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a b s t r a c t

Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion mag-
netic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if
a further automatic analysis of the perfusion is to be executed. In this work, we present a method to com-
pensate this movement by combining independent component analysis (ICA) and image registration: First,
we use ICA and a time–frequency analysis to identify the motion and separate it from the intensity
change induced by the contrast agent. Then, synthetic reference images are created by recombining all
the independent components but the one related to the motion. Therefore, the resulting image series
does not exhibit motion and its images have intensities similar to those of their original counterparts.
Motion compensation is then achieved by using a multi-pass image registration procedure. We tested
our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of
the left heart ventricle and consisting of 58 perfusion images each. We validated our method by compar-
ing manually tracked intensity profiles of the myocardial sections to automatically generated ones before
and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and
combined ICA based registration approaches and previously published motion compensation schemes.
Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first opti-
mizes a translation and then for non-linear transformation performed best and achieves registration of
the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons cor-
relation coefficient between manually and automatically obtained time–intensity curves from .84 ± .19
before registration to .96 ± .06 after registration.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Perfusion quantification by using first-pass gadolinium-
enhanced myocardial perfusion magnetic resonance imaging (MRI)
has proved to be a reliable tool for the assessment of myocardial
blood flow that ultimately can be used for the diagnosis of coro-
nary artery disease that leads to reduced blood supply to the myo-
cardium. In a typical imaging protocol, images are acquired over
60 s to cover some pre-contrast baseline images and the full cycle
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of contrast agent first entering the right ventricle (RV), then the left
ventricle (LV), and finally, the agent perfusing the LV myocardium
(Fig. 1). Then, to measure the blood flow, the image intensity of
areas in the myocardium is tracked over time (Fig. 2), cf. Jerosch-
Herold, 2010.

In order to perform an automatic assessment of the intensity
change over time, it is desired that no movement occurs in the
images taken at different time points and that the heart is always
imaged at the same contraction phase. While the latter can be
achieved by ECG based triggering, the 60 s acquisition time span
is too long for average people to hold their breath, and therefore,
breathing movement is normally present in the image series. An
additional challenge to motion compensation is posed by the con-
trast agent passing through the heart that results in a strong inten-
sity change over time.

To acquire images that exhibit little motion, it is possible to ask
the patients to breath shallow which results in a breathing pattern
that exhibits only a low amplitude but the movement is rather
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Fig. 1. Images from a first-pass gadolinium-enhanced myocardial perfusion MRI
study. From left to right: pre-contrast, RV-peak, LV peak, and myocardial perfusion.
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Fig. 2. Manually tracked intensity change of a myocardial segment versus an
automatically obtained time–intensity curve of a free breathingly acquired data set.
Note, that not even the average of the automatically obtained time–intensity curve
would result in a proper assessment of the blood flow. Also note, that the manually
tracked curve is not smooth in itself – an effect that is the result of the image
acquisition process.
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irregular and no movement pattern exists that could be exploited
for motion compensation.

It is also possible to ask the patients to hold their breath, but
here, when a patient cannot hold it anymore a deep gasp occurs
that results in a high amplitude motion that requires the accom-
modation of larger deformations for motion compensation, and it
also results in a large through-plane motion which cannot be dealt
with by a 2D in-plane registration. The large gasp may also lead to
image artifacts associated with parallel imaging, and it may occur
during a critical phase of myocardial enhancement, particularly for
patients with slow myocardial perfusion.

These problems can be avoided by letting the patient breathe
normal, which results in a regular, almost periodic breathing
movement of low amplitude with highly reduced through-plane
motion when compared to the deep gasps that may occur for
breath-held studies. Acquisition during normal free breathing also
reduces incidence of missed ECG triggers or breath-hold induced
arrhythmias, it improves patient comfort, simplifies the acquisition
workflow, and the acquisition time is no longer limited by breath-
held duration. Finally, the quasi-periodicity of the breathing can be
exploited when the motion is compensated for to enable a later
automatic analysis of the myocardial perfusion.

1.1. State of the art

Various image registration methods have been proposed to
automatically compensate breathing movement in series of perfu-
sion images in general.

