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a b s t r a c t

Accurate detection of liver lesions is of great importance in hepatic surgery planning. Recent studies have
shown that the detection rate of liver lesions is significantly higher in gadoxetic acid-enhanced magnetic
resonance imaging (Gd–EOB–DTPA-enhanced MRI) than in contrast-enhanced portal-phase computed
tomography (CT); however, the latter remains essential because of its high specificity, good performance
in estimating liver volumes and better vessel visibility. To characterize liver lesions using both the above
image modalities, we propose a multimodal nonrigid registration framework using organ-focused mutual
information (OF-MI). This proposal tries to improve mutual information (MI) based registration by adding
spatial information, benefiting from the availability of expert liver segmentation in clinical protocols. The
incorporation of an additional information channel containing liver segmentation information was stud-
ied. A dataset of real clinical images and simulated images was used in the validation process. A Gd–EOB–
DTPA-enhanced MRI simulation framework is presented. To evaluate results, warping index errors were
calculated for the simulated data, and landmark-based and surface-based errors were calculated for the
real data. An improvement of the registration accuracy for OF-MI as compared with MI was found for
both simulated and real datasets. Statistical significance of the difference was tested and confirmed in
the simulated dataset (p < 0.01).

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The advances made in recent decades in the understanding of
liver anatomy and physiology (Couinaud, 1999), together with
the improvement of medical imaging techniques (Handels and Ehr-
hardt, 2009; Radtke et al., 2007) and the progressive safety of sur-
gical instrumentation, allow surgeons to design complex liver
resections more accurately and effectively without jeopardizing
patient safety. Further, preoperative planning has become an
essential task before undertaking liver surgery. It requires the
mapping of hepatic vasculature, spatial localization of tumors
and their relation with other tumors or vascular structures, and
the estimation of remnant liver volume in order to determine the
suitability of a patient for surgery and to decide the procedure.
Accurate detection of individual liver lesions is of great importance
because their number, location, and relationships determine both
resectability (the probability of performing a resection safely)
and radicality (the probability of a potential cure by achieving an
R0 resection) (Solbiati et al., 1999).

During preoperative planning of a liver resection, different imag-
ing modalities play different roles: for example, for accurate detec-
tion of cancer (staging) and for practical description of inner liver
anatomy (mapping). Recently, clinical protocols have included con-
trast-enhanced computed tomography (CT) and a liver-specific con-
trast agent-enhanced magnetic resonance imaging (MRI). Several
studies have analyzed the advantages and constraints of both meth-
ods (Oliva and Saini, 2004; Oudkerk et al., 2002; Weinmann et al.,
2003). Contrast-enhanced portal-phase CT imaging offers high
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sensitivity and specificity for detecting hepatic metastases and is in
most cases more convenient than MRI for evaluating the extrahe-
patic abdomen (Oliva and Saini, 2004) and for estimating remnant
liver volumes because of its higher spatial resolution, better vessel
visibility, and wide availability and acquisition speed. However,
the lesion detection rate has been found to be significantly higher
with Gd–EOB–DTPA-enhanced MRI as compared with CT, especially
for small lesions (Donati et al., 2010; Hammerstingl et al., 2008)
(Fig. 1). Gd–EOB–DTPA (gadoxetic acid, Primovist� in Europe, Eo-
vist� in the US, by Bayer HealthCare Pharmaceuticals) is an organ-
specific contrast medium for hepatic MRI, in use since 2005. In de-
layed T1-weighted MRI, it produces strong signal enhancement in
normal liver parenchyma and absence of signal for focal liver lesions
with absence of hepatocellular activity. Consequently, detection of
liver metastases and other secondary malignant liver tumors is im-
proved. However, vessels are not opacified.

Considering the advantages and disadvantages of the different
imaging modalities and contrast media, several researchers have
pointed out the importance of combining MRI and CT for the detec-
tion and localization of hepatic lesions and their relation with ves-
sels for therapy planning (Bluemke et al., 2000; Kong et al., 2008;
Lange et al., 2005a). In this work, we propose a nonrigid registra-
tion framework for aligning contrast-enhanced portal-phase CT
and delayed T1-weighted Gd–EOB–DTPA-enhanced MRI into a
common coordinate system. As far as we know, this problem has
never been tackled before. To use all available data and improve
the registration robustness and accuracy, we propose the use of
an organ-focused mutual information (OF-MI) registration
criterion.
1.1. State of the art

To date, commercial systems for planning hepatic surgery
mostly align images rigidly. However, registering soft tissues with
rigid registration may result in errors as high as 19–20 mm (Archip
et al., 2007; Lee et al., 2005), due to deformations that may be
caused by liver movements because of respiration, variations of po-
sition, and corporal mass changes over time. To improve detection
and characterization in terms of volume and relation with vascula-
ture of primary liver cancers (for example hepatocellular carci-
Fig. 1. Contrast-enhanced portal-phase CT image and delayed T1-weighted
gadoxetic acid MRI from a patient after right hepatectomy. Arrows show metastases
within the different modalities. Each row represents different slice positions. The
figure shows how metastases clearly identified in MRI are hardly visible in CT.
Better vessel visibility is observed in the CT.
noma), secondary tumors (for example, liver metastases
secondary to colorectal cancer) and other liver diseases, an accu-
rate multimodal nonrigid image registration algorithm is clearly
required.

Some studies have presented methods for liver monomodal im-
age registration (Carrillo et al., 2000; Lange et al., 2005b). Other
proposed techniques have focused on compensating multimodal
image differences in the location and motion of the liver in relation
to other organs by using rigid approaches (Van Dalen et al., 2004)
or nonrigid methods based on finite elements, B-splines or demons
(Archip et al., 2007). Different similitude criteria have been also ap-
plied, such as voxel similarity or surface based criteria (Lee et al.,
2005). However, to the best of our knowledge, the performance
in terms of correspondences between internal liver structures, le-
sions, and vascular landmarks such as vessel bifurcations has not
been evaluated. Additionally, CT/Gd–EOB–DTPA-enhanced MRI
registration methods have not been proposed before.

