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a b s t r a c t 

Speckle Tracking is one of the most prominent techniques used to estimate the regional movement of 

the heart based on ultrasound acquisitions. Many different approaches have been proposed, proving their 

suitability to obtain quantitative and qualitative information regarding myocardial deformation, motion 

and function assessment. New proposals to improve the basic algorithm usually focus on one of these 

three steps: (1) the similarity measure between images and the speckle model; (2) the transformation 

model, i.e. the type of motion considered between images; (3) the optimization strategies, such as the use 

of different optimization techniques in the transformation step or the inclusion of structural information. 

While many contributions have shown their good performance independently, it is not always clear how 

they perform when integrated in a whole pipeline. Every step will have a degree of influence over the 

following and hence over the final result. Thus, a Speckle Tracking pipeline must be analyzed as a whole 

when developing novel methods, since improvements in a particular step might be undermined by the 

choices taken in further steps. This work presents two main contributions: (1) We provide a complete 

analysis of the influence of the different steps in a Speckle Tracking pipeline over the motion and strain 

estimation accuracy. (2) The study proposes a methodology for the analysis of Speckle Tracking systems 

specifically designed to provide an easy and systematic way to include other strategies. We close the 

analysis with some conclusions and recommendations that can be used as an orientation of the degree of 

influence of the models for speckle, the transformation models, interpolation schemes and optimization 

strategies over the estimation of motion features. They can be further use to evaluate and design new 

strategy into a Speckle Tracking system. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

The analysis of the regional motion of the heart has proved

to be of preeminent importance for the study of cardiac abnor-

mal behavior. It currently plays an inarguable role in treatment

and diagnosis of several pathologies, such as mitral regurgita-

tion ( Helmcke et al., 1987; Bargiggia et al., 1991 ), ischemia ( Voigt

et al., 2003 ), dyssynchrony ( Suffoletto et al., 2006 ), myocardial

quantification ( McDicken et al., 1992; Amundsen et al., 2006;

Nesser et al., 2009; Geyer et al., 2010 ) and diastolic dysfunc-

tion ( Ommen et al., 20 0 0 ). The estimation of the features that
∗ Corresponding author. Tel.: +542614236003. 
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http://dx.doi.org/10.1016/j.media.2016.04.002 
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odel regional motion can be done using different imaging modal-

ties, dominant among them those based on ultrasound (US) acqui-

itions. Due to low cost and real time acquisition, echocardiogra-

hy has become a widely used tool for motion and strain estima-

ion, either using Doppler or non-Doppler techniques. 

Despite its undeniable potential in many cardiac applications,

oppler techniques are limited by inaccuracies due to aliasing,

requency-dependent attenuation and, most importantly, the an-

le dependence in the assessment of tissue velocities. These lim-

tations have prevented Doppler techniques from becoming a stan-

ard in daily praxis ( Dandel et al., 2009 ). In contrast, non-Doppler

echniques, generally known as Speckle Tracking , can estimate tis-

ue velocities in the entire image while not suffering from aliasing

nd being angle independent ( Trahey et al., 1988; 1987 ). 

http://dx.doi.org/10.1016/j.media.2016.04.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2016.04.002&domain=pdf
mailto:acuriale@fcen.uncu.edu.ar
mailto:curiale@gmail.com
http://dx.doi.org/10.1016/j.media.2016.04.002
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The term Speckle Tracking (ST) refers to all those techniques

hat analyze motion by tracking the intensity or the interference

atterns of the US data, known as speckle , along the temporal se-

uences. In the particular case when the motion is analyzed by

racking the speckle from the RF signal, these methods are referred

o as Strain Imaging ( O’Donnell et al., 1994; Konofagou and Ophir,

998; Lopata et al., 2011 ). In what follows we will use the term

T in a global sense to denote all those methods that estimate the

otion by tracking the speckle pattern in B-mode US acquisitions. 

The phenomenon of the speckle can be explained by the

hysics of the problem of wave transmission in a tissue in US: it is

roduced by the reflection of the transmitted coherent ultrasound

aves at fixed frequencies for different tissues. Since this pattern

emains stable under the same acquisition conditions and exhibits

n inherent relationship with the tissue structure, it can be tracked

o estimate the motion of the tissue ( Trahey et al., 1986; Burck-

ardt, 1978 ). 

Many different approaches to ST can be found in the litera-

ure, where they have extensively proved to be powerful tools in

rder to obtain quantitative and qualitative information regarding

yocardial deformation, motion and function assessment ( Notomi

t al., 2005; Crosby et al., 2005; Suffoletto et al., 2006 ). The clini-

al relevance of the motion estimation in US B-mode images has

otivated the community to improve the original ST technique

roposed in Robinson et al. (1982) and Trahey et al. (1988) by

ore complex approaches. New contributions modify the original

echniques in different ways, such as the statistical modeling of

peckle, using more complex registration algorithms or applying

ifferent optimization algorithms for the ST estimation. It seems

lear that modifications in different steps of the process will have

 different im pact over the results. In addition, the influence of cer-

ain methods may obliterate the complexity of previous steps. For

nstance, the use of certain registration algorithms could make the

rocess highly invariant to the similarity measure used. Thus, it

ecomes necessary to identify the relevant relations between the

ifferent com ponents involved in a ST method in order to clarify

hich component really improves the accuracy of the estimation

f motion and strain, and which ones become redundant. That is,

recisely, the aim and motivation behind this work. 

Some previous studies about the performance of ST methods

an be found in the literature. One of the first ones was carried

ut by Bohs and Trahey (1991) , where authors showed that a clas-

ical block matching registration together with the sum of the ab-

olute differences –a quite simple similarity measure– could be

sed instead of the correlation, originally proposed by Robinson

t al. (1982) , achieving similar tracking results and better per-

ormance. Friemel et al. (1995) extended this study to include

he non-normalized cross-correlation. Moreover, they showed that

here was no statistically significant difference between the nor-

alized cross-correlation and the sum of absolute differences at

ifferent signal to noise ratios. 

In contrast to these early performance studies, in this work we

ropose a more global and complete approach. Instead of study-

ng the influence of a particular improvement, we will analyze the

ystem as a whole , similarly to what was done in De Craene et al.

2013) and Curiale et al. (2015) for different ST methods. How-

ver, in the proposed study, we are taking into account the rela-

ion between the steps and different choices taken to implement a

T method. The starting point is a prior identification of the basic

arts of a ST method. The influence of the different techniques that

an be used in each of these parts will be quantitatively analyzed.

he techniques considered for the study are the following: 

1. Different models for US data representation, some of them as-

suming an underlying statistical model for the speckle. 
2. Different registration philosophies, including the classic block

matching and a demons approach ( Thirion, 1998 ). 

3. Different interpolation schemes such as nearest neighbor, linear

and cubic. 

4. The use of structural information into the deformation model

by using the normalized convolution ( Knutsson and Westin,

1993 ) and a maximum likelihood approach such as the one pro-

posed in Curiale et al. (2015) . 

5. The use of different optimization techniques, such as coarse-

to-fine refinement or an efficient second-order minimization

(ESM). 

These techniques will not be independently analyzed since the

nfluence of one over the other must also be taken into account

nd may provide useful insights for the development of novel ST

ethods. 

This work presents two main contributions to the ST field. First,

t provides a complete study to identify which are the components

f a ST method with greater influence and impact over the mo-

ion and strain estimation accuracy. The second contribution is the

ethodology for the analysis of a ST system designed to provide an

asy and systematic way to include other ST philosophies. The con-

lusions and recommendations obtained in this work are intended

o serve as a reference about what can be expected when improv-

ng or introducing a new strategy into a ST system. We believe

hat new methodologies proposed for ST should not be analyzed

solatedly anymore, but in a holistic way considering the complete

ipeline. Great improvements in certain steps of a ST method can

e overpassed or undermined by the choices taken in further steps

s we will show in the results of this work. 

. Background 

Tracking the speckle patterns in US B-mode images was first re-

orted by Robinson et al. (1982) , where the authors introduced a

ethod for determining the velocity of propagation of ultrasound

n tissue by comparing individuals sectors from different trans-

ucer positions using the normalized cross-correlation. Inspired by

his work, Trahey et al. (1988) ; 1987 ) proposed a novel technique

f velocity imaging based upon measuring the direction and mag-

itude of local blood speckle pattern displacement in consecutive

D B-mode images for blood flow detection. These displacements

ere estimated by using the most conceptually straightforward

ethod, a block matching algorithm using the normalized cross-

orrelation as the similarity measure. 

Some other metrics were proposed following the same block-

atching methodology. Such is the case of Strintzis and Kokkini-

is (1997) , where a maximum likelihood (ML) methodology was

sed to provide a suitable metric for US images based on a

ultiplicative Rayleigh characterization. Strintzis and Kokkinidis

1997) showed that the classical ST method was improved when

onsidering more adequate metrics. Likewise, Cohen and Dinstein

2002) extended the metric by including the relation between

he multiplicative Rayleigh characterizations of consecutive frames,

hich resulted in a more accurate ST method. Those incremen-

al improvements evidenced that a more detailed description of

he speckle statistics provides more accurate ST methods when the

lock-matching methodology is adopted. 

More elaborated ST approaches have been proposed to im-

rove the ST focusing on the registration technique rather than

he metric. However, it is important to remark that, though some

egistration or tracking techniques are used as a necessary step

or ST, the speckle information present in US images should

e coded into the similarity measure used for tracking. For in-

tance, instead of the straightforward block matching, some au-

hors proposed to introduce the speckle model into a Free-Form
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Fig. 1. Diagram of typical algorithms used in the intensity based registration methodology. 
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Deformation (FFD) method ( Myronenko et al., 2009; Yue et al.,

2009; De Craene et al., 2012; Curiale et al., 2013a ), a diffeomor-

phic demons scheme ( Curiale et al., 2015 ), or to introduce the

monogenic phase of the B-mode image into an optical flow ap-

proach ( Knutsson et al., 2005; Alessandrini et al., 2013; Tautz et al.,

2013 ). 

So, according to the proposals of the state of the art for ST, one

can easily distinguish three necessary and interrelated parts within

a generic ST method 

1. Similarity measure : Necessary to establish the correspondence

between images along the time sequence and may take advan-

tage of speckle characterization in US images. 