All these methods have to deal with two challenges: The motion
to be compensated, and the rather strong intensity change that are
induced by the contrast agent. Some approaches rely on linear reg-
istration only and to overcome the problem of intensity change,
they optimize similarity measures drawn from information theory,
e.g., (normalized) mutual information (MI), as used by Wong et al.
(2008), or (normalized) cross correlation (CC) as used by Breeuwer
et al. (2001) or Gupta et al. (2003). Other options include the use of
contour masks obtained from gradient images and potential maps
(Delzescaux et al., 2003) or the removal of the area of high inten-
sity change by masking (Dornier et al., 2003), or employing inde-
pendent component analysis (ICA) to create synthetic images that
are then used as references for image registration (Milles et al.,
2007). However, since the breathing movement results in the heart
moving within the barely moving chest, the all-over movement
pattern is highly non-linear, and masking is needed to extract a re-
gion of interest (ROI) around the heart that must be small enough to
not contain non-moving body parts but big enough to accommo-
date the full movement range of the heart itself. In addition, linear
registration does not account for the non-linear deformations of
the myocardium itself.

Employing non-linear registration can compensate for the non-
linear deformations and it does not require the extraction of a
bounding box. Yet, employing straightforward approaches that re-
quire the registration of images from different perfusion phases still
have to deal with the additional challenge of changing intensities.
For example Xue et al. (2009) relied on CC, and MI was employed
by Ólafsdóttir (2005) to compensate breathing movement in myo-
cardial perfusion series. However, both MI and CC are global mea-
sure in the sense that they rely on a consistent material-intensity
mapping over the whole image domain and do not account for
the local intensity change as it can be seen in perfusion series. For
MI Likar and Pernus (2001) and Studholme et al. (2006) proposed
methods to minimize the effects of these local intensity variations
during registration, but these methods are tailored only to accom-
modate slowly varying intensities that may result from field inho-
mogeneities or tissue degeneration. They are not well suited for
the strong local changes resulting from a contrast agent passing
through the heart ventricles and the myocardium. Also, non-linear
registration is already an ill-posed problem that has many local
minima, and the complexity of the above criterions may add even
more local minima. In addition, these measures are usually compu-
tationally demanding.

As an alternative to these global image similarity measures, a
highly local similarity measure based on normalized gradient fields
(NGF) has been proposed by Haber and Modersitzki (2005) and
used for motion compensation in myocardial perfusion in Wollny
et al. (2010b,. However, as NGF is a highly local measure, it can
hardly be used to register images with large movements that
would require to correct for large deformations. Consequently, in
Wollny et al. (2010b) NFG was combined with the sum of squared
differences (SSD) and only images in temporal succession were reg-
istered so that only relatively small changes had to be accommo-
dated, and in Wollny et al. (2010a) the measure was used to
register images that were already identified as being closely
aligned.
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Because of the complications of non-linear registration that re-
sult from the intensity change over time it is desirable to reduce
the need for the registration of images of different perfusion phases
or to avoid it altogether.

One method to achieve this is to register only images in direct
temporal succession, and align all images to one reference by accu-
mulating the obtained transformations (see, e.g., Xue et al., 2009;
Tautz et al., 2010; Wollny et al., 2010b). However, this accumula-
tion of transformation may also result in the accumulation of small
registration errors and may, therefore, result in considerable large
errors in the overall alignment for frames that are ‘‘far away’’ from
the common reference.

In Wollny et al. (2010a), the quasi-periodicity of free breathing
was used to identify key frames that are already closely aligned,
and registered using NGF. Then synthetic references were created
by linearly combining images from the registered key frames and
used for the registration of the remaining images. Yet, at the begin-
ning of the series when the contrast agent passes through the right
and left heart ventricle, the linear combination of images failed to
model the fast change of intensities properly in some cases, result-
ing in bad motion compensation for this early phase of the perfu-
sion sequence.

To completely eliminate the need for the registration of images
from different perfusion phases, Li and Sun (2009) used prior
knowledge to first obtain an approximation of ground truth and
then used this pseudo ground truth (PGT) as reference for non-linear
registration to reduce motion. Running this two-step scheme in a
multi-pass fashion will eventually lead to full motion compensa-
tion. Li et al. (2011) later extend the method to be based on an ini-
tial semi-automatic segmentation of the heart ventricles and
enhanced optimization methods.

Milles et al. (2007), and in its extension Milles et al. (2008), and
Gupta et al. (2010) also completely eliminated the need to register
images from different perfusion phases by employing ICA to iden-
tify three feature images (baseline, peak RV enhancement, peak LV
enhancement) and combine these to create synthetic references.
Then linear registration was used to compensate for breathing mo-
tion, hence the extraction of a ROI around the heart was required
and done based on the identified RV and LV enhancement peaks.
However, Gupta et al. (2010) reported that the method failed to
properly identify the feature images if large movement was pres-
ent. Also, in Wollny et al. (2010a) it was reported that this ap-
proach failed for perfusion series acquired free breathing, and in
Wollny et al. (2011) an extension to the method was given to en-
able its application to free breathing acquired data. Since the ap-
proach we present in this article builds on the idea of using ICA
to create reference images, we will discuss the method in
Section 2 in more detail.

