 8.08 mm resp.), and a difference of 0.09 in their DM. The
error between contours in SBIA is rather global (over the whole
contour) whereas it is local in the LITIS image. In Fig. 6, mid slices
in CMIC and LITIS have similar DM (0.94 and 0.95 resp.) but differ-
ent HD values 5.18 and 7.17 mm. When anticipating about post-
processing manual corrections, HD gives an idea of the correction
amplitude, and DM of the amount of correction needed.

Out of the seven methods, five of them have reported segmen-
tation for epicardium. Results reported in Table 4 shows that a Dice
Metric can reach up to 0.82 (resp. 0.77) for automatic method
(CMIC) and 0.83 (resp. 0.85) for semi-automatic ones (ICL, LITIS)
on Test1 and Test2 respectively. Even if the segmentation of the
epicardium might seem more challenging in terms of image con-
tent than the endocardium segmentation (the RV has a very thin
wall, reaching the limit of MRI spatial resolution), comparison
between epicardium and endocardium results show that they
reach comparable accuracy, as seen Fig. 4. The quality of the epi-
cardium as compared to the segmentation complexity may be
due to the fact that no method segment the epicardium directly:
all of them either apply a model (for atlas-based methods) or
deduce the epicardium contour from the endocardium one. The
superiority of the quality of epicardium segmentation was found
significant with a one-tailed unpaired t-test only for the LITIS
(P < 0:01).

A separate analysis for ED and ES image (as shown in Fig. 2 for
the endocardium and Fig. 3 for the epicardium) shows that seg-
mentation results are superior for ED images than for ES images,
for all methods: ED images are easier to process, as the heart is
then the most dilated. ES images are also fuzzier because of partial
volume effect. The difference of performance between ED and ES
ranges from 0.05 up to 0.17 depending on the method and is



Table 4
Epicardium segmentation: mean values (� standard deviation) of Dice Metric (DM)
and Hausdorff Distance (HD) averaged over ED and ES. A: Automatic, SA: Semi-
automatic.

Test1 Test2

DM HD (mm) DM HD (mm)

CMIC A 0.82 ± 0.19 10.94 ± 8.32 0.77 ± 0.24 12.70 ± 10.44
NTUST A 0.62 ± 0.35 26.71 ± 22.90 0.64 ± 0.35 22.14 ± 21.61
SBIA A 0.58 ± 0.29 22.53 ± 18.06 0.68 ± 0.25 15.17 ± 8.88
ICL SA 0.83 ± 0.14 9.64 ± 4.95 0.80 ± 0.18 10.34 ± 5.41
LITIS SA 0.82 ± 0.13 10.40 ± 5.45 0.85 ± 0.11 8.32 ± 3.70

Best results for each category (automatic and semi-automatic) are indicated in bold.

Table 3
Endocardium segmentation: mean values (� standard deviation) of Dice Metric (DM)
and Hausdorff Distance (HD) averaged over ED and ES. A: Automatic, SA: Semi-
automatic.

Test1 Test2

DM HD (mm) DM HD (mm)

CMIC A 0.78 ± 0.23 10.51 ± 9.17 0.73 ± 0.27 12.50 ± 10.95
NTUST A 0.57 ± 0.33 28.44 ± 23.57 0.61 ± 0.34 22.20 ± 21.74
SBIA A 0.55 ± 0.32 23.16 ± 19.86 0.61 ± 0.29 15.08 ± 8.91
BIT-UPM SA 0.80 ± 0.19 11.15 ± 6.62 0.77 ± 0.24 9.79 ± 5.38
GEWU SA 0.59 ± 0.24 20.21 ± 9.72 0.56 ± 0.24 22.21 ± 9.69
ICL SA 0.78 ± 0.20 9.26 ± 4.93 0.76 ± 0.23 9.77 ± 5.59
LITIS SA 0.76 ± 0.20 9.97 ± 5.49 0.81 ± 0.16 7.28 ± 3.58

Best results for each category (automatic and semi-automatic) are indicated in bold.

Fig. 3. Epicardium segmentation: median DM value obtained for the Test set. The
median is the middle bar, in red. The box indicates the lower quartile (splits 25% of
lowest data) and the upper quartile (splits 75% of highest data). The whiskers are
the maximum and minimum values. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Endocardium vs. epicardium segmentation: mean DM value for the test set.
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shown to be significant (P < 0:01 for all methods thanks to a one-
tailed, unpaired t-test). Note how the distribution is tightened
around the median value for certain methods (BIT-UPM, ICL, LITIS),
which indicates a stable behavior of the method.