Voxel intensity measures have been shown to be robust mea-
sures of image similarity. There are several possible image metrics
that are used in voxel similarity-based image registration (Crum
et al., 2004; Hill et al., 2001; Maintz and Viergever, 1998; Rueckert
and Schnabel, 2011; Zitova and Flusser, 2003): correlation coeffi-
cient, sum of squared differences, or mutual information (MI). MI
(Maes et al., 1997; Mattes et al., 2003, 2001; Pluim et al., 2003;
Wells et al., 1996) is one of the more successful medical image sim-
ilarity measures. However, extending the maximization of MI to
nonrigid image registration and applying it to extensive areas of
body images is still an active field of research. Moreover, the most
important drawback of MI is that, due to the absence of spatial
information, intensity relationships in one region can occasionally
mislead the algorithm in another region where the intensity rela-
tionships are completely different (e.g., problems with spatially
varying intensity inhomogeneity in MRI (Loeckx et al., 2010) or li-
ver vessel misalignments in contrast-enhanced CT and delayed T1-
weighted Gd–EOB–DTPA-enhanced MRI (Fig. 2)).

Some studies have focused on improving registration accuracy
by considering the use of additional image gradient information
(Pluim et al., 2000a,b), neighbor pixel information (Heinrich
et al., 2012b; Kybic and Vnučko, 2012; Rueckert et al., 2000), tex-
tural information (Heinrich et al., 2012a), or different approaches
to weighted MI (Park et al., 2010; Rodriguez-Carranza and Loew,
1999; Van Dalen et al., 2004). One approach to weighted MI is
the regularization of MI with the use of weights based on overlaps
(Rodriguez-Carranza and Loew, 1999) without including spatial
information. Other weighted MI approaches increase histogram
contributions of certain pixels (Park et al., 2010) or restrict the reg-
istration to certain regions (Van Dalen et al., 2004). Nevertheless,
the main problems with the application of the last method are
the lack of information on the borders of the regions and neighbor-
ing structures, and having too few samples to obtain a good entro-
py estimation. These problems may be less significant in rigid
scenarios. However, they are more relevant when nonrigid trans-
formations are required, hence, the weighted MI performance
strongly depends on the concrete registration problem.

Recent approaches add spatial context to mutual information,
either by studying different spatial encoding schemes (Zhuang
et al., 2011) or by searching for the correspondence of a priori
learned set of image patches (Yi and Soatto, 2011). In Hermosillo
et al. (2002) the formulation of a locally computed similarity mea-
sure is presented and in Rogelj et al. (2003) a variant to obtain
pointwise similarity metric is described.

First attempts to incorporate an additional information channel
into the histogram definition of the MI were tackled by Studholme
et al. (1996) for the rigid registration of MRI and positron emission
tomography images of the pelvis. In Studholme et al. (2006) a re-
lated method named regional mutual information (RMI) was ap-



Fig. 2. Cost functions for a synthetic 2D model as a function of horizontal
transformation. A local nonrigid deformation is applied with maximum amplitude
dx from �1.5 pixels to 1.5 pixels in the middle of the vessel region. The EMI cost
function shows multiple local minima and a global minimum shifted away from 0
where the correct solution should be. The EOF-MI cost function shows a clean global
minimum in the correct location.
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plied to analyze local tissue contrast changes in brain MRI nonrigid
registration. The RMI was defined as:

RMIðT;R;XÞ ¼ HðTÞ þHðRÞ þHðXÞ �HðT;R;XÞ ð1Þ

with X expressing the spatial position of cubic overlapping subre-
gions in the reference image R and the test image T. In Loeckx
et al. (2010) a conditional mutual information (cMI) was defined
and calculated between two images T, R, given a certain spatial dis-
tribution X. Besides the intensity dimensions, a third spatial channel
was incorporated into the histogram definition, expressing the spa-
tial location of every joint intensity pair:

cMIðT;RjXÞ ¼ HðTjXÞ þHðRjXÞ �HðT;RjXÞ ð2Þ

In Russakoff et al. (2004), a regional MI was described, introduc-
ing neighborhood regions of pixels into a multidimensional histo-
gram. In this work, each pixel co-occurrence was represented by
more than one entry in the joint histogram depending on its neigh-
bor pixel co-occurrences. However, one should notice that as de-
scribed in Russakoff et al. (2004), the main problem in increasing
the dimensionality of joint histograms is the need of a higher num-
ber of samples to obtain a reasonable estimate of entropy distribu-
tion. Therefore, these methods require a large number of image
voxels hence increasing the computational complexity enor-
mously. In Russakoff et al. (2004) a method to make the problem
more tractable is proposed, taking advantage of the fact that the
entropy of a discrete distribution is invariant to rotations and
translations and making the simplifying assumption that high-
dimensional distributions are approximately normally distributed.
In Studholme et al. (1996) preliminary rigid registration results
demonstrated the possibility of extending the histogram with a
small number of unconnected regions of similar intensity ranges
(e.g. air or fat tissue). As the reference image R and the regions L
were inherently registered, they proposed an extension I of the
mutual information for more than two variables defined by:

IðT;R; LÞ ¼ HðR; LÞ þHðTÞ �HðT;R; LÞ ð3Þ

Their preliminary results motivated us to use the same extension of
the mutual information for more than two variables. However, they
proposed the use of regions calculated by using only intensity
ranges. Unconnected regions containing the same range of intensi-
ties were considered as different, which does not allow separating
intensity relationships based on anatomical reasons nor having re-
gions with more than one range of intensities.

1.2. Our contribution

As already pointed out above, delayed T1-weighted Gd–EOB–
DTPA-enhanced MRI causes strong signal enhancement for normal
liver parenchyma. For this reason, the relationship between inten-
sities in CT and MRI images is very different inside and outside the
liver. Hence, using the classical formulation of MI, intensity rela-
tionships in a region can occasionally mislead the algorithm in an-
other region where the relationships are completely different;
especially in nonrigid registrations.

Liver volume estimation from preoperative CT is a routine man-
datory process to determine the suitability of a patient for surgery
and to make the final clinical decision before extensive hepatecto-
mies (Fernandez-de-Manuel et al., 2011; Heimann et al., 2009). To
estimate remnant liver volumes, both manual and automatic seg-
mentation tools are applied in the daily clinical routine. Conse-
quently, liver segmentation from CT images are available in most
hospitals for patients considered for liver surgery. For that reason,
incorporating the liver segmentation information into the registra-
tion process is very feasible.

We discarded the approaches presented in Loeckx et al. (2010),
Russakoff et al. (2004) and Studholme et al. (2006) because those
techniques cannot take advantage of the available liver
segmentations.

In this work, we propose the use of an organ-focused mutual
information (OF-MI) criterion. We extend the joint histogram with
an additional information channel using an extension of the mu-
tual information for more than two variables similar to the one
proposed in Studholme et al. (1996) but with a different probabil-
ity distribution estimation. Studholme et al. (1996) used regions
segmented based on intensity ranges, however, they suggested to
exploit a higher level of anatomical knowledge. Therefore, we take
advantage of an anatomical segmentation resulting in regions with
varying intensities. We consider that using anatomical regions
actually allows taking maximum advantage of the definition pro-
posed in Studholme et al. (1996). Additionally, we have extended
its implementation to nonrigid multimodal registration. Conse-
quently, our work’s main contributions are related to the experi-
mental novelty and the obtained results in a clinical application
that benefits from the proposed approach.