Finally, learning based methods can be used for motion com-
pensation, e.g. Stegmann et al. (2005). However, these methods
usually need large training sets to generate the model that is later
used for registration.

1.2. Our contribution

First, we will give a detailed review of the ICA based analysis
and motion compensation method presented by Milles et al.
(2006, 2007, 2008), and Gupta et al. (2010), discuss its advantages
and where it fails. Then, we will present enhancements to these
methods by replacing the ranking scheme for the IC labeling pre-
sented by Milles et al. (2006) by a more robust approach that is
based on wavelet analysis to identify the independent component
(IC) related to motion and select the optimal number of ICs. In or-
der to enable linear registration and/or to speed up computation in
the non-linear registration we provide an alternative approach to
segment a bounding box around the LV myocardium that is based
on the IC feature images. We follow Gupta et al. (2010) by creating
synthetic reference images based on the ICA, and omitting the
identified motion component when combining the ICs to create
reference images that are free of motion. Instead of compensation
for translation only, we either employ non-linear registration only,
or as refinement step after linear registration. Some of these
enhancements were sketched in Wollny et al. (2011) and will be
presented here in more detail. Experiments on clinical data and a
validation and comparison to other methods conclude the article.
2. ICA based motion compensation revisited

Using ICA in order to analyze myocardial perfusion series has
been first proposed by Milles et al. (2006). The method presented
there did not target motion compensation but a direct analysis of
the perfusion process by identifying key components of the perfu-
sion series – baseline, peak RV enhancement, peak LV enhance-
ment, myocardial perfusion, and outliers – and reconstructing
the series from these components. Further perfusion analysis was
then directly executed at this reconstructed data set. In order to la-
bel the components, a ranking for a voting system was presented
and is replicated in Table 1. With this ranking scheme, Milles
et al. (2006) reported success rates for labeling of real data of
87.8% for LV and RV, 98.0% for Baseline and 65.3% for Myocardium.

Unfortunately, Milles et al. (2006) did not give a clear indication
on how this voting is actually applied, nor any explanation why for
the outliers the histogram symmetry of IC should be high, why the
maximum weight value should be smaller for outliers than for all
the other components, or why the time point of the maximum of
LV and RV should be before the time point of the maximum of
the outlier component. Especially the latter two properties do
not hold in a free breathing setting.

In Milles et al. (2007) (and in extension in Milles et al. (2008)) a
linear registration scheme was proposed that used a three-compo-
nent ICA, identifies Baseline, RV and LV enhancement by using the
first three rows of Table 1, and uses these components to create
synthetic references that are free of motion. The linear registration
allowed only translational movement and optimized cross correla-
tion in a two-pass registration scheme that uses a sub-sampled
version of the images in the first pass and full resolution images
in the second pass. However, for data sets that are acquired free
breathing, a three component ICA will not properly separate RV
and LV. Instead, the motion and one of the two ventricle cavity
enhancements may be merged into one component, making proper
identification of the RV and LV impossible (Fig. 3). In addition,
images created from these components retain most of the motion
and can, therefore, not be used as reference images to compensate
for the motion.

In a further extension to Milles et al. (2008) and Gupta et al.
(2010) suggested to use a five component ICA to run the motion
compensation algorithm using the ranking proposed above to
identify the ICs corresponding to LV, RV, baseline, myocardial per-
fusion and motion. Since the identification and labeling of the com-
ponent related to myocardial perfusion proved to be difficult only
the components related to LV, RV, and baseline were used for ref-
erence image creation, and the motion component was explicitly
dropped. It is not clear from the text, however, whether this im-
plies that in the end only a four component ICA was applied, or a
five component ICA was run and both the motion component
and the myocardial component were discarded. Finally, to achieve
motion compensation the same linear registration was applied that
was used in Milles et al. (2008), with an additional final registra-
tion pass at the full image resolution. Gupta et al. (2010) noted that
for series containing large movements the algorithm failed.



Table 1
Criteria used for automated labeling and corresponding IC ranking, 1 being most probable and 5 least probable as presented in Milles et al. (2006).