2. Transformation model : It specifies the type of motion considered

between images and the way the similarity measure is intro-

duced into the motion estimation. 

3. Optimization strategy : It defines a strategy for optimizing the

transformation model according to the similarity model. 

These parts can be graphically depicted showing the generic

flowchart of a ST method ( Fig. 1 ). The diagram shows the three

interrelated parts of an ST method as blocks whose inputs are the

fixed image I t , the moving image I t−1 , and an initial transforma-

tion s 0 that maps them. The initial transformation would act over

the moving image by considering interpolation and regularization

in order to ensure that every location in the moving image corre-

sponds to a certain location in the fixed image. The performance

of the resulting transformation is then measured by a similarity

measure that can make use of the statistical characterization of

speckle in US images. Finally, the optimizer tries to provide the

best transformation according to the similarity measure. This pro-

cess is commonly done in an iterative way until some stop rule is

reached, though some approaches have just one iteration. 

In what follows, the state of the art methods will be analyzed

according to these parts with a special emphasis on the hypotheses

assumed in their definition. A summary of the methods considered

in this study and the techniques applied in each part of the ST

methodology are shown in Table 1 . 

2.1. Similarity measure 

The similarity measure is responsible for establishing a corre-

spondence of similitude between two or more images; in the case
f ST, images from a temporal sequence of an US acquisition. These

imilarity measures make use of the intensity or the speckle pat-

ern, and some usually take advantage of the statistical description

f speckle in US images. ST methods assume that the highest sim-

larity is given when the optimal transformation is found. 

During the past decades, different similarity measures have

een proposed for ST, among them, the more extended are:

he normalized cross-correlation ( Robinson et al., 1982; Trahey

t al., 1988; 1987 ); the sum of absolute differences ( Bohs and

rahey, 1991; Bohs et al., 20 0 0 ); the non-normalized cross-

orrelation ( Friemel et al., 1995 ); the sum of squared differ-

nces ( Yeung et al., 1998a; 1998b; De Craene et al., 2012; Curiale

t al., 2013b; Heyde et al., 2013a; 2013b; Piella et al., 2013; Som-

hone et al., 2013 ); the mutual information ( Elen et al., 2008 ) and

he monogenic phase ( Knutsson et al., 2005; Alessandrini et al.,

013; Tautz et al., 2013 ). 

On the other hand, some authors proposed the use of statis-

ical models to provide a better characterization of speckle, such

s Gaussian ( Cohen and Dinstein, 2002 ), Rayleigh ( Strintzis and

okkinidis, 1997; Cohen and Dinstein, 2002; Yue et al., 2009 ),

amma ( Curiale et al., 2013a ), bivariate Nakagami ( Myronenko

t al., 2009 ) and bivariate Generalized Gamma ( Curiale et al., 2015 ).

Note that those similarity measures based on a statistical char-

cterization of speckle are assuming that the deformation through

ime does not change the statistics of speckle, though the intensity

alues of the image may vary. Thus, the measures are intended to

rovide the most likely transformations according to the statisti-

al characterization of speckle. So, the underlying hypothesis in the

efinition of these metrics is “the statistical characterization provides

 better description of speckle that improves ST”. 

Besides, the metrics proposed by Myronenko et al. (2009) and

uriale et al. (2015) also considered a temporal correlation within

he statistical model that accounts for correlation between speckle

atterns throughout the deformation. These works assume that

temporal correlation leads to a better temporal tracking when sta-

istical models of speckle are applied”. 

Others hybrid similarity measures such as the sum of squared

ifferences combined with structural information ( Myronenko

t al., 2007 ) or the sum of squared differences combined with

ayleigh model ( Piella et al., 2013 ) were proposed in order to

ointly consider the statistical characterization of speckle and some

ocal structural information assuming that “structural information
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Table 1 

Overview of the most representative speckle tracking techniques and a few recent approaches. CC: Cross-Correlation, NCC: Non-normalized Cross-Correlation; SAD: Sum of absolute differences, SSD: sum of squared 

differences, SI: Structural Information, MP: Monogenic Phase, GG: Generalized Gamma, FFD: Free Form Deformation with B-Splines, BS: B-Splines, OF: Optical Flow, BM: Block Matching, NC: Normalized convolution. –: 

Not specified. 

Similarity model Transformation model Optimization model 

Author Non-speckle model Speckle model Parametric Non-parametric NC Temporal continuity Non-iterative Iterative Multi-resolution 

Robinson et al. (1982) CC ✗ ✗ OF BM ✗ ✗ 
√ 

✗ ✗ 

Trahey et al. (1988) ; 1987 ) CC ✗ ✗ OF BM ✗ ✗ 
√ 

✗ ✗ 

Bohs and Trahey (1991) SAD ✗ ✗ OF BM ✗ ✗ 
√ 

✗ ✗ 

Friemel et al. (1995) NCC / CC / SAD ✗ ✗ OF BM ✗ ✗ 
√ 

✗ ✗ 

Strintzis and Kokkinidis (1997) ✗ Rayleigh ✗ OF BM ✗ ✗ 
√ 

✗ ✗ 

Yeung et al. (1998a ) SSD ✗ ✗ OF BM ✗ ✗ 
√ 

✗ 
√ 

Yeung et al. (1998b ) SSD ✗ ✗ OF BM ✗ ✗ 
√ 

✗ 
√ 

Bohs et al. (20 0 0) SAD ✗ ✗ OF BM ✗ ✗ 
√ 

✗ ✗ 

Cohen and Dinstein (2002) ✗ Rayleigh ✗ OF BM ✗ ✗ 
√ 

✗ ✗ 

Knutsson et al. (2005) MP ✗ ✗ OF ✗ ✗ ✗ NC 
√ 

Myronenko et al. (2007) SSD + SI ✗ FFD ✗ ✗ ✗ ✗ Steepest descent –

Yue et al. (2009) ✗ Rayleigh FFD ✗ ✗ ✗ ✗ L-BFGS-B 
√ 

Myronenko et al. (2009) ✗ Bivariate Nakagami FFD ✗ ✗ ✗ ✗ Steepest descent 
√ 

De Craene et al. (2012) SSD ✗ FFD ✗ ✗ 
√ 

✗ L-BFGS-B 
√ 

Curiale et al. (2013a ) ✗ Gamma FFD ✗ ✗ ✗ ✗ Conjugate gradient 
√ 

Curiale et al. (2013b ) SSD ✗ ✗ Diffusion 
√ 

✗ ✗ Variational 
√ 

Heyde et al. (2013b ) SSD ✗ FFD ✗ ✗ ✗ ✗ L-BFGS-B 
√ 

Tautz et al. (2013) MP ✗ ✗ OF ✗ ✗ ✗ NC 
√ 

Heyde et al. (2013a ) SSD ✗ FFD ✗ ✗ ✗ ✗ L-BFGS-B 
√ 

Somphone et al. (2013) SSD ✗ ✗ Diffusion 
√ 

✗ ✗ Steepest descent 
√ 

Alessandrini et al. (2013) MP ✗ ✗ OF with BS ✗ ✗ ✗ Variational 
√ 

Piella et al. (2013) SSD Rayleigh FFD ✗ ✗ ✗ ✗ L-BFGS-B 
√ 

Curiale et al. (2015) ✗ Bivariate GG ✗ Diffusion 
√ 

✗ ✗ Variational 
√ 
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provides a better description of the deformation than just the statisti-

cal characterization”. 

2.2. Transformation model 

The transformation model defines the sort of deformation al-

lowed for the ST technique, and the way the similarity measure

is evaluated. A well-known example is a rigid or affine transfor-

mation. However, this transformation is too restrictive to model

complex motions such as heart motion, which are better described

by using non-rigid transformations. 1 The non-rigid transformations

could be split in two main groups according to the way the defor-

mation is described: function representations and physical based

models. 

Function representations make use of a small number of pa-

rameters and much of the mathematical framework arises from

the theory of function interpolation and approximation theory.

Thus, they are also known as parametric models. One good ex-

ample is the Free-Form-Deformation (FFD) model, where motion is

parametrized by smooth function such a B-splines. In this model,

the control points and spline functions are used to establish lo-

cally the correspondence between images. The FFD is computation-

ally efficient and has been widely used in ST methods ( Myronenko

et al., 20 07; 20 09; Yue et al., 2009; De Craene et al., 2012; Curiale

et al., 2013a; Heyde et al., 2013a; 2013b; Piella et al., 2013 ) due to

its computational efficiency. 

Physical based models are dense and non-parametric transfor-

mations, where the displacement field is defined in each voxel

( Holden, 2008 ) according to physical phenomena. Such is the

case of elastic models ( Bajcsy and Kova ̌ci ̌c, 1989 ), fluid mod-

els ( Beauchemin and Barron, 1995 ), optical flow and diffusion

models ( Thirion, 1998 ). All these transformation models assume

that the intensity level of corresponding voxels remains the same

when the images are deformed. 

Elastic models treat the image as a linear elastic model and

deform it using forces derived from an image similarity measure.

In this context, the image is deformed until an equilibrium state

is reached. Since the linear elasticity assumption is only valid for

small deformations, it is hard to recover large image differences.

To overcome this problem, the elastic model is replaced by a fluid

model which allows large and highly localized deformation. 

Optical flow registration is widely used in speckle tracking and

it can be divided in two general methods: block matching meth-

ods ( Robinson et al., 1982; Trahey et al., 1988; 1987; Bohs and Tra-

hey, 1991; Friemel et al., 1995; Strintzis and Kokkinidis, 1997; Ye-

ung et al., 1998a; 1998b; Bohs et al., 20 0 0; Cohen and Dinstein,

20 02; Leitman et al., 20 04 ) and variational methods ( Knutsson

et al., 2005; Curiale et al., 2013b; 2015; Alessandrini et al., 2013;

Somphone et al., 2013; Tautz et al., 2013 ). 

The diffusion or demons model introduced by Thirion

(1998) can be thought as an approximation to fluid registration.

Vercauteren et al. (2009) showed that the demons algorithms

could be seen as an optimization procedure for a global energy

on the entire space of displacement fields. Also, they showed that

demons algorithm could be adapted to provide a non-parametric

diffeomorphic transformation with a second-order minimization.