Therefore, the main contributions of this work are (1) an organ-
focused mutual information as registration criterion that takes
advantage of available clinical segmentation, (2) the mathematical
formulation for its implementation within a B-spline based regis-
tration framework using the explicit derivatives of the metric, (3)
a method to simulate Gd–EOB–DTPA-enhanced MRI from CT for
validation purposes, (4) a thorough validation of the method with
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synthetically generated data as well as its application to relevant
clinical liver datasets (CT and Gd–EOB–DTPA-enhanced MRI), and
a comparison of the registration performance using OF-MI com-
pared with MI as registration criterion.

The proposed criterion takes into account an organ (liver) seg-
mentation based on the semi-automatic method described in Fer-
nandez-de-Manuel et al. (2009) and Jimenez-Carretero et al.
(2011).

The algorithm has been validated and compared with the stan-
dard MI on a simulated 3D dataset with 63 image pairs, using a de-
layed T1-weighted Gd–EOB–DTPA-enhanced MRI simulation
framework. Additionally a dataset of seven real subjects referred
to surgery with one contrast-enhanced portal-phase CT and one
delayed T1-weighted Gd–EOB–DTPA-enhanced MRI each have
been used.
2. Methods

In Sections 2.1 and 2.2, we will introduce the general frame-
work and MI, describing briefly the equations presented in previ-
ous work (Kybic and Unser, 2003; Thévenaz and Unser, 2000).
We will then explain our contribution in Section 2.3.

2.1. Problem definition and registration framework

The intensity-based nonrigid registration algorithm used ex-
tends the previous B-spline method of Kybic and Unser (2003).
The algorithm determines a set of B-spline coefficients that de-
scribe a nonrigid transformation that maximizes an image similar-
ity measure. The transformation model is defined as a linear
combination of B-spline basis functions located on a uniform grid.
B-spline functions have been widely used to represent deforma-
tions (Kybic and Unser, 2003; Ledesma-Carbayo et al., 2005; Oguro
et al., 2009; Rueckert et al., 1999; Schnabel et al., 2001), motivated
by their compact support, computational simplicity, good approx-
imation properties, and implicit smoothness. We also use B-spline
functions for representing continuous images derived from a set of
samples (Kybic and Unser, 2003; Thévenaz and Unser, 2000).
Moreover, B-spline basis functions are used as Parzen windows
(Thévenaz and Unser, 2000) in the similarity criteria, as described
later.

The input images are given as two N-dimensional discrete sig-
nals: the test image T and the reference image R with intensities
ft(i) and fr(i), respectively, where i 2 I � ZN , and I is an N-dimen-
sional discrete interval representing the set of all voxel coordinates
in the image. For convenience in our formulation we use a contin-
uous representation f c

t ðxÞ of the discrete test image ft(i) as follows:

f c
t ðxÞ ¼

X
i2Ia�ZN

aibmðx� iÞ

ftðiÞ ¼ f c
t ðiÞ 8i 2 I � ZN

ð4Þ

where bm represents an N-dimensional tensor product of centered
B-splines of degree m (Kybic, 2001), ai are the B-spline coefficients
that represent the original test image given by its samples ft(i), and
Ia is the set of nodes used to represent the image.

Let g(x) be a deformation function that finds the spatial corre-
spondence between coordinates in the test and reference images.
The deformation is represented using splines:

gðxÞ ¼ xþ
X

j2Ib�ZN

cjbnðx=h� jÞ ð5Þ

described by a finite number of parameters c ¼ fcjg; j 2 Ib � ZN;
where Ib is an N-dimensional discrete interval representing the set
of parameter indexes, h is the knot spacing on a regular grid over
the image, and bn represents an N-dimensional tensor product of
centered B-splines of degree n.

The warped test image W is defined as fwðxÞ ¼ f c
t ðgðxÞÞ. We de-

fine the solution to our registration problem as the result of the
minimization g = arg ming2G E(g), where G is the space of all admis-
sible deformation functions g and E is the criterion. For the pro-
posed application, we consider the criterion:

EðgÞ ¼ EdðW;RÞ þ cErðgÞ ð6Þ

where Ed is an MI-based image dissimilarity criterion and Er is a reg-
ularization term with weight c used to prevent discontinuities and
to guarantee overall smoothness. For this particular problem, we
use a discrete approximation to the norm of the Laplacian of the
continuous deformation as Er (Kybic, 2001).

To minimize the criterion E with respect to a finite number of
parameters c we use a gradient descent optimizer with quadratic
step size estimation, as recommended in Kybic and Unser (2003).
The optimization uses a multiresolution approach for the image
model. The multiresolution methodology used creates a pyramid
of subsampled images optimal in the L2 sense, taking advantage
of the spline representation (Unser et al., 1993). The problem is
solved by starting at the coarser level of the pyramid (the most
subsampled image) and proceeding to the finest level.

2.2. Mutual information

The joint intensity probability distribution is estimated by
means of Parzen windows because of their good properties, such
as computational efficiency (Unser, 1999).

Following Thévenaz and Unser (2000), the contribution to the
joint histogram of a single pair of pixels with intensities (fw, fr) is dis-
tributed over several discrete bins (t,r) with t and r belonging to dis-
crete sets of intensities associated with the test and reference
images, with ranges from 0 to nbinsT � 1 and nbinsR � 1, respectively.
Intensities (fw, fr) can take values in a continuum in the ranges (fw

min, fw max) and (fr min, fr max), respectively. Using B-spline functions
of degree m1 and m2, the discrete joint probability of co-occurring
intensities in the overlap of the two images fw and fr is expressed as:

pðt; r; cÞ ¼ 1
jIcj

X
i2Ic�ZN

bm1
ðt � sði; cÞÞ � bm2

ðr � qðiÞÞ ð7Þ

and the discrete marginal probability distributions for the warped
test and the reference images, respectively, are:

pTðt; cÞ ¼ 1
jIcj

X
i2Ic�ZN

bm1
ðt � sði; cÞÞ

pRðrÞ ¼
1
jIcj

X
i2Ic�ZN

bm2
ðr � qðiÞÞ

ð8Þ

where Ic is a discrete set of samples Ic � I. s and q are the test and
reference images after scaling the continuous interval (0, nbinsT � 1)
and (0, nbinsR � 1), respectively:

sði; cÞ ¼ fwði; cÞ � fw minð Þ � nbinsT � 1
fw max � fw min

qðiÞ ¼ frðiÞ � fr minð Þ � nbinsR � 1
fr max � fr min

ð9Þ

The MI-based dissimilarity criterion EMI can be defined from the
above probabilities as a function of the deformation parameters c:

Ed ¼ EMIðW;RÞ ¼ �
X
8t

X
8r

pðt; r; cÞ � log
pðt; r; cÞ

pTðt; cÞ � pRðrÞ
ð10Þ

Notice that in this work we denote by EMI the negative version
of the standard mutual information, so we search for the EMI

minimum.
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We can also express MI-based dissimilarity criterion EMI be-
tween a warped image W and a reference image R in terms of
the marginal and joint entropies:

Ed ¼ EMIðW;RÞ ¼ HðW;RÞ �HðWÞ �HðRÞ ð11Þ

For the optimization algorithm, partial derivatives of the EMI

with respect to cj are needed:

@EMI

@cj;k
¼
X
i2Ia

@EMI

@fwðiÞ
� @f c

t ðxÞ
@xk

����
x¼gðiÞ

� @gkðiÞ
@cj;k

ð12Þ

where k is the dimension of the N-dimensional cj. For further details
on the derivatives calculation, we refer the reader to Thévenaz and
Unser (2000).

2.3. Organ-focused mutual information

We present here an OF-MI criterion that allows including prob-
abilities of voxels belonging to the object or the background.

We introduce an additional information channel consisting of
an image L containing for every voxel its probability PXl

ðiÞ of
belonging to the background X0 and the object (liver) X1, PXl

ðiÞ sat-
isfying

P
8lPXl
ðiÞ ¼ 18i; l ¼ 0; 1.

Based on (3) (Studholme et al., 1996) we define OF-MI-based
dissimilarity criterion EOF-MI between a warped image W and a pair
(R,L) consisting of a reference image R and the probability image L
in terms of the marginal and joint entropies:

Ed ¼ EOF�MIðW;R; LÞ ¼ HðW;R; LÞ �HðWÞ �HðR; LÞ ð13Þ

The joint probability histogram is extended with a third dimen-
sion of size 2, with l the coordinate representing inside (l = 1) and
outside (l = 0) the liver region. Using B-spline functions of degree
m1 and m2, we define a 3D discrete joint probability distribution:

pðt; r; l; cÞ ¼ 1
jIcj

X
i2Ic�ZN

PXl
ðiÞ � bm1

ðt � sði; cÞÞ � bm2
ðr � qðiÞÞ ð14Þ

The marginal organ-focused joint intensity probability distribu-
tion for the reference image is:

pRLðr; lÞ ¼
1
jIcj

X
i2Ic�ZN

PXl
ðiÞ � bm2

ðr � qðiÞÞ ð15Þ

The marginal intensity probability distribution for the test image is
given in (8).

The dissimilarity criterion EOF-MI is defined from the above
probabilities as follows:

EOF�MIðW;R; LÞ ¼ �
X
8t

X
8r

X
8l

pðt; r; l; cÞ � log
pðt; r; l; cÞ

pTðt; cÞ � pRLðr; lÞ
ð16Þ

The partial derivatives of the EOF-MI with respect to cj are:
@ðEOF�MIÞ
@cj;k

¼
X
i2Ia

@ðEOF�MIÞ
@fwðiÞ

� @f c
t ðxÞ
@xk

����
x¼gðiÞ

� @gkðiÞ
@cj;k

ð17Þ

(For further detail on the derivatives calculation, we refer the reader
to the Appendix A).

From (13) and (16) the expressions for the marginal and joint
entropies remain as follows:
HðW;R; LÞ ¼ �

X
8t

X
8r

X
8l

pðt; r; l; cÞ � log pðt; r; l; cÞ

HðWÞ ¼ �
X
8t

pTðt; cÞ � log pTðt; cÞ

HðR; LÞ ¼ �
X
8r

X
8l

pRLðr; lÞ � log pRLðr; lÞ

ð18Þ
2.3.1. Estimation of the region probabilities PXl
ðiÞ

The probability image L containing PXl
ðiÞ; l ¼ 0;1 is computed

from the hepatic masks (liver segmentation) obtained for the sur-
gery planning procedure. Uncertainty of the segmentations could
be taken into account by smoothing the mask edges using a Gauss-
ian filtering; however, experiments revealed that this does not
bring any benefit for this application. Therefore, in this work, the
voxel probability of belonging to a region will be either 0 or 1; as
each voxel contributes only to one region.

Considering a binary image fX(x) with dimensions identical to
fr(x) that represents the clinical segmented liver in the reference
image, we define PXl

ðiÞ as follows:

PXl
ðiÞ ¼

fXðxÞjx¼i if l ¼ 1
1� fXðxÞjx¼i if l ¼ 0

�
ð19Þ

In this work the initial liver binary images fX(x) have been cre-
ated semi-automatically by a liver segmentation application based
on active contours previously described in Fernandez-de-Manuel
et al. (2009) and Jimenez-Carretero et al. (2011).

Notice that with our proposed OF-MI we are not neglecting any
area of the image, as all the regions are represented in the 3D joint
intensity probability distributions and optimized together.
2.3.2. MI versus OF-MI synthetic examples
To illustrate theoretically the behavior of the proposed ap-

proach compared with MI and its shortcomings related to its
assumption of equal statistical relationships over the whole do-
main of the images, two 2D basic synthetic images were created
representing a contrast-enhanced portal-phase CT model and a de-
layed T1-weighted Gd–EOB–DTPA-enhanced MRI model. Both
models contained the liver, the kidneys, the spleen, and an intrahe-
patic lesion and vessel. They represented a realistic distribution of
intensities and were initially registered completely. We used the
CT liver segmentation (liver region mask in Fig. 2). We then applied
a mild horizontal nonrigid deformation with maximum amplitude
dx around the center of the hepatic vessel to the Gd–EOB–DTPA-
enhanced MRI model and evaluated the dependency of the crite-
rion on dx, with dx ranging from –1.5 pixels to 1.5 pixels (Fig. 2).