Sorting criterion Ordering 1 2 3 4 5

Mean weight value Descending Baseline RV LV Myocardium, outliers
Maximum weight value Descending Baseline RV LV Myocardium, outliers
Time point of maximum Ascending Baseline RV LV Myocardium, outliers
Maximum time derivative Descending RV, LV, outliers Myocardium Baseline
Histogram symmetry of IC Descending Outliers Myocardium RV, LV, baseline
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Fig. 3. Time curve representation of the mixing matrix for ICAs with three numbers
of retained components and the corresponding ICs.
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To summarize: ICA provides an elegant way to create motion
free synthetic reference images for motion compensation in myo-
cardial perfusion images, yet for a successful application of the
method, a proper labeling of the components is imperative. The
labeling approach proposed by Milles et al. (2006, 2008) does not
provide such labeling in a free breathing setting or when strong
motion is present.

In Wollny et al. (2011) we proposed a method to overcome
some of these difficulties by using non-linear registration to elim-
inate the need to segment a bounding box around the LV, and by
using a heuristic based on mixing weight curve length to select
an optimal number of ICs, to identify the motion related IC, and
drop it from reference image creation. The drawback of this meth-
od is that it cannot be applied to perfusion series that were ac-
quired with initial breath-holding.
3. Method

In the following, our main focus will be on free breathing ac-
quired perfusion series. Nevertheless, most assumptions also hold
for data sets that were acquired with initial breath holding, and we
will discuss differences when applicable.

We propose a new motion compensation method that is run in
a multi-pass scheme and composed of the following steps (Fig. 4):
First, an ICA is run for various numbers of ICs. For each number, the
components related to motion are identified, and that number of
ICs is used for further processing that results in the lowest non-
zero number of motion components. If no motion component
could be identified, one last registration pass will be run using ref-
erence images created from all ICs and the multi-pass scheme
stops. If more than one motion component was identified the com-
ponent with the highest signal energy in the mixing weight curve
will be labeled as major motion component. Then, motion-free ref-
erence images are created from the ICs leaving out the major mo-
tion component, and the original images are registered to the
synthetic references. If a predefined maximum number of registra-
tion passes is run then the motion compensation algorithm stops
here. Otherwise the next pass is started by running ICA using the
registered images as input.
If one desires to run linear registration, or in order to speed up
non-linear registration by restricting it to the region around the
heart, a bounding box estimation may be run in the first pass, after
the labeling of the motion component.

3.1. ICA and motion component labeling

As the first step of the algorithm an ICA is run. ICA decomposes
measured mixed signals X into a set of statistical independent
sources S and their corresponding weights W (Comon, 1994). Given
a domain X :¼ ½1;n� � ½1;m� � Z2, and an Image I : X! R of dimen-
sion n �m, with Ii,j :¼ I(i, j) the intensity of the pixel at ði; jÞ 2 Z2, im-
age I can be written as a vector x:(I1,1, I2,1, . . . , In,1, . . . , In,m).
Furthermore, given N images {I(k)jk = 1, . . . , N} an image series can
be written as X:(x1, x2, . . . , xN)T. With �x :¼ ½�x1; �x2; . . . ; �xN�, and �xk

the average image intensity of image I(k) an ICA model of such a data
set is formulated as:

X � �xþ SW: ð1Þ

With C the number of retained components, the matrix
S 2 Rmn�C defines the ICs, and W 2 RC�N the mixing matrix. S can
also be written as a vector (s1,s2, . . . ,sC)T of row vectors si 2 Rmn

and W as a vector (w1,w2, . . . ,wC) of column vectors wc 2 RN . The
rows si of S can be interpreted as feature images and the columns
wc 2 RN of W are the mixing weight curves of the individual ICs
(Fig. 3).

3.1.1. On the optimal number of ICs
As suggested by Milles et al. (2006), a perfusion series is actu-

ally composed of five major components: The baseline, the LV cav-
ity enhancement, the RV cavity enhancement, the myocardial
perfusion, and the movement component. In a free breathing set-
ting, this movement is quasiperiodic over the whole acquisition
time, and in a series acquired with initial breath holding, the move-
ment is quasiperiodic after the onset of the breathing motion.
Hence, a separation into five components should be the optimal
approach for the application of ICA. However, as Gupta et al.
(2010) noted and as we confirmed in experiments, sometimes
the perfusion component cannot be separated well, and instead
the movement component is split into two different ICs which re-
sults in more than one mixing curve exhibiting periodic behavior
(Fig. 5 (left), solid lines). Here, reducing the number of components
can result in an unambiguous separation of the motion component
(Fig. 5 (right)).

In other cases, intensity change patterns resulting from the
imaging process or the perfusion of additional tissue create more
components that can be identified without introducing ambiguity
for the motion related component, resulting in a better separation
of the movement if more than five components are used (Fig. 6).

To ensure the best separation of the movement from the other
components we target to find the highest number of ICs that result
in the lowest positive number of motion components.