It can be seen from Figs. 5–7 that the erroneous behavior of all
methods depends on the slice level. We have thus performed a
quantitative analysis of errors along the longitudinal axis of the
RV, for all patients. Each volume having a different number of slices
(ranging from 6 to 12, with a mean value of 8.94 ± 1.53 for ED vol-
umes), the DM values obtained for each slice have been interpo-
lated over 12 values, so as to allow for a comparison between
patients. Fig. 8 shows, for all methods, the average Dice metric in
function of three normalized slice levels: basal, mid-ventricular
and apical. It reveals that the error increases as most apical slices
are processed. For the endocardial contour for example, the DM
Fig. 2. Endocardium segmentation: median DM value obtained for the Test
patients. The median is the middle bar, in red. The box indicates the lower quartile
(splits 25% of lowest data) and the upper quartile (splits 75% of highest data). The
whiskers are the maximum and minimum values. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
decreases by around 0.20 from base to apex: most basal slices have
a score of 0.91 (when averaged over the three best methods CMIC,
ICL, LITIS), whereas most apical ones have a score of 0.73. This indi-
cates that the improvement of segmentation accuracy could be
searched in apical slices, maybe with an emphasis of the model
over the image content for these slices. Error on apical slices has
eventually little influence on the volume computation but it can
be a limiting factor in other fields such as studies of the fiber
structure.
7.2. Clinical performance

Endocardial volumes at ED and ES are computed as the sum of
all endocardial areas enclosed by the contours, multiplied by a con-
stant. Even if the comparison between volumes is conventionally
made via correlation and linear regression analysis, these figures
should be handled with caution as ventricular volumes measure-
ments, as sum of areas, may be subject to compensation of con-
touring errors. More importantly, the correlation coefficient
resulting from regression analysis is not directly related to the
accuracy of the segmentation: very accurate segmentations will
result in very high volume correlation, but not vice versa. The good
correlation values between manual and automatic contours
reported in Table 5 (coefficient R can reach up to 0.99 for semi-
automatic methods (BIT-UPM) and 0.93 for automatic methods
(CMIC)) show that automated contours behave similarly to manual
contours.



Fig. 5. Endocardial contours at ED on one patient (P#33 from Test2) for all methods, from selected basal, mid-ventricular and apical slices (from top to bottom). Manual
contours are shown in yellow, automatic contours in red. Corresponding DM and HD values are provided for each image. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. Endocardial contours at ES on one patient (P#42 from Test2) for all methods from selected basal, mid-ventricular and apical slices (from top to bottom). Manual
contours are shown in yellow, automatic contours in red. Corresponding DM and HD values are provided for each image. For visualization purposes, the image contrast has
been modified. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Based on ventricular volumes, the ejection fraction and ventricu-
lar mass are computed. The analysis of ejection fraction and ventric-
ular mass is a bit different from the volume values. As the EF is a ratio
and vm is a difference, any existing, constant bias in the volume
assessment may cause EF errors and vm errors to decrease. Yet EF
correlation values is not that satisfying and there is a
non-negligible fixed offset in the Bland–Altman plot, as shown in
Figs. 9 and 10: the mean differences (red line) exhibit absolute val-
ues ranging from 0.06 to 0.19, with an average of 0.10. A two-tailed
paired Student’s t-test allowed to determine that there are indeed
significant differences between manual and automated measure-
ment of the EF (P < 0:01) for some of the teams (CMIC, ICL, GEWU).



Fig. 7. Epicardial contours at ED on one patient (P#38 from Test2) for all methods. Selected basal, mid-ventricular and apical slices, from top to bottom. Manual contours are
shown in yellow, automatic contours in red. Corresponding DM and HD values are provided for each image. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 8. Longitudinal distribution of DM values for all algorithms on the test set for (a) endocardium and (b) epicardium segmentation.

Table 5
Correlation coefficient R for RV volumes at ED and ES. A: Automatic, SA: Semi-
automatic.