The EMI exhibits multiple local minima and a global minimum
far from the correct location. This happens because the intensity
relationships between CT and MRI pixels in extrahepatic organs
(spleen) mislead the algorithm into considering that the hepatic
vessel in MRI should be aligned with the liver tissue in CT. On
the other hand, the EOF-MI cost function shows a clean global min-
imum at the correct location, as the intensity relationships inside
and outside the liver are considered separately.
3. Validation methodology

In this section, we will first describe the simulated and real im-
age datasets. Then, we will illustrate the definition of the quantita-
tive measures used to validate the experiments. After that, the
registration parameters for both, the MI and the OF-MI criteria
are given, followed by the validation results.
3.1. Data

3.1.1. Simulated images dataset
A dataset of 63 image pairs, each composed of one simulated

hepatic delayed T1-weighted Gd–EOB–DTPA-enhanced MRI and
one contrast-enhanced portal-phase CT was generated; the images
had different noise levels and deformation values. Gd–EOB–DTPA-
enhanced MRI images were simulated from seven real CT images of
the abdominal body region at the liver level. CT images were taken
as provided. The processing steps to simulate MRI images con-
sisted of a nonlinear intensity transformation, a low-pass Gaussian
filter, morphological edge detection, and Gaussian noise addition.
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The gray values of the simulated MRI images were calculated by
a nonlinear intensity transformation based on intensity distribu-
tions of contrast-enhanced portal-phase CT and delayed T1-
weighted Gd–EOB–DTPA-enhanced MRI (Fig. 3a and b). By direct
observation of these distributions, we assigned the interval of
intensities approximating those in MRI to the interval of intensities
in the CT for each relevant organ or structure, differentiating be-
tween liver structures and background. Therefore, different trans-
formations were applied to different CT regions, assigning tissue-
dependent signal intensity to each region (liver and liver back-
ground) (Fig. 3c and d). In order to apply these intensity transfor-
mations, CT regions were calculated by segmenting the liver in
the CT. Segmentations were made by an independent person blind
to those used during the registration process in order to guarantee
the independence of the simulation step with respect to the
registrations.

To simulate the partial volume effect in MRI (Tohka et al., 2004),
a 3D low-pass Gaussian filter with a standard deviation for the
Gaussian kernel of [1,1,3] was applied after the intensity
transformation.

Gd–EOB–DTPA-enhanced MRI images commonly show better
edge enhancement than CT images. To simulate this particular fea-
ture, borders were first calculated by morphological edge detection
and added by summation to the existing image.
Fig. 3. Intensity distribution analysis in contrast-enhanced portal-phase CT (a) and d
important regions inside the liver (parenchyma, metastasis and vessels). Nonlinear inten
MRI simulated images from CT images.
The MRI signal is corrupted by an additive noise process (Kwan
et al., 1999). As noise distributions in MRI images are nearly white
Gaussian for signal-to-noise ratios (SNR) greater than 2 (Gudbjarts-
son and Patz, 1995), we added independent realizations of white
Gaussian noise to our simulated dataset. We measured the amount
of added noise as a signal-to-noise ratio according to Bushberg
et al. (2002):

SNR ¼ A=rn ð20Þ

where A is the mean image pixel intensity, and rn is the standard
deviation of the Gaussian noise. Different levels of Gaussian noise
were added to the simulated data ranging from SNR 3 to SNR 7.

Additionally, known transformations were applied to the origi-
nal CT images to generate reference images for the registration
experiments. The transformations were modeled using a closed-
form function that defines the spatial dependence of the deforma-
tion, mimicking nonrigid organ movements due to respiration and
volume changes along time caused by differences in patient
weight, organ disposition, or liver volume growth due to illness
evolution or portal vein embolization. In our transformation model
we assume that the deformation is 0 in the center of the body and
maximum at a liver distance, as the soft-tissue motion of the liver
is highly influenced by the motion of both the diaphragm and the
ribcage (Villard et al., 2011). According to some sources, local liver
elayed T1-weighted Gd–EOB–DTPA-enhanced MRI (b) for abdominal organs and
sity transformations applied in liver region (c) and liver background (d) to generate
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deformation due to respiration can range from 10 to 26 mm in
amplitude between the extremes of the respiratory cycle (Blackall
et al., 2005; Clifford et al., 2002; Rohlfing et al., 2001). Moreover,
we approximate the deformation as a continuous movement.
Therefore, we represent the dependency of the deformation on
the distance to the center of the image by using a sinusoidal func-
tion that allows us to have a symmetric deformation all around the
contour of the body with maximum value in the center of the liver.
The simulated deformation is defined by t(i) = {tk(ik)}k=1, 2, 3, where
i 2 I � Z3 and I is the 3-dimensional discrete interval representing
the set of all voxel coordinates in the image. t(i) is applied voxel by
voxel as defined by the equation:

tkðikÞ ¼ ik �mk � sin
xc;k � ik

jxc;k � xw;kj
� p

2

� �
ð21Þ

where xc are the voxel coordinates with minimum deformation, xw

are the voxel coordinates with maximum deformation and m is the
maximum deformation. xc represents the center of the image and
xw represents the points at 1/3 of the extreme of the image that
comprise the liver in all the models. Therefore, these parameters de-
pend on the image size sim = {sim,k}k=1, 2, 3 as follows:

xc ¼ pc � sim

xw ¼ pw � sim
ð22Þ

where pc = 0.5 and pw = 1/3. Considering the literature references
about local liver deformation (Blackall et al., 2005; Clifford et al.,
2002; Rohlfing et al., 2001), we decided to apply to each of our 63
models a maximum deformation value that varies randomly be-
tween 4 mm and 28 mm at liver level. mk represents the magnitude
of the maximum deformation for each dimension and takes random
values in the range [4,28] (mm).

An example of a synthetic delayed T1-weighted Gd–EOB–DTPA-
enhanced MRI can be seen and compared with a real MRI image in
Fig. 4 as well as an example of a simulated deformation.

3.1.2. Real images dataset
A dataset consisting of seven clinical subjects with a wide vari-

ety of pathological scenarios was used. Each case has one
contrast-enhanced portal-phase CT and one delayed T1-weighted
Gd–EOB–DTPA-enhanced MRI from a retrospective clinical dataset.
The contrast-enhanced portal-phase helical CTs were performed
Fig. 4. (a) Original CT, (b) CT with simulated deformation, (c) synthetic gadoxetic
acid MRI, (d) real gadoxetic acid MRI.
with a 16-MDCT scanner (Brilliance 16; Philips Medical Systems,
Eindhoven, The Netherlands) in all cases. The scanning parameters
were 120 kVp, 250–300 mA s, 2-mm slice thickness with an over-
lap of 1 mm (pitch, 0.9), and a single-breath-hold helical acquisi-
tion. The images were obtained in the craniocaudal direction.
Hepatic portal-phase scanning began 70 s after injection of
120 ml of a nonionic iodinated contrast agent (Ioversol, Optiray
Ultraject 300; Covidien). For delayed T1-weighted Gd–EOB–
DTPA-enhanced MRI, 20-min delayed hepatobiliary phase images
were obtained with a T1-weighted 3D turbo-field-echo sequence
(T1 high-resolution isotropic volume examination, THRIVE; Philips
Medical Systems, Eindhoven, The Netherlands) (3.4/1.8; flip angle
10�; matrix size, 336 � 206; bandwidth, 995.7 Hz/pixel) with a 2-
mm section thickness, no intersection gap, and a field of view of
32–38 cm. Details regarding clinical information are summarized
in Table 1.