3.1.2. Normalization
As a result of ICA the ICs are already normalized to have a unit

variance. Additionally, we normalize the mixing matrix W like



Fig. 4. Scheme of the registration algorithm. The bold lines indicate the data flow and the thin lines represent the logical flow. The grayed texts in the gray area and dashed
lines represent the additional steps for bounding box creation that are not a requirement for a non-linear motion compensation scheme. These steps may be executed to
accelerate the registration and are required if linear registration is to be run.
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Fig. 5. Left: Mixing matrix obtained using a five component ICA. Note, that the quasiperiodic movement component is actually split into two components. Using a four
component ICA results in better separation (right).
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follows: First, we shift the values of the mixing curves w�c to have a
zero mean w0c :¼ w�c � �w�c with �w�c ¼ 1

N

PN
i¼1w�c;i, and we create the

mean image X0 :¼
PC

c¼1
�w�csc that retains the extracted informa-

tion. Then, all ICs s are sign corrected so that the mixing curves
w0c start with a negative value. As a result Eq. (1) reads now

X � �xþW0S0 þ X0: ð2Þ

with the primed quantities being the corrected versions of the
originals.

A typical representation of the resulting mixing matrix is shown
in Fig. 7. Specifically, in the feature images related to RV and LV
enhancement, the corresponding cavities are represented with
high intensities (Fig. 7 (right)), and the RV and LV peak enhance-
ments correspond to the first large maximums in the correspond-
ing mixing weight curves (Fig. 7 (left), solid lines). Often this
maximum is also the global maximum, but this is not guarantied.
3.1.3. Considerations on the time–frequency behavior of IC mixing
curves

In order to properly identify the ICs as belonging to motion, we
use a component-wise wavelet based time–frequency analysis of
the IC mixing matrix W (Mallat, 1999). Compared to a Fourier anal-
ysis, a wavelet based analysis provides not only a frequency spec-
trum, but also time-based information, which makes it possible to
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Fig. 6. Left: Mixing matrix obtained using a five component ICA. Note, that the shape of the quasiperiodic movement component indicates that it is not completely separated
from the perfusion component. With a six component ICA this effect is reduced significantly (right).
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Fig. 7. Time curve representation of the mixing matrix for ICAs with four components after normalization and sign correction (left), and corresponding RV (right, upper), and
LV (right, lower) components.
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apply the method not only to completely free breathing data, but
also data that starts with breath-holding.

The time–frequency analysis is based on applying a discrete
wavelet transform (DWT) individually to the mixing curves result-
ing from the ICA. The result of the DWT is a series of wavelet coef-
ficients that are attributed to frequency bands or levels, and time
ranges – the higher the frequencies are that are covered by certain
band, the higher is the time resolution of the analysis – which is
expressed by more coefficients being attributed to the according
frequency band.

For practical purposes, the size of the input vector to a DWT
needs to be of power of two, and with a complete DWT, the num-
ber of wavelet levels is L :¼ log2(N). For further explanation we will
assume that the acquired series consists of 64 images. This is a lit-
tle more than the size of the series that usually result from a 60 s
acquisition sequence and the input data needs to be padded with
zeros to achieve the required size.

With 64 images that are acquired triggered at the heart beats, a
DWT of the mixing weight curves results in log(64) = 6 wavelet lev-
els. These levels correspond to the following frequency ranges (gi-
ven in events per heart beat (EPH)):
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with a referring to the scaling function that is used to cutoff the
analysis for low frequencies (Mallat, 1989). The number of coeffi-
cients per level Nl are {32,16,8,4,2,1} respectively. Note, that the
standard notation for wavelet coefficients the counting of the levels
starts at the highest frequency range.

Our main purpose for using DWT is to select the best number of
ICs and to identify the component related to motion properly.
Therefore, consider that the resting heart rate is about 75 heart
beats per minute and a healthy respiratory rest breathing rate is
about 12 per minute (Tortora and J-Grabowski, 2002). Hence, a
breathing cycle amounts to about six frames in the heart-beat trig-
gered image acquisition, and the significant coefficients represent-
ing this movement should be found in the second wavelet
frequency level lmov = 2. Since the movement pattern also includes
higher frequency components, the coefficients of the first wavelet
level will also be significant. However, since signal separation in
ICA is not perfect, the higher level wavelet coefficients may also
be non-zero, but usually not significantly larger than the low level
coefficients (Fig. 8f).