R (ED) R (ES)

CMIC A 0.93 0.93
NTUST A 0.71 0.78
SBIA A 0.63 0.69
BIT-UPM SA 0.99 0.97
GEWU SA 0.81 0.81
ICL SA 0.98 0.98
LITIS SA 0.95 0.90
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The same remarks holds for vm. Fig. 11 shows quite deceptive corre-
lation and regression values. When performing the paired t-test, the
null hypothesis was not rejected for only one team (LITIS); for the
remaining teams, vm values were found significantly different
(P < 0:01) from reference values. Room for improvement is thus left
for the computation of clinical values. In addition to the significance
test, we want to know if the estimated EF or vm values reach intra-
expert variability, in order to assess whether they are clinically
acceptable. We have thus compared them to intra-expert variability
values obtained from (Caudron et al., 2012), where the EF Bland Alt-
man plots reveal a bias close to zero and the 95% limits of agreement
(�2r) are �0:10 (Fig. 3 of Caudron et al. (2012)). Looking at Figs. 9
and 10, one can see that there exists a non zero bias in general with
the 95% limits closer to�0:20. The same conclusion holds for the vm.
The evaluation of EF and vm by (semi-)automated, although encour-
aging, cannot be fully satisfying in this study.
8. Discussion and conclusion

Let us now return to our introduction questions: what accuracy
can be expected from semi-automated and automated algorithms



Fig. 9. Analysis of EF for automatic methods on the test set. Correlation coefficient (R). Linear regression: the black dotted line is the identity function. Bland–Altman plots:
black lines indicate the 95% limits of agreement (�2r).
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for RV endocardium and epicardium segmentation? An overall rea-
sonable accuracy 80% (in terms of DM) should be expected. Epicar-
dium compared well to endocardium segmentation, with
equivalent or even better results. ES phases exhibited more errors
that ED phases. Apical slices were found to be difficult to process,
with a DM of 0.62 for the most apical slices, while accuracy of basal
slices reached 0.91. Clinical evaluation of the methods showed that
ejection fraction and ventricular mass were in some cases correctly
estimated though room for improvement is left.

Second question was to know how do automated algorithms
compare to semi-automated ones. The method presented by CMIC
is a proof that automated can reach an accuracy very close to that
of semi-automated algorithms. Difference with the closest semi-
automatic methods is evaluated with a paired t-test: compared
to BIT-UPM’s DM on the endocardium contour, no significant dif-
ference was found (P � 0:41); yet CMIC’s results were found signif-
icantly different from the ones of ICL and LITIS (P < 0:05) (same
conclusion holds for epicardium contours). A fair comparison
should include not only accuracy, but also complexity or computa-
tion time, which is an important matter for clinical use of the
methods, and requested amount of user interaction. From the clini-
cian point of view, a fast and semi-automatic method, involving for
example the identification of landmarks such as the RV attachment
to the LV, the triscupid or pulmonary valve, would be preferred to a
fully automatic, lengthy one. Although computation times may not
be fully compared, it seems that the good performance of CMIC
algorithm is obtained at the expense of a higher computation time
(see Section 6), in relation with the speed – degree of automation
tradeoff. Although real time is not requested, the running time
should be limited to a few minutes, which is the case for all meth-
ods here. For semi-automated methods, the amount of user inter-
action differs depending on the methods, from a few clicks per
patient to full manual segmentation of some images, as shown in
Table 2. Note that the robustness of the methods to user variability
has not been assessed here.

As 3D methods are the state-of-the-art in many segmentation
domain, one legitimate question was if they really were the most
appropriate for the task of RV segmentation. In our cardiac MR
data, space between slices and slice thickness are quite large
(8.4 mm and 7 mm resp.), and differ from the order of magnitude
of spatial resolution within the image (1.6 mm per pixel). Most
of the imaging centers still acquire cardiac MR data with 8 or even
10 mm slice thickness. This is still the main stream, and it has some
advantages: the 2D short-axis acquisition is accompanied by 4-
chamber and long-axis imaging acquisitions which allow for an
easy identification of the pulmonary and tricuspid valves, thus pre-
venting to include ‘‘out-of-RV’’ volumes (such as pulmonary artery
or atrial volume). However, it seems that some groups have started
to work on 3D isotropic MR images: voxel reported to be
1.4 � 1.4 � 1.4 mm in Rajchl et al. (2014), 2.5 � 2.5 � 2.5 mm in
Uribe et al. (2007), 2 � 2 � 4 mm (reconstructed to
2 � 2 � 2 mm) in Dawes et al. (2013). Authors of Uribe et al.
(2007) mentioned the drawback of the 3D SSFP sequence is that
‘‘current methods, even those that use undersampling techniques,
involve breath-holding for periods that are too long for many
patients.’’ This might be the reason why in some studies 3D cine
image acquisition is restrained to healthy volunteers (Uribe et al.,
2007; Dawes et al., 2013). Also, it sacrifices some signal-to-noise-
ratio. Definitely, isotropic imaging has some drawbacks which
makes many radiologists still subscribe to the 2D imaging
sequence. Our cardiac MR data may not be fully considered as 3D
data, due to an anisotropic resolution and to a longitudinal shift
between consecutive images since every phase image is acquired
during a different breathhold (Attili et al., 2010). We can expect
that, with the advances of MR imaging technique, it would become
possible that cardiac images (for both LV and RV) can become truly