Recently, Curiale et al. (2015) adapted the diffeomorphic demons

method for strain estimation in 3D echocardiography by introduc-

ing a Generalized Gamma speckle model into the global energy to

be minimized. 

The transformation model also comprises the interpolation used

when a point is mapped from one space into another by certain
1 An interesting review of geometric transformations for non-rigid body can be 

found in Holden (2008) . 

m  

t  

t  

t

ransformation, i.e. image values in non-integer coordinates are

omputed by the appropriate interpolation technique. The inter-

olation used can affect the accuracy and convergence of ST. To

ecrease the computational time, a simple scheme such as nearest

eighbor or linear interpolation is usually applied in the optimiza-

ion. More complex interpolation schemes can be used for higher

ccuracy, among them, cubic, B-spline or sinc interpolation func-

ions. 

Obviously, any interpolation affects to any speckle model ap-

lied in combination to any of the non-rigid transformations. How-

ver, most of the methods applying speckle models assume that

interpolation has a negligible effect in the ST accuracy”. 

Finally, there are different approaches to constrain the trans-

ormation model with the main goal of improving the ST accu-

acy. Some authors, for instance, introduce the temporal consis-

ency into the transformation model ( De Craene et al., 2012 ), while

thers make use of an extra regularization by using the normal-

zed convolution proposed by Knutsson and Westin (1993) in order

o constrain the transformation to relevant tissue ( Curiale et al.,

013b; 2015; Somphone et al., 2013 ). 

.3. Optimization strategy 

The motion field or tracking between two or more objects in-

ide the image is found by optimizing the transformation model

ccording to the similarity measure. 

This optimization can be done by using many methods,

uch the classical gradient descent or the steepest descent op-

imization ( Myronenko et al., 20 07; 20 09 ), the conjugate gradi-

nt ( Curiale et al., 2013a ), the Broyden Fletcher Goldfarb Shannon

L-BFGS-B) ( Yue et al., 2009; De Craene et al., 2012; Heyde et al.,

013a; 2013b; Piella et al., 2013 ) or the normalized convolution

 Knutsson et al., 2005; Tautz et al., 2013 ) among others. Fluid, elas-

ic and diffusion models that can be described in terms of partial

ifferential equations are commonly optimized by using variational

pproaches ( Alessandrini et al., 2013; Somphone et al., 2013; Curi-

le et al., 2013b; 2015 ). All these methods are well documented in

ress et al. (2007) . 

Furthermore, a widely used strategy for improving the opti-

ization, especially for large deformations, is to use a coarse-to-

ne refinement ( Yeung et al., 1998a; 1998b; Knutsson et al., 2005;

ue et al., 2009; Myronenko et al., 2009; De Craene et al., 2012;

uriale et al., 2013a; 2013b; Heyde et al., 2013b; 2013a; Somphone

t al., 2013; Alessandrini et al., 2013; Piella et al., 2013; Tautz et al.,

013 ). This approach is highly recommended for the complex de-

ormations such is the case of the heart motion. Thus, it is ex-

ected that “a coarse-to-fine refinement improves the ST accuracy”. 

. Materials and methods 

As stated in the previous section, a complete ST procedure is

onformed by three different parts that can be implemented us-

ng many different methods. Alongside, for each method, differ-

nt design options may be considered. Therefore, a practical im-

lementation should involve many different choices that can af-

ect the accuracy of the tracking. The purpose of this work is

recisely to analyze the influence of the different steps and de-

ign options over the global performance of the ST. Since it would

e unpractical to consider all possible combination of parameters,

e will take as starting point the hypotheses derived from the

ain results reported in the literature, some of them already in-

roduced in Section 2 . A set of experiments is defined to properly

est the validity and extension of the initial hypotheses following

he methodology here described. 
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.1. Methodology 

The analysis of the influence of the multiple techniques used in

T methods is done according the to the different possible choices

escribed in Section 2 within the three components of a generic

T method: the similarity measure, the transformation model and

he optimization strategy (depicted in Fig. 1 ). The proposed anal-

sis will test the underlying hypotheses that have been identified

rom the methods of the state of the art: 

ypothesis 1. Similarity measures based on a speckle model char-

cterization are more reliable to real US data and improve the ST

ccuracy. 

ypothesis 2. Speckle models that take into account temporal cor-

elation improve ST accuracy. 

ypothesis 3. Although interpolation modifies the statistical

odel assumed for characterizing the speckle pattern, it has a neg-

igible effect on the ST accuracy. 

ypothesis 4. The transformation model has greater influence on

he ST accuracy than the similarity measure. 

ypothesis 5. Structural information increases the ST accuracy

ore than just the speckle model. 

ypothesis 6. A coarse to fine refinement approach improves sig-

ificantly the ST accuracy for complex motions. 

ypothesis 7. A complex interpolation scheme improves the ST

ccuracy, regardless of the similarity measure selected. 

ypothesis 8. The optimization strategy has more influence in the

T accuracy than the similarity measure. 

In addition, note that there are not initial assumptions about

he cross performance of improvements in different steps of the

rocedure, such as a better transformation model with structural

nformation and a coarse to fine refinement. This interrelations are

he key of the buildup of an efficient and accurate ST pipeline, and

herefore they must also be analyzed. 

In order to validate these hypotheses, a series of experiments

ill be conducted. Due to the impracticability of considering all

he possible combinations of methods and parameters reported in

iterature, we will confine ourselves only to those relevant and rep-

esentative for each of the three steps defined for ST. The analysis

f the similarity measure will consider the sum of squared differ-

nces (SSD) and other metrics based on speckle characterization

summarized in Table 1 ) in order to analyze the influence of the

peckle statistical models on the ST performance. 

On the other hand, two nonparametric transformation models

ill be considered in order to minimize the influence of the op-

imization strategy into the final estimation. We decided to study

he classic block matching and the diffusion approaches since the

umber of strategies used to optimize the transformation model

nd the number of free parameters to fix are reduced. 

The quantitative evaluation will be performed by considering a

ealistic synthetic data as a Gold standard that will be described in

ection 3.2 . The accuracy of the ST methods will be evaluated by

he measuring the error (Euclidean distance) for motion and strain

stimation with the ground truth. 

In all the cases, the procedure to evaluate one particular hy-

othesis will be similar: a simple ST pipeline will be considered.

ifferent configurations are used only for the method or strategy

nder study, i.e. that one implied by the current hypothesis. The

rocedures for the other methods are fixed in a simple configura-

ion, so that it allows identifying the actual influence of the pa-

ameter under study over the global performance. This methodol-

gy will be adjusted to the particularity of each of the analyzed
hoices, and it will be described in detail for each experiment in

ection 4 . 

First, according to hypotheses 1 and 2 , the influence of the sim-

larity measure is analyzed. In particular, the analysis of the in-

uence of the similarity measure takes into account the measures

escribed in Table 2 . 

Second, following hypotheses [3,4,5] and 7 , the influence of the

ransformation model is studied. We will consider the following

trategies: 

• Transformation: Two different nonparametric transformations 

are taken into account: The classical Block Matching and a dif-

feomorphic diffusion or Demons approach ( Vercauteren et al.,

2009 ). The reader can refer to Curiale et al. (2015) for more de-

tails about the demons implementation. 
• Interpolation: Three different interpolation types are considered:

nearest neighborhood, linear and cubic interpolation. 
• Regularization: The influence of myocardial structural informa-

tion is analyzed by using the normalized convolution to reduce

the number of possible transformations. 

Finally, consistent with hypotheses 6 and 8 , we evaluate the in-

uence of the optimization strategy , specifically taking into ac-

ount an iterative and non-iterative approach. The optimization

trategy used for the block matching algorithm is based on find-

ng the best correspondence within a set of blocks defined by the

earch radius, so it is a non-iterative approach and does not require

xtra interpolations. In contrast, the optimization strategy used for

he diffusion-based approach makes use of a variational formula-

ion which is iteratively refined and requires several interpolations.

hus, we expect to observe different behaviors between the block

atching and the demons approach for the similarity models. Fur-

hermore, we study the use of an efficient second-order minimiza-

ion for the demons approach and a coarse to fine refinement for

oth transformation models. 

Along all the experiments, we decide to prioritize the tem-

oral coherence along the cardiac phase instead of avoiding the

rame to frame error accumulation. Therefore, the registration al-

orithms were applied frame by frame between two consecutive

mages in the cardiac phase. During the derivation of the speckle

racking methods the parameters for the Gamma, Nakagami and

eneralized Gamma distributions were estimated. The Gamma and

eneralized Gamma parameters are estimated by means of the

amma and Generalized Gamma Mixture Model ( Vegas-Sanchez-

errero et al., 2012; 2014 ). On the other hand, the temporal cor-

elation of the Nakagami and Generalized Gamma distribution is

stimated as it was proposed by Curiale et al. (2015) . 

.2. Materials 

The quantitative evaluation of the different methods is carried

ut by using a synthetic cardiac US data set: the public benchmark

amed Straus ( De Craene et al., 2013 ). The use of synthetic data is

otivated by the need of a Gold Standard that allows a numerical

omparison of the actual values of strain and motion. This way, we

an quantify the degree of influence of each of the studied meth-

ds over the final estimation, a task that could not be done by

sing real data sets. 

The Straus dataset provides a realistic cardiac 3D geometry of

97 × 297 × 297 pixels with an isotropic resolution of 0.3367

m ( Fig. 2 ). The ultrasound images were obtained from the seg-

entation of cine magnetic resonance images, which were used

o simulate conventional US images. This dataset provides a realis-

ic cardiac geometry with three different complex motions: normal

no lesion), acute ischemia and acute dyssynchrony. The ultrasound

peckle structure was synthetically generated by using a sampling

t 50 MHz with a phased array transducer centered at 3.3 MHz
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Table 2 

Summary of the similarity measures studied. Constants m and β are shape parameters of the Generalized Gamma distribution; α is the shape parameter of 

the Gamma distribution and ρ is the correlation between different time frames I t−1 and I t (details on these similarity measures can be found in ( Curiale et al., 

2015 )). 