The myocardial perfusion, LV and RV enhancement, are, on the
other hand, processes that require more time, and the significant
wavelet coefficients corresponding to these processes can be found
in the higher wavelet levels, i.e. in the four levels that cover the fre-
quency range a; 1

8

� �
EPH (Fig. 8c–e). Note, however, that the fast in-

crease of the RV enhancement curve also results in notable
coefficients at the beginning of the second wavelet level (Fig. 8d).

Finally, the baseline component has generally small coefficients
(Fig. 8b) and they are distributed over all wavelet levels.

In images series acquired free breathing, for the component(s)
attributed to motion the wavelet coefficients in the motion related
levels will be evenly distributed among the time indices. In the
case of breath holding followed by breathing, these coefficients
will be close to zero for low time indices and high for later indices.
In addition, the coefficient in the highest wavelet level will also be
large, representing the constant value of the mixing curve during
the breath-holding phase of the image acquisition (Fig. 9).

3.1.4. Labeling of components and identification of the optimal number
of ICs

Based on above observations, the following procedure can be
formulated to label the motion components:

First, we evaluate the DWT for all mixing curves w0c



Fig. 8. Visualization of the absolute values (vertical axis) of the wavelet coefficients (b-f) over time (horizontal axis given in frames/heartbeats) of the mixing curves (a) of the
perfusion series features obtained by an optimal five component ICA. Note, how the movement component (f) exhibits larger coefficients in the lower wavelet levels (depth
axis), while the signal energy for the LV (c), RV (d) and perfusion component (e) is located in the higher wavelet levels.

Fig. 9. Wavelet spectrum corresponding to the movement IC for a perfusion series
that starts with breath holding. Note, that the coefficients related to motion are
close to zero at the beginning, and that coefficient related to the highest wavelet
level is also large.
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fðcÞ :¼ DWT w0c
� �

ð4Þ

resulting in the wavelet coefficients

f :¼ ffl;kjl :¼ 1;2; . . . ; L; k :¼ 1;2; . . . ;2L�1g: ð5Þ

Based on the temporal distribution of the coefficient of the mo-
tion related wavelet level we decide now whether the perfusion se-
quence was acquired free breathing or with initial breath holding
(for details see Appendix A).
For further component labeling we then evaluate for all coeffi-
cient series f(c)

SðcÞl :¼
X2l

i¼1

f ðcÞl;i

			 			: ð6Þ

Now we base the proper labeling of the movement compo-
nent(s) on the sum of the low frequency coefficients

SðcÞLF :¼
XL�1

k¼3

SðcÞk ; ð7Þ

and the sum of the high frequency coefficients

SðcÞHF :¼ SðcÞ1 þ SðcÞ2 : ð8Þ

In SðcÞLF we ignore the coefficient SðcÞL ¼ fL;1, since for acquisition
patterns that includes breath holding this coefficient will also be
high.

Now, if SðcÞLF < SðcÞHF , then the component c will be labeled as mo-
tion with two exceptions: If c is the component with the lowest
mixing value range it will be labeled as baseline, and if a free
breathing acquisition pattern was estimated, but the component
was labeled to exhibit motion at the beginning of the series accord-
ing to (A.1), it is not labeled as motion, since in this case, the high



Fig. 10. Example synthetic references, note the blurriness of the reference in the
first pass (left) and the improved representation of features in the third pass (right).
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values of the coefficients stem from the steep RV enhancement
curve.

As a result of this labeling process, we obtain a set Cmov of
movement components, a set Crem of remaining components, and
most of the time one component cb labeled as baseline.

Based on the number of components that have been labeled as
to contain motion, we proceed like follows: If no component was
labeled as containing motion, then the series is considered to be
free of motion. If one or more ICs were labeled as related to motion,
we label this component as the main motion component that
exhibits the largest value Emov :¼maxc2Cmov SðcÞlmov

. If this value Emov

is smaller than the value SðcbÞ
lmov

of the base line component, then
the series is also considered to be free of motion.

To rate the quality of the signal separation obtained by the ICA,
we use the number of identified motion components: A lower po-
sitive number is better.

In order to obtain the optimal number of ICs, we run the ICA fol-
lowed by the wavelet analysis described above for various num-
bers of components C. The number of components C that results
in the lowest positive number of motion components is used for
further processing.