Fig. 10. Analysis of EF for semi-automatic methods on the test set. Correlation coefficient (R). Linear regression: the black dotted line is the identity function. Bland–Altman
plots: black lines indicate the 95% limits of agreement (�2r).
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Fig. 11. Analysis of ventricular mass (g) for epicardium-concerned methods on the test set. Correlation coefficient (R). Linear regression: the black dotted line is the identity
function. Bland–Altman plots: black lines indicate the 95% limits of agreement (�2r). The NTUST algorithm failed for some cases and the vm could not be computed.
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3D, like brain images. But for now, most of groups still process 2D
cardiac image stacks and 3D segmentation methods may not be the
best adapted to this data. This is also demonstrated in the paper
empirically: some 2D methods (LITIS, BIT-UPM) exhibit good
results.

At last, and as a conclusion question, we wanted to know what
type of methods performs best, although this is an open and diffi-
cult question, and we are fully aware that the answer is limited by
the framework of this challenge, and by the sample of methods
that answered back to our challenge proposal. In the following,
we summarize advantages and drawbacks of the methods.
8.1. Atlas-based methods (CMIC, ICL, SBIA)

Atlas-based methods incorporate prior anatomical knowledge
from multiple atlases. With good target-to-atlas registration, the
resulting segmentation can be quite robust and accurate. For
example, multi-atlas segmentation has been successfully applied
to brain image segmentation in recent years and achieved very
good results. Multi-atlas segmentation methods consist of two
steps, namely image registration and label fusion. In this challenge,
three methods are atlas-based, which differ on these two points,
and also on how they handle the challenges arising from the direct
registration of the entire cardiac images. ICL defines a ROI using the
landmarks and performs registration only in the ROI for the RV,
CMIC has a pre-processing step to remove non-relevant structures
before the registration, and SBIA directly registers the whole atlas
and the whole target images, which may account for the relatively
low segmentation accuracy in the SBIA approach. Regarding the
deformable registration algorithms, they all used free form defor-
mation (FFD) as the transformation model, but ICL and CMIC used
normalized mutual information (NMI) with continuous optimiza-
tion strategies, whereas SBIA used a texture-attribute-based simi-
larity metric with a discrete optimization strategy. ICL and CMIC
use local weighting, where the label from each atlas voxel has its
own weight: for ICL, the weight is determined by the intensity sim-
ilarity to the target voxel and for CMIC, it is based on local normal-
ized cross correlation. On the contrary, SBIA uses global weighting,
where all the voxels from one atlas have the same weight, deter-
mined by the similarity between this atlas and the target image.
The limitations of atlas-based methods include a high computa-
tional cost, which is associated with the registration between the
target image and multiple atlases, and the dependence of the
results on the quality of the atlas set. While CMIC and ICL exhibit
some of the best results of this challenge, SBIA’s results leave room
for improvement. While being general, the SBIA framework was
not specifically designed, and hence it is not necessarily optimal
for, cardiac segmentation. For example, a purely registration based
approach was used. Most general-purpose registration algorithms
encounter challenges when directly applied to raw cardiac MRI
data, mainly due to the complications caused by many neighboring
structures in the image. Future studies may need to consider shape
or anatomical priors as an initialization or constraint for the regis-
tration specifically for cardiac images. Also of interest would be the
optimization of hyperparameters (registration algorithms, number
of selected atlases, label fusion) specifically in the context of car-
diac segmentation.
8.2. Shape prior-based approaches (LITIS)

Based on a statistical shape prior model, the LITIS method yields
quite accurate results, with an advantageous computation time.
Main drawbacks are a heavy user interaction (2 landmarks per
image) and the construction of the shape prior models.
8.3. Prior-based approaches (GEWU)

The GEWU algorithm uses prior knowledge in its segmentation
process, but not under the form of a shape model, which thus
removes the need for costly pose estimation (or registration) pro-
cedures. As it uses a single subject for training, the need for large,
manually segmented training sets is also relaxed. A good property
is that performance is not significantly affected by the choice of the
training subject (Nambakhsh et al., 2013). Another advantage of
this algorithm is its possible parallelized implementations, which
makes it run in near real time on typical graphics processing units
can. This can accommodate interactive scenarios, where the user
can correct the results or change the inputs. A limitation is that
it is not straightforward to extend this formulation to train several
subjects. When a large training set is available, as in this challenge,
the shape prior cannot take full advantage of the available informa-
tion (unlike standard statistical shape models) because the distri-
bution matching measure provides summarized, not
comprehensive, shape information. Therefore, in cases where mas-
sive training information is available, this algorithm is not
expected to outperform standard statistical shape models. The
results might depend on the user input.