Relationship Similarity measure References 

z = I t−1 − I t SSD = || z|| 2 Yeung et al. (1998a ); 1998b ); Myronenko et al. (2007) 

Curiale et al. (2013b ); Heyde et al. (2013a ); 2013b ) 

Piella et al. (2013) ; Somphone et al. (2013) 

CD2 = log ( exp (2 z + 1) ) − z Strintzis and Kokkinidis (1997) ; Cohen and Dinstein (2002) 

Yue et al. (2009) ; Piella et al. (2013) 

MS2 = (m + 0 . 5) log 
(
cosh 

2 
(z) − ρ

)

− 0 . 5 log 
(
cosh 

2 
(z) 

)
Myronenko et al. (2009) 

GGCS = (m + 0 . 5) log 
(
cosh 

2 
(z β) − ρ

)

− 0 . 5 log 
(
cosh 

2 
(z β) 

)
Curiale et al. (2015) 

z = I t−1 /I t GS = α log 
(
z + z −1 + 2 

)
Curiale et al. (2013a ) 

GGS = (m + 0 . 5) log 
(

(z 2 β + 1) 2 − 4 ρz 2 β
)

− 2 β m log (z) − log 
(
z 2 β + 1 

)
Curiale et al. (2015) 

Fig. 2. Synthetic ultrasound images generated by Straus. The 3D synthetic US im- 

ages are presented in three orthogonal views. The shape model is depicted in the 

top-right corner. 
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and by transmitting a Gaussian pulse with a -6 dB relative band-

width of 65%. A symmetric transverse two-way beam profile was

assumed, focusing at 80 mm. The simulated images consisted of

107 × 80 lines in azimuth and elevation direction over an angle

of 80 × 80 degrees, resulting in a frame rate of 30 Hz due to the

use of parallel beam forming. In this way, the cardiac phase for

the normal case comprises 26 images. A detailed description of the

data setup can be found in De Craene et al. (2013) . 

The Straus dataset also provides several image sequences of the

normal case with different signal to noise (SNR) levels. These cases

were generated to simulate the SNR levels by modifying the rela-

tive amplitude of tissue with respect to blood pool scatters. This

change means an increasing noise power and it is directly related

with a contrast value (CNR) according to the equation ( Wijk and

Thijssen, 2002 ): 

CNR = 

μT − μB √ 

(σ 2 
B 

+ σ 2 
T 
) / 2 

, (1)

where μT and μB are the average intensities value of the tissue

and blood pool, and σ 2 and σ 2 are their variances respectively. The

T B 
uantitative evaluation for the proposed methodology was carried

ut only using the normal case without pericardium to avoid the

nfluence of pathological cases and the pericardium in the ST tech-

ique. For robustness assessment of the ST techniques at different

NR levels, three different contrast to noise ratio values were used,

NR = { 1 . 2 , 1 . 8 , 2 . 5 } ( Fig. 3 ). 

The data set provides changes in the ultrasound image intensity

hroughout the cardiac cycle since it makes use of a new speckle

attern realization for each 3D ultrasound b-mode image. This way,

hey show a more realistic behavior than considering transforma-

ions over the same intensity levels across frames. 

For the parameter settings of the speckle tracking methodolo-

ies, the diffeomorphic demons approach is applied to the syn-

hetic dataset with the parameters setting proposed by Curiale

t al. (2015) , and the block matching approach makes use of a

lock size of 3 × 3 × 3 pixels within a search region of 3 × 3 × 3

ixels. The demons approach is applied by using nLevels = 3 with

 maximum of 30 iterations per level (multi-resolution strategy)

r when the difference between deformations is below a tolerance

OL = 10 −7 . The standard deviation values used in the regulariza-

ion were determined using an independent linear search between

1, 8] mm for the regularization and [0.5, 5.5] mm for the maxi-

um step. On the other hand, the kernel sizes were selected as a

radeoff between the motion and strain accuracy and the total run-

ime for the Generalized Gamma mixture model. The reader can

efer to Curiale et al. (2015) for the optimized values used in the

emons approach. 

This configuration is maintained throughout the experiments

n order to see the influence of the different choices of similar-

ty measures, transformation models and optimization techniques

ithout the influence of uncontrolled confounding factors. 

. Experiments and results 

According to the methodology proposed, a set of experiments

s defined to properly test the validity and extension of the dif-

erent hypotheses defined in the previous section. In Table 3 we

how a summary of the experiments and their relations with the

ypothesis tested as follows: First, an analysis of the effect of the

imilarity measures and transformation models are done by study-

ng their influence in the motion and strain accuracy. Then, the in-

erpolation scheme, the myocardial structural information and the

ulti-resolution approach are analyzed. Finally, the performance of

he complete ST pipeline is studied by evaluating the motion and

train accuracy. 
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Fig. 3. Synthetic ultrasound images for the Straus dataset for different signal to noise ratio simulated by modifying the relative amplitude of tissue with respect to blood 

pool scatters (CNR). The 3D synthetic US images are presented in the short axis view. 

Table 3 

Summary of the experiments. BM: Block Matching. Int.: Interpolation type, NN: nearest 

neighborhood, L: linear, C: Cubic. Struct. Inf.: myocardial structural information. MR: multi- 

resolution, ESM: efficient second order minimization. –: Whole pipeline experiment. 

Similarity Transformation Optimization Hyp. 

Measures BM Demons Int. Struct. Inf. MR ESM 

Exp. 1 All 
√ √ 

L ✗ ✗ ✗ 1, 2, 4 

Exp. 2 All 
√ √ 

NN/L/C ✗ 
√ 

✗ 3, 7 

Exp. 3 All 
√ √ 

L 
√ 

✗ ✗ 5 

Exp. 4 All 
√ √ 

L ✗ 
√ √ 

6, 8 

Exp. 5 All 
√ √ 

L 
√ √ √ 

–
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.1. Effect of similarity measures and transformation models 

In the following experiment, we evaluate Hypotheses 1 and

 by studying the influence of the similarity measures and speckle

odels (gathered in Table 2 ) by testing the performance of the dif-

erent similarity measures for motion and strain estimation. Also,

his experiment evaluates the Hypothesis 4 to study the influence

f the transformation model over the ST accuracy. 

xperiment 1 . The errors in motion and strain are analyzed for

he Strauss data set for all the proposed similarity measures.

 classic block matching algorithm and a simple diffeomorphic

emons approach are used, (i.e. without myocardial structural in-

ormation or multi-resolution strategy). The results were statisti-

ally analyzed by a sign test and a bootstrapping strategy with two

undred repetitions applied to a set of 100 error samples for each

rame in the cardiac phase. This statistical test was chosen due to

he lack of symmetry on the error difference between similarity

easures for motion and strain. 

Results of the experiments are gathered in Table 4 (average er-

or along the cardiac phase). The results for the block matching

pproach show a subtle but still statistically significant difference

etween metrics based on intensity ratios (GS and GGS around

.08 mm) and metrics based on intensity differences (CD2, MS2,

GCS2, around 3.15 mm) due to the inclusion of log-compression

nto the metric derivation ( p -value < 10 −4 in all cases). This dif-

erences were expected since the similarity measures GS and GGS

onsider spatial and temporal correlation between images, how-

ver the lower performance of GGCS compared to the GGS is due

o the assumption of log-compression in the metric. Note that

he inclusion of log-compression in this metrics implicitly assumes

hat intensities are actually log-compressed intensities, and the pa-

ameters of the characterization must be estimated considering an

dealistic logarithmic compression, whose parameters are also un-

nown. This fact introduces an additional confounding factor that

ffects negatively to the motion estimation. Additionally, the SSD

etric –which does not assume any statistical model– performs as
ood as the best statistical methods (3.08 mm), though it does not

erform as good with the circumferential strain (13.39% for SSD vs.

9.06% for GS with p -value < 10 −2 ; 18.64 % for GS with a p -value

 10 −4 ). This result means that the coarse deformation can be per-

ectly estimated with SSD. However, a more detailed metric that

ccounts for spatial and temporal correlation is needed to describe

ircumferential deformations. 

As a conclusion, we can state that both Hypotheses 1 and 2 are

onfirmed for the block matching approach since spatial and tem-

oral correlations increase the accuracy, but the log-compression

ssumption on the intensity labels introduce some additional un-

ertainty in the estimation which penalizes the estimation. 

Interestingly, there is an apparent decrease of the performance

f metrics GS and GGS for the radial strain error (over 24 %). This

s due to the effect that most of the deformation is performed in

he radial direction, which makes the radial estimation more prone

o a higher number of candidates in the search window. The ones

elected by these metrics are those providing a lower ratio of in-

ensities, which is more sensitive to variations than the simple dif-

erence of intensities. As we will see in further experiments, the

ptimization techniques will be of great importance when these

imilarity measures are used and this undesired effect can be ef-

ectively avoided by using a more suitable transformation model

ike demons. The results obtained for demons show a great per-

ormance compared to the block matching method as expected. In

his case, the measures that perform the best are those that con-

ider the logarithmic compression into the model (CD2, MS2 and

GCS) with motion error around 0.78 mm, however those not as-

uming compression (GS and GGS) obtain the most accurate strain

stimate and both groups are statistically different ( p -value < 10 −3 

n all the comparisons between metrics from different groups). 

This apparent contradiction can be explained from the analy-

is of both transformation techniques in combination with the dif-

erent metrics. Note that the more sophisticated statistical mod-

ls which account for spatial and temporal correlations in the

peckle model (GS, GGS) provide a better estimate of the defor-

ation when isolated blocks are considered. This is confirmed by



192 A.H. Curiale et al. / Medical Image Analysis 32 (2016) 184–200 

Table 4 

Quantitative results of Experiment 1 for average motion and strain accuracy using block matching (BM) and the simple demons 

approach, i.e. without a coarse-to-fine refinement and without the normalized convolution. 