Finally, out of the remaining components Crem we label he ICs re-
lated to RV and LV enhancement based on the maximum mixing
curve gradient and the time point of this maximum. Since the mo-
tion components were already labeled, only slowly changing com-
ponents are left. For these, RV enhancement comes first and has
the steepest enhancement, then comes LV enhancement, and finally
perfusion. To compose the steepness and the time point of the
enhancements into one value, we evaluate tgrad;c :¼ arg
maxi¼1;2;...;N

1
i

d
dt ac;i

� �
which weights the mixing curve gradient value

against its time index and, hence, gives a preference to local gradient
maxima that occur earlier. Then, the RV and LV ICs can be labeled
based on

tgrad;cðRVÞ < tgrad;cðLVÞ < � � � ð9Þ

However, if the RV cavity is very small, as it may happen at the
apical level, the LV enhancement curve may actually be a lot more
prominent and steeper than the RV enhancement curve. Therefore,
in a final step we test if the maximum mixing curve gradient of the
supposed RV enhancement curve comes indeed before the one
attributed to LV enhancement, and switch labeling of this is not
the case.

For this labeling to succeed, the set of remaining components
Crem must contain at least two components. If this is not the case,
we consider the ICA to be of low quality, since LV enhancement
and RV enhancement should both be separated as well, unless
RV cavity cannot be identified at all as it may be the case at the api-
cal level. The result of such an ICA cannot be used for an LV bound-
ing box estimation, and hence it can only be used if non-linear
registration is to be applied, or a registration scheme using linear
registration is running in the second or later pass, when the region
of interest was already segmented and cropped.

3.2. LV bounding box estimation

Given the properly labeled RV and LV enhancement compo-
nents one can segment a region of interest around the LV myocar-
dium. This segmentation is required, if linear registration is to be
executed, and it also can be used to speed up non-linear registra-
tion by restricting image processing to this region of interest.

We base our segmentation on the difference of the RV and LV
feature images that result from the preceding ICA instead of using
the original images related to peak enhancement as proposed by
Milles et al. (2008), and instead of using thresh-holding, we base
the segmentation on a k-means classification (see Appendix B for
a detailed description).
Given that the segmentation succeeded, we define the LV
bounding box as squared and centered around the geometric cen-
ter of the LV, cLV and the length of its sides is set to 2sjcRV � cLVv
with s being a scaling parameter. Because the breathing movement
results in highly non-linear deformations of the interior of the
chest, using linear registration requires a very accurate estimation
of this bounding box and hence of the parameter s. In non-linear
registration, a bounding box is only useful to speed up computa-
tions and it is better to set the scaling parameter to a larger value
in order give enough freedom to the non-linear registration.

If the segmentation failed, then linear registration cannot be
run, but non-linear registration can still be achieved.
3.3. Image registration

In order to register the perfusion series, we create synthetic ref-
erence images for each time point by linearly combining all ICs and
the mean image X0 that resulted from the normalization of the
mixing curves, but we exclude the IC labeled as main motion com-
ponent. By this method, the movement is removed from the refer-
ence image series, but the intensity change is preserved, resulting
in reference images that exhibit the same intensity distributions as
their original counterparts. Therefore, the sum of squared differences
can be used as registration criterion.

Because initially, the feature images and the mean image retain
a blurriness that results from the breathing motion, the reference
images created by above method are also quite blurry (Fig. 10
(left)). Therefore, in order to achieve good registration results it
is better to use a multi-pass registration scheme.

Based on the freedom given to the transformation Treg that is
used to achieve registration a variety of registration approaches
can be applied to achieve motion compensation. In the simplest
case, one may compensate only for translation as do Milles et al.
(2008). However, the accuracy of this linear registration approach
is limited since it does not compensate for the local deformations
of the heart.

Alternatively, one can employ non-linear registration, and,
thereby, avoid the burden of optimal bounding box creation, and
also aim at achieving higher accuracy by compensation for non
-linear deformation of the heart. Our non-linear registration ap-
proach utilizes a B-Spline model for the transformation (Kybic
and Unser, 2003), and a regularization that is based on the separate
norms of the second derivative of each of the deformation compo-
nents (Rohlfing et al., 2003) weighted by a factor j. In the first pass,
we restrict the freedom of the non-linear registration by employing
a high weight on the regularization, and by using a large knot spac-
ing for the B-spline based transformation. In the subsequent
passes, when the reference images are a lot less blurred (Fig. 10
(right)), we employ a lower weight for regularization and a smaller
B-spline knot spacing.
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Finally, it is also possible to first run linear registration followed
by non-linear registration to refine the initial alignment.
Table 2
Registration parameters used in the schemes that include non-linear registration.
4. Experiments and validation