MRI images were manually aligned onto the corresponding CT
by a point-based rigid registration.

The images were then cropped in axes X, Y, and Z to restrict the
subsequent image-processing steps to the complete body region at
liver level. The images were then resampled to pixel size [1,1,1]
mm, guaranteeing isotropy. CT was used as the reference image,
and MRI as the test image.

3.2. Error measures

3.2.1. Measures on the simulated dataset
Registration of simulated CT and MRI datasets was evaluated in

terms of geometric error by comparing the resulting transforma-
tion with the applied analytical one on a voxel-by-voxel basis
using the warping index (WI) (Thévenaz et al., 1998). The WI cal-
culation was restricted to the liver region:

WI ¼ 1
jRj
X
i2R

kgðiÞ � g�ðiÞk ð23Þ

where g� is the true deformation, R represents the set of all voxel
coordinates inside the liver, and ||�|| the Euclidean distance.

3.2.2. Measures on the real dataset
To establish an independent validation procedure, radiologists

annotated all real images manually, defining a set of 10 intrinsic
anatomical hepatic landmarks for each pair of images. Registration
results were evaluated in terms of the mean distance error be-
tween corresponding anatomical landmarks before and after regis-
tration for each subject (landmark-based mean errors). Landmarks
were located in vessel intersections, hepatic fissures and ligaments,
and small lesions.

Because of the high dependency of error results on the accuracy
of the landmark selections, additional error criteria were also con-
sidered. For this purpose, the liver was manually segmented in the
CT and MRI images. Segmentations were made by an independent
expert blind to those used during the registration process in order
to guarantee the independence of the registrations with respect to
the validation. Comparing liver segmentation before and after reg-
istration allows calculation of surface-based mean errors (ME):

ME ¼ 1
jSj
X
i2S

di ð24Þ

where S is an N-dimensional discrete interval representing the set
of all voxel coordinates in both liver segmentation surfaces; it is ob-
tained by considering voxels inside the segmented liver with at
least one of their 18 nearest neighbors not belonging to the liver.
di represents the Euclidean distance of a voxel i to the closest one
in the other segmentation. ME (mm) is zero for two perfectly regis-
tered surfaces.



Table 1
Real dataset clinical description (�Roman numerals represent Couinaud hepatic segments (Couinaud, 1999)).

Subject Clinical information Image dates CT-visible lesions MRI-visible lesions

1 Hepatectomy MRI 26 days post-CT 1 in hepatic duct 1 in hepatic duct
Metastases 1 in IVb�

Chemotherapy

2 Metastases CT 45 days post-MRI 0 1 in II/III
Chemotherapy 1 in IVa/VIII

1 in VI
1 in I

3 Metastases MRI 21 days post-CT 1 in IV 1 in VIII
1 in VIII

4 Hepatectomy MRI 10 months post-CT 0 0
Metastases

5 Metastases MRI 12 days post-CT 3 in VIII 1 in VIII
Cholecystectomy 1 in IV 1 in VII/VIII

1 in II 1 in II

6 Metastases MRI 4 months post-CT 0 0
Sectorectomy

7 Metastases MRI 1 month post-CT 1 in VII 1 in IV
1 in II

Fig. 5. Surface-based ME values after applying registrations based on OF-MI for
different knot spacings hk "k and regularization weights c in the real training
subject.
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3.3. Parameter optimizations

To investigate the best parameter combination, we tested the
performance of the algorithm with one real training subject. Com-
mon parameters in the intensity-based nonrigid registration algo-
rithm are:

� degrees of the B-spline functions: m, n, m1, and m2,
� knot spacing of the transformation grid: h,
� weight for the regularization term: c,
� number of bins for the intensity probability distributions: nbinsT,

nbinsR,
� number of multiresolution levels: after some initial experi-

ments, this was fixed at 3.

3.3.1. Choosing the B-spline degrees
The B-spline degrees for the image, m, and deformation model,

n, were chosen as cubic because previous studies have shown that
these perform better than linear and quadratic splines (Kybic and
Unser, 2003). However, for the B-spline joint probability distribu-
tion model (m1, m2), the chosen degree was quadratic. By using
quadratic B-splines, we ensure derivability of the joint probability
distributions and avoid an increase in histogram dispersion.
3.3.2. Choosing the node spacing and the regularization weight
The main criterion for choosing the knot spacing h in (5) and

the regularization weight c in (6) is the estimated intrinsic resolu-
tion (smoothness) of the deformation to be recovered. To estimate
these optimum parameters, multiple registrations were run using
MI and OF-MI with different values for the node spacings in the
three dimensions hk 2 {12,14,16,18,20}, (k = 1,2,3) given in mm
and the weight c 2 {0,0.001,0.002, . . . ,0.01} for the regularization
term. Surface-based ME values after applying registrations based
on OF-MI and MI are shown in Figs. 5 and 6. The optimum param-
eters are hk = 18 mm "k and c = 0.001 for both MI and OF-MI.
Fig. 6. Surface-based ME values after applying registrations based on MI for
different knot spacings hk "k and regularization weight c in the real training
subject.
3.3.3. Choosing the number of bins in the histogram
A low number of bins reduces the noise level in MI and helps

avoid trapping the optimization in a local minimum (Kim et al.,
1997) while increasing the approximation error (Thévenaz and Un-
ser, 1996). In this work we fixed the number of bins to 32 � 32 for
all resolution levels.



30 L. Fernandez-de-Manuel et al. / Medical Image Analysis 18 (2014) 22–35
3.4. Results

3.4.1. Results with simulated dataset
Warping index (WI) results for the 63-subject dataset are

shown in Table 2. First, we can observe an important improvement
for the nonrigid registrations compared with the initial values for
both MI and OF-MI criteria.

Based on the Kolmogorov–Smirnov test, we cannot assume nor-
mality for the pair-wise difference of the WI values distribution.
Therefore, we apply the Wilcoxon matched-pairs signed-rank test
to study the significant difference of the registration error mea-
sures. A significant reduction in WI values using registrations
based on OF-MI compared with those based on MI (p < 0.01) was
confirmed.