Motion Error ( μ) [mm] Circ. strain error ( μ) [%] Long. strain error ( μ) [%] Rad. strain error ( μ) [%] 

CNR Similarity BM Demons BM Demons BM Demons BM Demons 

2.5 SSD 3.08 0.78 19.35 2.29 13.66 2.76 23.42 20.64 

CD2 3.14 0.79 19.32 2.29 13.95 2.76 23.31 20.86 

MS2 3.15 0.78 19.38 2.28 13.96 2.76 23.27 20.25 

GGCS 3.15 0.79 19.40 2.28 13.96 2.76 23.27 20.43 

GS 3.08 0.93 19.06 2.15 13.52 2.45 24.56 13.83 

GGS 3.07 0.93 18.64 2.15 13.34 2.45 24.09 13.64 

1.8 SSD 3.14 1.02 19.04 2.64 14.22 3.13 23.88 26.50 

CD2 3.20 1.03 18.97 2.64 14.45 3.13 23.58 26.59 

MS2 3.21 1.02 19.06 2.64 14.46 3.13 23.53 26.26 

GGCS 3.21 1.03 18.91 2.63 14.48 3.12 23.52 26.31 

GS 3.14 1.23 18.91 2.60 14.11 2.81 25.22 17.67 

GGS 3.14 1.23 18.57 2.60 13.87 2.81 24.50 17.54 

1.2 SSD 3.19 1.22 18.97 2.85 14.68 3.60 25.30 30.36 

CD2 3.26 1.24 19.03 2.85 14.94 3.60 24.85 30.38 

MS2 3.26 1.23 19.01 2.84 14.93 3.59 24.82 30.14 

GGCS 3.26 1.24 19.02 2.84 14.92 3.59 24.83 30.11 

GS 3.20 1.54 18.82 3.23 14.60 3.26 25.96 21.14 

GGS 3.20 1.54 18.60 3.23 14.33 3.26 24.99 21.03 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Global circumferential strain accuracy for the squared sum of differences 

(SSD) and the Generalized Gamma similarity measures with and without compres- 

sion (GGCS and GGS) for the Straus dataset within the 17 segment model at end- 

systole and CNR = 2 . 5 . 
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the lower motion error in block matching and also by the lower

circumferential and longitudinal strain error. However, the block

matching method reduces its efficiency with large deformations,

causing inaccurate estimation of radial strain. When a more suit-

able technique which considers diffeomorphic transformation and

spatial regularization is used to provide a more accurate motion

estimation, the influence of the metrics is reduced to increase the

spatial continuity. This is the case of metrics whose intensities are

related with a difference such as the case of sum of squared dif-

ferences (SSD) due to the log-compression assumption in the sta-

tistical model (CD2, MS2, GGCS). However, if the statistical method

does not consider the log-compression (GS and GGS) the motion

estimation is reduced due to the bigger fluctuations caused by

the ratio of intensities, though the strain is generally better calcu-

lated because the inner regularization scheme used in the demons

method includes a more suitable speckle model, which prevents

from an excess of regularization (i.e. the motion estimation is more

noisy but less biased by other non-related nearby motions result-

ing in a better estimate of strain). 

The analysis of different regularization schemes will be stud-

ied in the following experiments, where we will consider multi-

resolution refinements that will reduce the excess or regulariza-

tion by analyzing the images at different scales. With the multi-

resolution schemes, the metrics GS and GGS should show a lower

motion error due to the iterative refinements at different reso-

lutions which will provide better motion estimates in the radial

direction (the largest deformation) without causing an excess of

regularization that may cause low strain estimation performance.

It is also important to note that there is an interdependence be-

tween the influence of the similarity measure and the transforma-

tion/optimization model, which is a side effect of the operations

involved in the metric and the relationship of the moving image

and the fixed image. This effect will be further investigated in the

section named “Discussion on the interdependences”. 

So far, we have shown that the similarity measures have cer-

tain influence in each transformation model separately. However,

if we consider the deformation model itself for both approaches,

it remains clear that a more accurate deformation model obtains

better results for both motion and strain estimates. As an example,

Fig. 5 shows the motion errors along the cardiac phase for both

approaches, block matching and demons, using a simple similarity

measure (SSD) for all the CNR considered. Likewise, Fig. 4 shows

the spatial circumferential strain error for three speckle models
 t  
SSD, GGS, GGCS) within the 17-segments model AHA. These re-

ults confirm the importance of the transformation model for mo-

ion and strain ST accuracy, which confirms the Hypothesis 4 . 

.2. Effect of interpolation and transformation models 

The deformation defined by the transformation model implies

n interpolation of intensities in one of the images. Different inter-

olation strategies can be adopted which may show different re-

ults on the ST accuracy, as Hypothesis 3 states. To analyze this

nfluence, the following experiment is done: 

xperiment 2: . The motion and strain accuracy are evaluated by

sing three different interpolation strategies: nearest neighbor-

ood, linear and cubic. Both transformation methods are consid-

red together with a multi-resolution optimization strategy. 

The multi-resolution approach is applied in this experiment to

ncrease the number of interpolation steps to amplify the influence

f different interpolation schemes and to analyze the performance

f similarity measures when the regularization schemes are more

ccurate. The differences between interpolation types were statis-

ically analyzed, as in the previous experiment. 

Table 5 shows the average motion and circumferential strain

rror at different noise levels (CNR = { 1 . 2 , 2 . 5 } ). Longitudinal

nd radial strain errors showed similar behavior and were omit-

ed for the sake brevity. Results do not show any significant
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Fig. 5. Motion accuracy of the transformation models studied, block matching and demons, for the squared sum of differences along the cardiac phase for the Straus dataset 

to different signal to noise ratio levels CNR ∈ [1.2, 1.8, 2.5]. The cardiac frame at end-systole is shown as a vertical dash line. 

Table 5 

Global average motion and strain error for the Straus dataset by interpolation types: nearest neighborhood, linear and cubic. 

Average motion error, μ [mm] Average circumferential strain error, μ [%] 

Block matching Demons Block matching Demons 

CNR Similarity Nearest Linear Cubic Nearest Linear Cubic Nearest Linear Cubic Nearest Linear Cubic 

2.5 SSD 0.98 0.96 0.96 0.83 0.74 0.76 18.91 18.95 18.80 2.65 2.29 2.31 

CD2 0.99 0.97 0.96 0.84 0.75 0.78 19.15 18.95 18.74 2.66 2.29 2.28 

MS2 0.99 0.97 0.96 0.83 0.74 0.77 19.07 18.99 18.69 2.67 2.27 2.26 

GGCS 0.99 0.97 0.96 0.83 0.75 0.78 19.04 18.92 18.69 2.66 2.27 2.25 

GS 1.01 0.98 0.98 0.79 0.70 0.73 18.54 18.43 18.09 2.26 1.92 1.92 

GGS 1.01 0.99 0.99 0.79 0.70 0.73 17.71 17.72 17.45 2.28 1.92 1.92 

1.2 SSD 1.24 1.21 1.18 1.23 1.21 1.21 19.43 19.48 19.25 3.10 2.91 2.29 

CD2 1.25 1.22 1.19 1.24 1.22 1.23 19.79 19.96 19.61 3.09 2.92 2.90 

MS2 1.25 1.22 1.19 1.23 1.21 1.22 19.75 19.90 19.60 3.10 2.90 2.86 

GGCS 1.26 1.22 1.19 1.23 1.21 1.22 19.65 19.92 19.57 3.09 2.89 2.86 

GS 1.36 1.29 1.27 1.04 1.02 1.04 19.16 19.29 19.14 2.58 2.35 2.35 

GGS 1.30 1.26 1.25 1.04 1.02 1.05 18.35 18.66 18.36 2.58 2.35 2.35 
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ifferences between the interpolation types under the block

atching approach, this means that the patch strategy used in

he block matching methodology does not take advantage of finer

nterpolation schemes and the similarity measures behave in the

ame fashion as they did without any multi-resolution scheme. 

On the other hand, some significant differences are found us-

ng the demons approach ( p -value < 10 −2 ), where the linear and

ubic schemes show differences with respect to the nearest neigh-

orhood. This was an expected result since the demons transfor-

ation model requires interpolations in each iteration. However,

o significance difference was found between linear and cubic in-

erpolation and, thus, more complex interpolations do not imply a

ignificant improvement. This result confirms Hypothesis 7 , though

t shows that the complexity of the interpolation is not a guaranty

f better results. 

When we analyze together the metrics and the transforma-

ion model the importance of joint effects between the similarity

easure and the transformation model is confirmed. Note that

etrics GS and GGS showed the worse results for motion estima-

ion when no multi-resolution scheme was applied (see Table 4 ).

owever, the motion error is reduced due to the more accurate es-

imations of large deformations while the strain error still remains

he best estimated. This improvement is due to a better regulariza-

ion performed during the multi-resolution scheme, which avoids

n excess of regularization for these similarity measures. 

.3. Effect of myocardial structural information 

The main purpose of a regularization step is to constrain the

ransformation model to ensure the existence of a solution. Be-

ides, it is possible to introduce myocardial structural information
n the transformation by using the normalized convolution to regu-

arize the transformation and improve the ST accuracy. In this sec-

ion, the Hypothesis 5 is evaluated by studying the influence of the

egularization over the ST accuracy: 

xperiment 3: . The myocardial structural information is intro-

uced by using the normalized convolution and a myocardial tis-

ue classification as implemented in Curiale et al. (2015) . 

Results obtained for motion error are shown in Table 6 , where

e can see a significant improvement of the motion estimation for

he demons approach. However, this improvement is not so clear

hen the block matching method is considered. This fact evidences

he importance of the transformation model and the techniques

sed for interpolating and regularizing the data. The demons phi-

osophy makes use of several regularizations throughout iterations.

hus, considering structural information in each of the regular-

zations prevent from over regularization and reduces accumula-

ive errors, since the regularization is focusing into the myocar-

ial tissue instead of other non-relevant structures. This observa-

ion confirms the results in De Craene et al. (2013) , where this ef-

ect was already pointed out. The almost negligible effect observed

n block matching shows that the performance of this method can-

ot be easily improved without any multiresolution approach that

ay take advantage of more regularization steps. We will see this

ombined effect in the following experiments. The results worsen

hen the CNR is reduced mainly due to the difficulties of estimat-

ng structural information from noisy images. 

Regarding the strain estimation, the improvements are con-

istent with those observed with motion estimation. However,

he results observed for low CNR evidence the almost negligible

mprovement in strain estimation. Thus, in noisy images, the
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Table 6 

Global average motion, circumferential strain and radial strain error for the Straus dataset with (Struct. Info.) and without (Simple) myocardial structural information. The 

relative improvement is shown between parenthesis. 