8.4. Image-driven approaches (BIT-UPM, NTUST)

These two approaches are based on cardiac motion to compen-
sate the lack of a priori knowledge. One clear advantage is that they
do not depend on a training set. Another is that images are seg-
mented over full cardiac cycle. Apart from that, they principle are
different. The automatic method of NTUST does not include any
constraint and thus might fail in some difficult cases. The BIT-
UPM approach circumvents the problem of discontinuity between
slices by relying on temporal coherence with a 4D approach, with a
certain efficacy. The BIT-UPM framework is flexible enough to
include in the future a shape prior, such as the one proposed by
the LITIS, incorporated as the graph-cuts regional term. On the
other hand, it requires user interaction.

8.5. Conclusion

It is difficult to conclude on the best type method for this task.
It may be surmised from the results, that at the present time and
for this set of data, the best performing methods are CMIC for the
automatic methods, ICL, LITIS and to a lesser extent BIT-UPM for
the semi-automatic methods, whose performance are comparable
(BIT-UPM performance is shown to be significantly inferior to ICL
and LITIS with a paired t-test on DM values (P < 0:01), whereas
the null hypothesis cannot be rejected between ICL and LITIS).
We cannot conclude on whether the best approach should be
2D, 3D or 4D, or whether it should be prior shape based or
data-driven. What we can say on the other side, is that the
designed algorithm should contain some kind of spatial constraint
(thanks to a model or a global, temporal approach), and that
hyperparameters have to be somehow optimized for the context
of cardiac segmentation. There is obviously a choice to make
between computational burden (required by CMIC) or a user
interaction (required by LITIS, ICL and BIT-UPM). Yet, efforts still
have to be made for the segmentation accuracy to reach inter-
expert variability. Clinically acceptable accuracy has not been
reached.

9. Perspectives

This paper has presented the results of the Right Ventricle Seg-
mentation Challenge, provided over 48 patients and 7 different
algorithms. Today, the challenge datasets are available to the MIC-
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CAI community, in order to encourage future investigations in this
field. We hope these datasets will become reference datasets, and
serve as standard performance tools for future segmentation meth-
ods. Ever since the challenge was finished, the datasets have been
requested and downloaded around thirty times by research teams
from all over the world, resulting in new publications already
(Labrador et al., 2013; Ringenberg et al., 2014).

Future works concern the investigation of more reliable ground
truth estimation, as manual segmentation is known to be quite
observer-dependent. A new estimation of the reference segmenta-
tion could be generated, based for example on the well-known
STAPLE algorithm (Warfield et al., 2004) or the more recent
multi-STEPS approach (Cardoso et al., 2012). The STAPLE algorithm
estimates a ground truth from the collection of rater segmentation
results based on the Expectation–Maximization algorithm. Raters,
in this case, can be a collection of automated segmentation results,
manual assessment, or a mixture between the two. Other recent
approaches regarding the evaluation of segmentation methods
without ground truth will be profitably investigated (Kohlberger
et al., 2012; Lebenberg et al., 2012).

Other perspectives also include investigation on the data. Follow-
ing the standard protocol in use today, the RV is imaged based on the
short-axis view perpendicular to the left ventricular long axis.
Whereas the short-axis view is particularly well-suited to the LV,
there might be better, alternative imaging orientations for right ven-
tricularanalysis. Inrecentresearch, ithasbeenshownthataxialslices
(Attili et al., 2010) or 4-chamber view (Caudron et al., 2011) could be
fruitfully used to evaluate the RV EF. Nonetheless, they require the
patienttoremain15additionalminutesintheMR scannerandtoper-
form around ten apneas for the RV only, which limits the use of these
acquisitions in practice. The short-axis view should remain the stan-
dard protocol in the absence of consensus on optimal imaging orien-
tation, with the advantage to allow functional assessment of both
ventricles on the same slice stack. In this respect, a next and natural
step after two challenges on the LV segmentation and one on the RV
segmentation in MRI, would be the evaluation of the joint segmenta-
tion of both cardiac ventricles, whose outcome is known to be useful
in the clinic.
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