Both methods are affected by noise, but OF-MI presents a more
robust behavior with respect to SNR changes (Fig. 7).
3.4.2. Results with real dataset
Visual inspection of the results shows important qualitative

improvements after applying nonrigid registration to the images,
especially when using OF-MI. Specific structures inside the liver
are registered better when using OF-MI, which facilitates accurate
localization of lesions from the MRI into the CT for surgery plan-
ning. Fig. 9 shows the fusion of CT and MRI before and after regis-
tration with MI and OF-MI for one of the subjects. Even when most
of the organ surfaces are visually well registered with both criteria;
the registration with OF-MI is better in some critical areas affecting
the inner liver vessels (see Figs. 8 and 10). Fig. 9 shows hepatic sur-
faces registration improvements with OF-MI with respect to the
initial scenario and with respect to the use of MI in the nonrigid
registration. In Fig. 10 a detailed view of the fitting of a subset of
the vascular branches is given. As can be seen from Fig. 10(b and
e) versus (c and f) in comparison to the use of MI, the use of
OF-MI results in a considerable better alignment between these
vessels.
Table 2
Warping Index results with simulated dataset (c = 0.001 and hk = 18 mm "k).

Before
registration

After
registration MI

After
registration OF-MI

WI (mm)
Mean 11.39 4.77 4.28
Std. dev. 2.56 2.63 2.51
Median 11.124 3.87 3.33
Min. 5.38 1.84 1.32
Max. 16.39 14.18 13.18

Fig. 7. Warping Index results after applying registrations with MI and OF-MI to a
simulated dataset with SNR ranging from 1 to 8 (registration parameters: c = 0.001
and hk = 18 mm "k.
Numerical registration results are summarized in Table 3. Bet-
ter results are obtained with respect to all criteria with OF-MI than
with MI, with maximum improvements of 1.27 mm for the land-
mark-based mean geometric errors (subject 5) and 2.39 mm for
the surface-based mean errors (subject 5).

In order to see the effect on the registration results of segmen-
tation accuracy when calculating the masks for the OFMI criteria,
we have performed independent registration experiments on all
seven data sets checking the effect of inter-subject segmentation
errors within the real context. Therefore, when using masks for
the OFMI criteria segmented by an additional non-expert user,
we observed a landmark-based mean error of 7.42 mm, on average
for all seven data sets, also smaller than that obtained using MI
(7.55 mm). As the inter-subject variability of the segmentation
accuracy using the semi-automatic method described in Fernan-
dez-de-Manuel et al. (2009) and Jimenez-Carretero et al. (2011)
is 1.35 mm on average, we can conclude that for segmentation er-
rors due to inter-subject variability and smaller than 1.35 mm, the
OFMI registration method gives consistent and robust results, bet-
ter to those obtained with standard MI.

Additionally, Fig. 11 shows the effect on the registration results
of artificial segmentation errors in the mask for the OFMI criteria.
We have applied morphological dilation and erosion on the initial
segmentation of one real subject using a sphere of different radius
from 1 to 4 voxels as structuring element, and we have studied the
effect on the final results. Assuming that a segmentation obtained
by applying the semi-automatic method described in Fernandez-
de-Manuel et al. (2009) and Jimenez-Carretero et al. (2011) is the
proper one, we express the errors using the surface-based mean er-
rors (ME) (mm) (24) between the original segmentation and the di-
lated/eroded versions. We can see that with mean errors in the
masks used in the OFMI criteria smaller than 3 mm, the final reg-
istration results are always better than those of the standard MI.
Additionally, we have found that the OF-MI metric is less sensitive
to errors resulting from erosions than from dilations of the initial
mask.
4. Discussion

We have described a nonrigid registration framework that takes
advantage of available expert liver segmentations in clinical proto-
cols to ensure good alignment of the inner structures of the liver.
The validation of the proposed registration method shows that
the OF-MI metric improves the results obtained with the classical
formulation of MI. Maximum improvements were as high as
1.27 mm for the mean landmark-based geometric errors (subject
5) reaching up to 6 mm for some particular landmarks. The com-
parison of Fig. 10(b and e) versus Fig. 10(c and f) illustrates the
contribution of OF-MI, that provides a substantially better align-
ment of vessels. The significance of these improvements should
be considered in the context of the target application: liver surgery
planning. In this scenario, the definition of the surgical approach
may depend on the accuracy of the registration in certain areas in-
side the liver and therefore any improvement in the registration
results affecting those areas will facilitate these decisions. Even
when most of the organ surface is visually well registered with
MI or OF-MI, and the numerical difference between the methods
is not large; the registration with OF-MI becomes significant in
some critical areas affecting the liver parenchyma and inner vascu-
lar structure.

There are a number of translational examples in liver surgery
planning where differences of a few millimeters in the spatial pre-
cision when identifying the lesions and vessel irrigations may
materialize into success (eradication) or failure (persistence) of
the treatment of the underlying cancer. For instance, during the



Fig. 8. (a) Contrast-enhanced portal-phase CT subject 1 (fixed image); (b) Gd–EOB–DTPA-enhanced MRI before registration (first column) and fusion with CT (overlay fusion
– second column – and multiplication fusion – third column); (c) Gd–EOB–DTPA-enhanced MRI after registration with MI (first column) and fusion with CT (overlay fusion –
second column – and multiplication fusion – third column); (d) Gd–EOB–DTPA-enhanced MRI after registration with OF-MI (first column) and fusion with CT (overlay fusion
– second column and multiplication fusion – third column). Arrows number 1 show improvements in body contour fitting after registration. Arrows number 2 show that the
fitting of liver boundaries is performed better when using OF-MI. Arrows number 3 and 4 show that the fitting of several liver vessels is performed better when using OF-MI.