Average motion error and improvement Average circ. strain error and improvement Average rad. strain error and improvement 

Block matching, μ [mm] (%) Demons, μ [mm] (%) Block matching, μ [%] (%) Demons, μ [%] (%) Block matching, μ [%] (%) Demons, μ [%] (%) 

CNR Similarity Simple Struct. Info. Simple Struct. Info. Simple Struct. Info. Simple Struct. Info. Simple Struct. Info. Simple Struct. Info. 

2.5 SSD 3.08 3.08 (0.2%) 0.78 0.61 (21.4%) 19.35 19.07 (1.4%) 2.29 2.17 (5.6%) 23.42 23.38 (0.2%) 20.64 16.31 (21.0%) 

CD2 3.14 3.14 (0.2%) 0.79 0.62 (22.4%) 19.32 19.07 (1.2%) 2.29 2.15 (6.0%) 23.31 23.39 ( −0 . 3% ) 20.86 16.38 (21.5%) 

MS2 3.15 3.14 (0.2%) 0.78 0.61 (21.1%) 19.38 19.13 (1.3%) 2.28 2.17 (5.2%) 23.27 23.33 ( −0 . 3% ) 20.25 16.21 (19.9%) 

GGCS 3.15 3.14 (0.2%) 0.79 0.62 (22.0%) 19.40 19.13 (1.4%) 2.28 2.15 (5.6%) 23.27 23.32 ( −0 . 2% ) 20.43 16.28 (20.3%) 

GS 3.08 3.07 (0.2%) 0.93 0.68 (26.9%) 19.06 18.88 (1.0%) 2.15 2.04 (5.3%) 24.56 24.68 ( −0 . 5% ) 13.83 13.11 (5.2%) 

GGS 3.07 3.07 (0.2%) 0.93 0.68 (27.0%) 18.64 18.51 (0.7%) 2.15 2.03 (5.3%) 24.09 24.33 ( −1 . 0% ) 13.64 13.04 (4.4%) 

1.2 SSD 3.19 3.19 (0.0%) 1.22 1.19 (3.0%) 18.97 18.97 (0.0%) 2.85 2.85 ( −0 . 1% ) 25.30 25.29 (0.0%) 30.36 30.15 (0.7%) 

CD2 3.26 3.26 (0.0%) 1.24 1.20 (3.2%) 19.03 19.02 (0.1%) 2.85 2.85 (0.0%) 24.85 24.83 (0.1%) 30.38 30.14 (0.8%) 

MS2 3.26 3.26 (0.0%) 1.23 1.19 (3.0%) 19.01 19.01 ( −0 . 0% ) 2.84 2.84 ( −0 . 0% ) 24.82 24.83 ( −0 . 0% ) 30.14 29.91 (0.7%) 

GGCS 3.26 3.26 (0.0%) 1.24 1.20 (3.1%) 19.02 19.01 (0.0%) 2.84 2.84 (0.0%) 24.83 24.84 ( −0 . 0% ) 30.11 29.87 (0.8%) 

GS 3.20 3.20 (0.0%) 1.54 1.49 (3.2%) 18.82 18.83 ( −0 . 0% ) 3.23 3.19 (1.2%) 25.96 25.97 ( −0 . 0% ) 21.14 21.30 ( −0 . 7% ) 

GGS 3.20 3.19 (0.0%) 1.54 1.49 (3.1%) 18.60 18.60 ( −0 . 0% ) 3.23 3.19 (1.2%) 24.99 24.97 (0.1%) 21.03 21.19 ( −0 . 7% ) 

Table 7 

Average displacement and circumferential strain error, μ, on the Straus dataset for the multi-resolution refinement (MR) and an efficient second-order minimization 

(ESM). For comparison purpose, it is presented the simplest block matching and demons implementation. The relative improvement is shown between parenthesis. 

Average motion error and improvement Average circ. strain error and improvement 

Block matching, μ [mm] (%) Demons, μ [mm] (%) Block matching, μ [%] (%) Demons, μ [%] (%) 

CNR Similarity Simple MR Simple MR ESM Simple MR Simple MR ESM 

2.5 SSD 3.08 0.96 (68.7%) 0.78 0.74 (5.3%) 0.48 (38.2%) 19.35 18.95 (2.1%) 2.29 2.29 (0.2%) 1.90 (17.3%) 

CD2 3.14 0.97 (69.0%) 0.79 0.75 (5.5%) 0.49 (38.3%) 19.32 18.95 (1.9%) 2.29 2.29 (0.2%) 1.89 (17.7%) 

MS2 3.15 0.97 (69.0%) 0.78 0.74 (5.2%) 0.49 (37.0%) 19.38 18.99 (2.0%) 2.28 2.27 (0.4%) 1.90 (16.9%) 

GGCS 3.15 0.97 (69.0%) 0.79 0.75 (5.4%) 0.50 (37.0%) 19.40 18.92 (2.5%) 2.28 2.27 (0.5%) 1.88 (17.3%) 

GS 3.08 0.98 (68.1%) 0.93 0.70 (25.1%) 0.81 (12.5%) 19.06 18.43 (3.3%) 2.15 1.92 (10.8%) 2.33 ( −8 . 5% ) 

GGS 3.07 0.99 (67.9%) 0.93 0.70 (24.2%) 0.81 (12.5%) 18.64 17.72 (4.9%) 2.15 1.92 (10.7%) 2.33 ( −8 . 5% ) 

1.2 SSD 3.19 1.21 (62.0%) 1.22 1.21 (1.2%) 0.68 (44.7%) 18.97 19.48 ( −2 . 7% ) 2.85 2.91 ( −2 . 3% ) 2.29 (19.5%) 

CD2 3.26 1.22 (62.4%) 1.24 1.22 (1.4%) 0.69 (44.5%) 19.03 19.96 ( −4 . 9% ) 2.85 2.92 ( −2 . 3% ) 2.28 (19.8%) 

MS2 3.26 1.22 (62.4%) 1.23 1.21 (1.6%) 0.69 (43.8%) 19.01 19.90 ( −4 . 7% ) 2.84 2.90 ( −1 . 9% ) 2.29 (19.3%) 

GGCS 3.26 1.22 (62.4%) 1.24 1.21 (2.0%) 0.70 (43.5%) 19.02 19.92 ( −4 . 8% ) 2.84 2.89 ( −1 . 9% ) 2.29 (19.3%) 

GS 3.20 1.29 (59.7%) 1.54 1.02 (34.0%) 1.20 (21.8%) 18.82 19.29 ( −2 . 5% ) 3.23 2.35 (27.3%) 3.30 ( −2 . 2% ) 

GGS 3.20 1.26 (60.6%) 1.54 1.02 (33.7%) 1.20 (21.9%) 18.60 18.66 ( −0 . 4% ) 3.23 2.35 (27.5%) 3.30 ( −2 . 2% ) 
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structural information is just a technique recommendable when

the probabilistic tissue characterization provides good estimates. 

4.4. Effect of multi-resolution and efficient second order minimization

strategies 

The tracking in ST is usually carried out by optimizing the

transformation model according to a similarity measure. In this

section, the influence of the strategy selected for optimization is

analyzed by evaluating the Hypotheses 6 and 8 . In particular, we

will focus on two popular methodologies: a coarse to fine refine-

ment (multi-resolution) and an efficient second-order minimiza-

tion (ESM) proposed for demons in Vercauteren et al. (2009) . To

that aim, the following experiment is proposed: 

Experiment 4: . The multi-resolution strategy is evaluated for both

the block matching and demons approaches using a linear interpo-

lation scheme. On the other hand, the efficient second-order mini-

mization is only evaluated for the diffusion approach. 

Table 7 shows the average error for both strategies at two sig-

nal to noise levels (CNR = { 1 . 2 , 2 . 5 } ). The multi-resolution philoso-

phy shows a tremendous improvement for the block matching ap-

proach in the motion estimation, obtaining errors below 1 mm.

This substantial improvement makes the multi-resolution block

matching a technique with similar results than the simple version

of demons for motion estimation. However, the strain error is not

equally reduced when circumferential strain is considered. This in-

teresting result is due to the great improvement observed in the

radial direction, but the not so good improvement in the circum-

ferential direction, where the multi-resolution block matching al-

gorithm still fails. 
In general we can conclude that the coarse to fine refinement

mproves the motion estimation significantly for both methods.

owever, the strain error slightly improves and it can get even

orse in low CNR scenarios. This interesting behavior of demons

hows that the iterative optimization of the displacement fields al-

eady behaves as the multi-resolution philosophy. There are some

nteresting exceptions that show a noticeable improvement with

hose metrics not considering log compression (GS and GGS). This

ehavior also confirms the importance of the metrics during the

egularization steps of demons. Note that the metrics GS and GGS

rovide a more suitable speckle model which prevents from over

egularization. Thus, the multi-resolution scheme leverages this

etter characterization of speckle to reduce the cumulative error

uring the multi-resolution approach, resulting in an improvement

f both motion and strain estimation. 

In conclusion, Hypothesis 6 is discarded in general since the

oarse to fine approach improves the motion estimation, though

here are some metrics such as GS and GGS where the multi-

esolution scheme is especially recommended. 

Regarding the second-order minimization, Table 7 shows a gen-

ral improvement in motion estimation and also in strain estima-

ion. However, this minimization scheme is more unstable for met-

ics whose relation is established as a ratio, which cause worse re-

ults in the strain estimation, though the motion error is reduced

ue to the regularization scheme of demons. Thus, Hypothesis

 can be also rejected in general, since it is just recommendable

hen metrics involving difference of intensities (see Table 2 ). 

.5. Performance of the complete ST pipeline 

In the previous sections, different parts of a ST method have

een independently analyzed. However, the performance of some
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Table 8 

Average motion and circumferential strain error, μ, on the Straus dataset for block matching and demons approach with (All) and 

without (Simple) all the strategies. 