Fig. 9. CT liver segmentation in red (a, e, f, g, h) and MRI liver segmentation in green: before registration (b and f), after registration with MI (c and g) and after registration
with OF-MI (d and h) in subject 7. Comparison of liver segmentation before and after registration (f, g, h). Note the better alignment of the liver boundaries when using OF-MI
(h) as compared to the classical formulation of MI (g) (see white arrows). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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ablation of focal liver tumors assisted by the fusion of preoperative
CT/MRI and intraoperative ultrasound (Jung et al., 2012), the target
selection and calculation of the lesiońs ablative volume from the
pre-procedure images must accurately be blended with the real-
time ultrasound in order to place the thermal electrode on the se-
lected targets. Millimetric displacement and tracking inaccuracy
due to minor errors in the registration step may cause treatment
failure (Krücker et al., 2011). The accuracy in the preoperative step
registering the CT and the MRI becomes as important as the intra-
operative step. Another illustrative example is the surgery plan-
ning of patients with preoperative hepatic dysfunction (cirrhosis
or post-chemotherapy liver toxicity) (Dokmak et al., 2012),



Fig. 10. Contrast-enhanced portal-phase CT of subject 7 (sagittal and transversal plains), Gd–EOB–DTPA-enhanced MRI (coronal plain), CT liver segmentation (red structure),
and vessel segmentations from the CT (orange), as well as from the MRI (purple, green, pink), before registration (a and d), after registration optimizing classical MI (b and e),
and after registration by optimizing OF-MI (c and f). Upper row: complete vascular branchs, lower row: detail of one particular vascular branch. Note the better alignment of
the vascular branches when optimizing OF-MI (c and f) as compared with MI (b and e) (see white arrows). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 3
Results with real dataset. (c = 0.001 and hk = 18 mm "k).

Before
registration

After
registration MI

After registration
OF-MI

Landmark-based error (mm)
Mean 9.61 7.55 7.07
Std. dev. 1.83 2.09 1.88
Median 10.04 8.07 6.86
Min. 7.08 3.74 3.62
Max. 12.08 10.04 8.91

Surface-based mean error (mm)
Mean 4.79 3.68 3.20
Std. dev. 0.89 1.00 0.52
Median 5.06 3.79 3.23
Min. 3.14 2.42 2.46
Max. 5.74 5.62 3.93

Fig. 11. Landmark-based mean error before and after registration using MI and OF-
MI for a real subject. Effect in the OF-MI results of realistic amounts of segmentation
errors when calculating the masks for the OFMI criteria (ME with respect to the
proper segmentation in brackets).
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multiple lesions (Gold et al., 2008), or undergoing repeated liver
resections. In these patients, major hepatic surgery with ample
oncological margins larger than 10 mm cannot be performed and
the safest approach is a parenchymal-sparing liver resection that
requires a precise study of the oncological margin of each lesion
and lesion-to-vascular topography. In (Casciola et al., 2011), the
authors point out the necessity of using both a contrast enhanced
CT and a liver gadoxetic acid-enhanced MRI for robot-assisted
parenchymal-sparing liver surgery in order to evaluate, during
the preoperative work-up, the technical feasibility of a liver resec-
tion and the viability of a minimally invasive approach. Different
cases where the tumor was in contact with a main portal branch
or with a hepatic vein were studied in Casciola et al. (2011),
describing the different surgery strategies depending on the level
of contact between the lesion and the vessel. The proper identifica-
tion and fitting of the vessels among imaging modalities facilitates
the accurate delimitation of the adjacency of tumors and veins and
the proper detection of vascular invasion determining whether the
patient is unresectable or eligible for surgery.

One possible limitation of the OF-MI is the influence of liver
segmentation errors in the registration accuracy. The experiments
show that for mean errors of 1.35 mm due to inter-subject variabil-
ity in the liver segmentation masks, the final registration results
still improved those obtained using standard MI. Therefore, errors
in the liver segmentations defined in the clinical protocol hardly
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modify the results, making the applicability of the proposed meth-
od in clinical environment more realistic and reliable.

Finally, this work can also be useful in other therapeutic appli-
cations. Scenarios such as radiotherapy treatment planning using
multimodal imaging (Kessler et al., 1991; Tan et al., 2010; Thor-
warth et al., 2013) could also benefit from the advantages of the
inclusion of additional regional information using OF-MI. Consider-
ing that segmentations are normally available for the dosimetry
planning (Acosta et al., 2010; Bazalova and Graves, 2011; Lu
et al., 2011), their use for the registration could imply benefits
without affecting the clinical protocols.

5. Conclusions

In this work we have proposed a multimodal nonrigid registra-
tion framework to characterize liver lesions using simultaneously
contrast-enhanced portal-phase CT and delayed T1-weighted Gd–
EOB–DTPA-enhanced MRI using OF-MI, and we have compared it
with the classical formulation of MI. We took advantage of actual
liver segmentation available in standard clinical protocols and we
used them in the criterion. This solution allows the statistical
dependence between the two modalities to differ inside and out-
side the organ of interest.

We have shown important improvements in all considered val-
idation criteria after applying nonrigid registration to simulated
and real multimodal liver studies, in comparison with unaligned
images. The improvement was in general better when using OF-
MI than with MI. We tested and confirmed the statistical signifi-
cance of the improvement in the simulated data (p < 0.01). Specific
structures inside the liver are registered better when using OF-MI,
facilitating more accurate localization of lesions from the MRI into
the CT for surgery planning. In addition, OF-MI presents more ro-
bust behavior with respect to SNR changes and more stable results
with smaller dispersion than MI.
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Appendix A

A.1. Derivatives of OF-MI

The partial derivatives of the EOF-MI with respect to cj (17)
are:

@ EOF�MIð Þ
@cj;k

¼
X
i2Ia

@ EOF�MIð Þ
@fwðiÞ

� @f c
t ðxÞ
@xk

����
x¼gðiÞ

� @gkðiÞ
@cj;k

ðA:1Þ

where

@ðEOF�MIÞ
@fwðiÞ

¼ �
X
8t

X
8r

X
8l

@pðt; r; l; cÞ
@fwðiÞ

� log
pðt; r; l; cÞ

pTðt; cÞ ðA:2Þ

Differentiating the joint probability distribution p(t,r, l;c) with
respect to the warped image at i in (A.2) can be expressed as:

@pðt; r; l; cÞ
@fwðiÞ

¼ � 1
jIcj
� nbinsT � 1
fw max � fw min

� PXl
ðiÞ � bm2

ðr � qði; cÞÞ �
@bm1

ðnÞ
@n

����
n¼t�sði;cÞ

ðA:3Þ
The explicit expression for the derivative of the B-spline func-
tion is:

@bm1
ðnÞ

@n
¼ bm1�1

ðnþ 1=2Þ � bm1�1
ðn� 1=2Þ ðA:4Þ

The partial derivatives of f c
t (4) are calculated as a tensor product

(Kybic, 2001):

@f c
t

@xk
¼
X
i2Ia

ai
@bmðxkÞ
@xk

YN
k ¼ 1
k–k

bmððgkðxkÞÞÞ ðA:5Þ

Finally, the derivative of the deformation function is calculated
from (5):

@gkðiÞ
@cj;k

¼ bnði=h� jÞ ðA:6Þ

where k is the dimension of the N-dimensional cj deformation
parameters.
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