Average motion error and improvement Average circ. strain error and improvement 

Block matching, μ [mm] (%) Demons, μ [mm] (%) Block matching, μ [%] (%) Demons, μ [%] (%) 

CNR Similarity Simple All Simple All Simple All Simple All 

2.5 SSD 3.08 0.97 (68.7%) 0.78 0.48 (38.2%) 19.35 18.85 (2.6%) 2.29 2.07 (9.7%) 

CD2 3.14 0.98 (68.9%) 0.79 0.49 (38.9%) 19.32 18.92 (2.0%) 2.29 2.06 (10.0%) 

MS2 3.15 0.98 (68.9%) 0.78 0.48 (37.8%) 19.38 18.88 (2.6%) 2.28 2.07 (9.5%) 

GGCS 3.15 0.98 (68.9%) 0.79 0.49 (38.3%) 19.40 18.88 (2.7%) 2.28 2.06 (9.7%) 

GS 3.08 0.98 (68.0%) 0.93 0.51 (45.0%) 19.06 18.37 (3.7%) 2.15 1.96 (8.9%) 

GGS 3.07 0.99 (67.8%) 0.93 0.51 (45.0%) 18.64 17.59 (5.6%) 2.15 2.07 (3.6%) 

1.2 SSD 3.19 1.21 (62.1%) 1.22 0.57 (53.1%) 18.97 19.46 ( −2 . 6% ) 2.85 2.21 (22.3%) 

CD2 3.26 1.22 (62.6%) 1.24 0.58 (53.2%) 19.03 19.87 ( −4 . 4% ) 2.85 2.20 (22.8%) 

MS2 3.26 1.22 (62.6%) 1.23 0.58 (52.5%) 19.01 19.87 ( −4 . 6% ) 2.84 2.21 (22.2%) 

GGCS 3.26 1.22 (62.5%) 1.24 0.59 (52.6%) 19.02 19.95 ( −4 . 9% ) 2.84 2.20 (22.6%) 

GS 3.20 1.29 (59.8%) 1.54 1.08 (29.6%) 18.82 19.35 ( −2 . 8% ) 3.23 3.16 (2.3%) 

GGS 3.20 1.26 (60.7%) 1.54 1.08 (30.0%) 18.60 18.71 ( −0 . 6% ) 3.23 3.14 (2.9%) 
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ethods are strongly related to other methods along the ST

ipeline. The aim of this section is to provide a deeper analysis of

he ST accuracy where all the components are combined by means

f the following experiment: 

xperiment 5 . A complete ST pipeline is evaluated for the Strauss

ata set with the following configuration: (1) using all the sim-

larity measures proposed; (2) both transformation approaches,

lock matching and demons; (3) the use of myocardial struc-

ural information; (4) a multi-resolution approach; and (5) an ef-

cient second-order minimization. Three different contrast values

re considered, CNR = { 1 . 2 , 1 . 8 , 2 . 5 } . 
Results for experiment are collected in Table 8 . We will de-

ote as “All ” to the complete pipeline (with structural information,

ulti-resolution and ESM in the demons transformation) and “Sim-

le ” to the simplified pipeline described in Experiment 1. At first

lance, these results show a significant improvement in motion

stimation when all strategies are applied together. This improve-

ent can go up to 68% in the case of block matching. However,

f factors that are actually contributing to this improvement are

arefully checked in Table 7 , one can see that the multi-resolution

cheme is the key factor whereas the structural information does

ot play a relevant role for this transformation approach in block

atching. This result confirms the behavior already commented in

xperiment 3, where the importance of regularization steps to re-

uce cumulative errors was pointed out. Regarding the strain ac-

uracy for block matching, the results shown in Table 7 compared

o those of Table 8 evidence no significant improvement with the

ulti-resolution scheme which shows that structural information

oes not provide a better refinement than the one obtained from

ulti-resolution for strain estimation. 

On the other hand, the demons approach shows an overall im-

rovement when all the strategies are used. When results obtained

or demons in Table 7 and Table 8 are compared, one can see

hat the motion estimation is not significantly increased in met-

ics based on difference of intensities. However, those based on ra-

ios (GS and GGS) improve their accuracy to almost the same level

s the rest of metrics (0.51 mm) with a better ST estimate. These

esults show that the combination of structural information and

he ESM technique increases the motion estimation accuracy (from

.68 mm and 1.02 mm respectively to 0.51 mm). However, note

hat the structural information can cause an increase of motion er-

or when the characterization of tissue is poorly estimated in low

NR scenarios (CNR = 1.2), going from 1.49 mm with structural

nformation ( Table 6 ); 1.02 mm with multi-resolution ( Table 7 ) to

.08 mm with all strategies. This behavior shows that these metrics

re more sensitive to structural information and its performance
epends on two important steps of the approach: (1) the regular-

zation methodology, which improves with structural information;

2) the optimization scheme, which gets worse when the ESM op-

imization method is applied. However, the metrics related as dif-

erence of intensities show a different behavior: they are sensitive

o the structural information (e.g. from 0.78 m to 0.61 mm, see

able 6 , SSD metric) though the efficient second-order optimiza-

ion performs a better result (e.g. from 0.78 m to 0.48 mm, see

able 8 , SSD metric). The combination of both approaches struc-

ural information and ESM provides a similar result in motion es-

imation, though the strain gets worse due to an excess of regu-

arization due to the normalized convolution (e.g. from 2.29% circ.

train, to 1.90% with ESM and 2.07% with both ESM + structural

nformation, see Table 7 and 8 , SSD metric). 

Most of the errors measured so far have been given as an aver-

ge of values along time and space. In what follows we try to have

 deeper insight on how the errors are distributed along the car-

iac cycle. For the sake of simplicity, only two similarity measures

re considered (GGS and GGCS) for the demons approach. Results

f the experiments 1 and 5 along the cardiac phase are depicted in

ig. 6 . This comparison allows us to see the effect of both metrics

hroughout the cardiac cycle. 

We first focus on the boxplot shown for the higher CNR = 2.5,

here there is an increment of the mean error and variance along

he cardiac phase due to the frame-to-frame error accumulation as

xpected. Note that the GGCS measure shows a more robust be-

avior with the simple implementation. The error remains below

 mm with a smaller variance than GGS. This result confirms the

mportance of considering the logarithmic compression into the

etric for motion estimation. 

When the complete system is considered (structural informa-

ion + ESM), GGCS still outperforms GGS for motion, but the differ-

nces along the cycle have been reduced due to the influence of a

etter regularization into the ST accuracy mainly due to the good

erformance of the ESM technique with metrics based on differ-

nces of intensities. 

From this result one may argue that any similarity measure can

e used with similar results, since the complete method improves

he motion accuracy to comparable results in all the cases. How-

ver, if the complete GGS and the complete GGCS approaches are

ompared for CNR = 1 . 2 (red line), one can see that the error grows

p to 1.5 mm for GGS, while it is always below 1 mm for GGCS.

his fact is due to the sensitivity of this metric when the ESM is

pplied. This confirms that the similarity measures also play a role

n combination to other configurations. 
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Fig. 6. Motion error along the cardiac phase for the Straus dataset at different signal to noise ratio ( CNR = { 1 . 2 , 1 . 8 , 2 . 5 } ). The boxplots are for the highest signal to noise 

ratio ( CNR = 2 . 5 ). The median error for the different noise levels and the end-systole are depicted as color lines and a vertical dash line, respectively. 
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All in all, results show that a complete system usually improves

the accuracy of the estimation of motion and strain. However, the

different pieces we use to build the complete system must be care-

fully analyzed. Even when each step improves the accuracy, the fi-

nal results might be non-optimal. The goodness of each step will

strongly depend on the similarity measure used, the transforma-

tion method and the optimization technique. What is more, results

show that many times the best solution is obtained by only im-

proving one of the steps of the process. 

Influence of the pipeline in pathological cases 

In order to get a deeper insight of the relation between the in-

fluence of the different strategies into the complete ST pipeline,

in this section we study the ST accuracy in scenarios with differ-

ent pathological cases (four ischemic and two asynchronous) for

CNR = 2.5. A detailed description about the pathological cases can

be found in De Craene et al. (2013) . 

Fig. 7 shows the global motion error for the ischemic cases and

the circumferential strain error for the dyssynchrony cases, where

the errors of pathological cases show a similar behavior than those

obtained for the normal case. i.e. all the methods have similar mo-

tion and strain accuracy with the exception of those derived from

the intensity ratio (GS and GGS) which seem to be more sensitive.

Therefore, the same conclusions derived for the normal case can

be applied for pathological cases. So, in summary, the results ob-

tained for pathological cases do not offer a different analysis than

the one already described for normal cases. 

4.6. Discussion on the interdependences 

In the previous sections we have seen that the performance of

some methods is strongly related to other methods along the ST

pipeline. In order to get a better insight into these relations, in

this section we summarize results pointed out in previous sections

pointing out their interrelations with other steps. 
Table 9 shows the partial contribution of each of the methods

o the estimation of motion and strain for the metrics GGCS and

GS in order to see the importance of the relationship between

ntensities on the optimization techniques applied in other stages

f the method. The gain of each of the methods is expressed as

 percentage. This table clearly shows how different strategies af-

ect in a different way the final result. Note that, for the similar-

ty measure GGCS, the use of structural information has no effect

ver the BM approach, while it improves 22% when using demons

s was pointed out in experiment 3. This behavior was associated

o the lack of a proper regularization scheme in the BM approach,

hich is confirmed due to the improvement up to 69% obtained

hen multi-resolution is applied in the BM approach. However,

ote that the structural information does not provide any further

nformation to the multi-resolution approach since the result ob-

ained applying both together remains the almost the same (68.9

). This behavior evidences that the resolution achieved with sim-

le block matching is very reduced to describe the complex defor-

ation of the heart. The multi-resolution scheme overcomes par-

ially this lack of resolution since it achieves a better following

f radial deformation, though the circumferential deformation is

oorly estimated and causes a poor circumferential strain estima-

ion. A similar conclusion can be obtained for the case of the GGS

etric. However, in this case we can observe a reduction of the

train error which is due to the better description of the GGS met-

ic to the statistics of speckle. 

In the case of the demons approach for GGCS, the transforma-

ion itself improves remarkably the performance of block matching

as expected– due to the regularization inherent to the demons

lgorithm, which avoids the low resolution problem observed in

lock matching. Note that the inner regularization intrinsic to the

emons approach makes the contribution of a multi-resolution

cheme almost negligible (from 0.79 mm to 0.75 mm), while the

SM approach reduces the error to 0.5 mm reaching a gain of

7%. Besides, though using structural information is more recom-

endable than using a multi-resolution scheme (improves 22%),



A.H. Curiale et al. / Medical Image Analysis 32 (2016) 184–200 197 

Table 9 

Improvements for average motion and circumferential strain error for block matching and demons 

approaches in each of the steps throughout the pipeline for CNR = 2.5 and similarity measures GGCS 

and GGS. 

GGCS GGS 

Motion error Circ. strain error Motion error Circ. strain error 

BM Demons BM Demons BM Demons BM Demons 

Simple 3.15 0.79 19.40 2.28 3.07 0.93 18.64 2.15 

Struct. Info 3.14 0.62 19.13 2.15 3.07 0.68 18.51 2.03 

Gain 0.2% 22% 1.4% 5.6% 0.2% 27% 0.7% 5.3% 

MR 0.97 0.75 18.92 2.27 0.99 0.70 17.72 1.92 

Gain 69% 5.4% 2.5% 0.5% 67.9% 24.2% 4.9% 10.7% 

ESM – 0.5 – 1.88 – 0.81 – 2.33 

Gain – 37% – 17.3% – 12.5% – -8.5% 

All 0.98 0.49 18.88 2.06 0.99 0.51 17.59 2.07 

Gain 68.9% 38.3% 2.7% 9.7% 67.8% 45% 5.6% 3.6% 
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Fig. 7. Global motion and circumferential strain error for the ischemic (top) and 

dyssynchrony (bottom) cases for the Straus dataset at CNR = 2 . 5 respectively. 
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he EMS is preferable since the reduction obtained from the struc-

ural information is already outperformed with the ESM (improves

8.3%). However, note that the metric GGS provides worse results

ith ESM than those with GGCS due to numerical fluctuations

ue to the ratio of intensities involved in the definition of the

etric, thus the structural information contributes better than the

SM approach. The fact that the combination of all techniques re-

uces the error to similar results obtained from GGCS is due to
he combination of the structural information. Note that the nu-

erical fluctuations introduce some errors that affect negatively to

he motion estimation. However, the normalized regularization in-

roduced by the structural information in combination of a multi-

esolution scheme palliates this effect. Actually, this compensatory

henomenon can be better seen for circumferential strain, where

he structural information and the multi-resolution scheme affects

ositively (5.3% and 10.7% respectively) to the strain estimation but

he ESM optimization technique reduces the performance (-8.5%),

esulting in a complete system with less gain (3.6%). 

. Conclusions 

In this paper we studied the influence of the different compo-

ents of a ST system over motion and strain accuracy in ultrasound

mages. In this context we studied and identified the relevant re-

ations between the three necessary parts of a ST system: similar-

ty measure, transformation model and optimization strategy. The

tudy was focused on the main hypotheses assumed in the pro-

osals of the state of the art. The conclusions obtained from our

nalysis confirmed some of the hypotheses but also rejected some

hem, showing that certain interrelations between similarity mea-

ures, transformation models and optimization techniques may of-

er worse performance than the expected from the contribution of

ach stage separately. These results reinforce the idea of a whole

nalysis of a ST system, rather than a part-based analysis. 

The study of the influence of similarity measures was per-

ormed considering the most relevant measures used in the litera-

ure according with an special emphasis on the statistical descrip-

ion of speckle. We distinguished these measures according to the

nal relationship between intensity levels of the fixed and mov-

ng images since it was observed that the performance obtained

ith different optimization techniques is remarkably affected by

his fact. The main conclusions obtained from the analysis of simi-

arity measures are the following: 

onclusion 1. Similarity measures based on a speckle statistical

odel show more accurate motion and strain estimation. The more

etailed the modeling (including spatial and temporal correlation),

he more accurate the results. However, the influence of the sim-

larity measures is reduced when the regularization schemes are

pplied in the transformation model. Generally, these differences

ay have no practical implications, since they translate in margins

ower than 0.3 mm and 2% for motion and strain estimation re-

pectively. 

onclusion 2. The improvement of the accuracy due to a transfor-

ation model outperforms the improvement due to the similarity

easures. Thus, the influence of the transformation model over the
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ST accuracy is higher than the influence of the speckle model itself.

This result is consistent with the main conclusion derived from the

study proposed in De Craene et al. (2013) where it is observed that

most recent ST techniques have relatively similar performances. 

Conclusion 3. There is an interdependency between the influence

of the similarity measure and the transformation/optimization

model. The regularization schemes strongly influence the perfor-

mance of metrics. Results show that those similarity measures con-

sidering the logarithmic compression into the speckle model are

more accurate for motion estimation when an iterative optimiza-

tion approach is used. The logarithmic compression changes the

intensity ratio of the speckle model in an intensity difference mak-

ing the similarity measure more robust to numerical fluctuations.

Note that this fact does not mean that the speckle model is more

suitable for real US data but for iterative optimization, which in-

creases the effect of regularization for motion estimation, though

the performance of strain estimation is reduced due to biases in-

troduced in the regularization. 

The analysis of the influence of interpolation on similarity mea-

sures based on statistical assumptions was considered by studying

three different interpolation schemes (nearest neighbor, linear, cu-

bic) in a multi-resolution implementation in order to increase its

contribution. From this analysis the following conclusions were ex-

tracted: 

Conclusion 4. Although interpolation modifies the statistical

model assumed for characterizing the speckle pattern, no reduc-

tions of the ST accuracy due to interpolation were observed. On the

contrary, linear interpolation in the multi-resolution scheme im-

proves the accuracy of all the metrics and especially those which

obtained the best results for strain error. This result not only con-

firms Hypothesis 3 but also indicates that the way the metrics

combine with the transformation model plays an important role. 

Conclusion 5. ST accuracy improves when higher order interpola-

tion schemes are used instead of the nearest neighborhood inter-

polation, which confirms the Hypothesis 7 . However, cubic inter-

polation does not provide any further improvement compared to

linear interpolation. 

Conclusion 6. The joint effects between the transformation model

and the metric are observed with similarity measures based on

ratios (without log-compression), which increased their perfor-

mance in motion estimation due to the refinements of the multi-

resolution approach, while they provide the best strain estimation.

The inclusion of myocardial structural information by means of

normalized convolution was also studied for the different simi-

larity measures and transformation models. The improvement of

this technique was shown to be dependent on the transformation

philosophy, where iterative transformations ar especially recom-

mended. Thus, the main conclusion is: 

Conclusion 7. The use of myocardial structural information in the

ST technique significantly improves motion and strain accuracy in

iterative approaches like demons due to the iterative error reduc-

tion. However, its gain depends on the performance of the proba-

bilistic characterization of tissues. 

The analysis of optimization techniques, such as multi-

resolution and second order minimization, offers very interesting

and counterintuitive results: 

Conclusion 8. Though the multi-resolution scheme highly con-

tributes in simple approaches such as block matching, other trans-

formation models including regularization steps do not signifi-

cantly improve their performance with metrics based on difference
f intensities. However, metrics based on ratios of intensities im-

rove significantly both the motion and the strain estimation in a

ulti-resolution approach. 

onclusion 9. Metrics based on ratios of intensities are prone to

umerical fluctuations that reduce the performance of strain esti-

ations when the ESM methodology is applied. However, the ESM

s especially recommendable with metrics based on difference of

ntensities. 

Finally, the performance of the complete ST pipeline was stud-

ed to provide some insights to the interrelations between different

ombinations of components: 

onclusion 10. Results showed that the block matching approach

s greatly improved due to the multi-resolution scheme. Con-

ersely, the inclusion of structural information does not play a rel-

vant role. However, regarding the strain analysis, the overall re-

ults evidence that simple transformation models that do not ef-

ectively deal with the circumferential estimation of motion (and

hus, strain), are not recommended for strain estimation. 

onclusion 11. Similarity measures based on intensity ratios are

ore sensitive to structural information and its performance de-

ends on the regularization methodology. Thus, multi-resolution is

ore recommendable than ESM for these metrics. 

onclusion 12. Metrics based on intensity differences improve

heir performance with the use of the ESM. 

onclusion 13. The use of the myocardial structural information

lso improves significantly the ST accuracy regardless the similarity

easure used. 

The results and conclusions obtained throughout this study

learly showed that the election of certain methods along the

ipeline must take into account the choices previously made.

ethods that independently achieve the best results do not neces-

arily are optimal when combined together. In fact, the selection of

he methodologies to use must not only be based on their individ-

al performance, but on their performance as part of a complete

ystems where all the parts are interconnected. The selection of

 particular step must be based on the choices done for previous

nd following steps. The goodness of a particular method cannot

e guaranteed inside a ST system unless it is tested for the whole

ipeline. 

The conclusions obtained in this work allow us to provide some

ecommendations for future research and proposals on ST systems

1. The inclusion of too elaborated similarity measures based on

statistics of speckle do not improve significantly the results. The

most relevant factor that affects to its performance is the final

relationship between intensities, which is a result of consider-

ing or not the log-compression in the statistical model. 

2. If we are interested just in motion estimation, any similarity

measure can be applied with good results, where the most rec-

ommended due to its simplicity is the SSD. However, it is im-

portant to consider that those metrics based on ratios of inten-

sities should avoid the use of the ESM optimization technique,

since it is prone to numerical fluctuations that decrease their

performance. 

3. If we are interested on strain estimation, metrics without

considering log-compression (GS or GGS) are especially rec-

ommended when a multi-resolution scheme regularized with

structural information by means of normalized convolution is

applied. This metrics are more sensitive to the structural infor-

mation and provide better overall estimation of strain. 

4. The regularization step in iterative approaches is of great im-

portance, since its numerical stability and a proper inclusion of
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statistical models can cause unexpected results that may under-

mine the final results. 

5. A linear interpolation scheme is recommended, rather than

higher order schemes that do not contribute significantly. 

6. The regularization by means of normalized convolution is

highly recommended for all similarity measures, especially for

those highly sensitive to structural information such as (GS and

GGS). 
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