4.1. Image data

13 first-pass contrast-enhanced myocardial perfusion imaging
data sets were acquired and processed under clinical research pro-
tocols and all subjects provided written informed consent. Six data
sets are rest studies, five data sets are stress studies, and for the
remaining two sequences this information was lost due to too
aggressive anonymization. Two distinct pulse sequences were used
for image acquisition: A hybrid GRE-EPI sequence and a true-FISP
sequence. Both sequences were ECG-triggered and used
90-degree-saturation recovery imaging of several slices per R-R
interval acquired for 60 heartbeats. The pulse sequence parameters
for the true-FISP sequence were 50-degree readout flip angle,
975 Hz/pixel bandwidth, TE/TR/TI = 1.3/2.8/90 ms, 128 � 88 ma-
trix, 6 mm slice thickness. The GRE-EPI sequence parameters were
25-degree readout flip angle, echo train length = 4, 1500 Hz/pixel
bandwidth, TE/TR/TI = 1.1/6.5/70 ms, 128 � 96 matrix, 8 mm slice
thickness. The spatial resolution was about 2.8 mm � 3.5 mm. Par-
allel imaging using the TSENSE (Kellman et al., 2001) method with
acceleration factor = 2 was used to improve temporal resolution
and spatial coverage.

For all but one patient, a half dose of contrast agent (Gd-DTPA,
0.1 mmol/kg) was administered at 2.5 ml/s, followed by saline
flush. For one patient the dose was administered at a higher rate
which resulted in a significantly higher contrast. For 12 patient
data sets the images series were reconstructed to a final matrix
size of 256 � 192 (3/4 phase FOV) using zero filling for interpola-
tion, and for one patient the final matrix size was 128 � 128 in-
stead. This low resolution series and the series with a higher
contrast resulted from acquisition protocols that are no longer in
use. Nevertheless, we include this data here to test the robustness
of the algorithm with respect to varying input. All data sets were
acquired using a free breathing protocol, still, one rest study and
one stress study exhibited a somewhat erratic breathing pattern
while the others showed the expected quasiperiodic motion, and
in all data sets the RV and LV cavity could be identified visually.
Motion correction was performed for three short-axis slices of
these 13 patients covering different levels of the LV myocardium
(basal, mid, and apical levels) totaling in 39 slice sequences. Out
of the 60 images per slice sequence, the first two frames were ac-
quired as proton density weighted images for use in correcting the
surface coil intensity variation. These frames were acquired at a
lower excitation flip angle and without the saturation recovery
preparation, and were omitted from the motion compensation
resulting in 58 perfusion images per slice sequence.

In order to also test our method on perfusion series that were
acquired breath holding, we replaced approximately the first 40
frames of some of the original series with the registered images
thereby simulating perfusion series with initial breath holding fol-
lowed by normal breathing. Our main purpose for these series was
to test the IC labeling scheme in a breath-holding setting, there-
fore, we did not run an additional segmentation based validations
for these simulated breath holding series.
‘‘scale’’ refers to the value used to scale the according parameter with each new
registration pass.

Method SERIAL QUASI-P ICA-SP/PGT-SP ICA-T

Regularization weight j/scale 100 10/– 105/0.5 –
Knot spacing/scale 16 10/– 16/0.5 –
Multi-resolution-levels 3 3 3 3
Passes 1 1 63 62
4.2. Methods implemented and tested

We run our motion compensation experiments by using a vari-
ety of methods. Firstly, we run tests by using the ICA based method
described above executing (1) non-linear registration only (ICA-
SP), (2) linear registration by optimizing a translation (ICA-T),
which is similar to Gupta et al. (2010) but employs the new label-
ing scheme. Then, we will run (3) ICA-T followed by at least one
pass of spline based non-linear registration (ICA-T+SP).

In addition to these methods, we will compare to methods pre-
sented elsewhere. Specifically, we will compare to (4) motion com-
pensation exploiting the quasiperiodicy of the breathing movement
(QUASI-P), Wollny et al. (2010a), (5) serial registration with the
accumulation of transformations (SERIAL), Wollny et al. (2010b),
and (6) pseudo-ground-truth based registration (PGT) Li and Sun
(2009) with some variations: Since this approach requires already
linearly aligned input images, we used the output of ICA-T as input
images, we replace the demons based non-linear registration by the
same spline based approach that is used for ICA-SP, and instead of
using Gaussian elimination to solve the PGT estimation problem,
we used the L-BFGS algorithm (Fletcher, 2000).

4.3. Software and parameters

All methods have been implemented using the same image pro-
cessing software and made available (Wollny, 2010). For the inde-
pendent component analysis the FastICA algorithm was used
(Hyvarinen, 1999) as implemented in Ottosson et al. (2009). The
FastICA algorithm was first run in deflation mode, if this did not re-
sult in a usable signal separation, symmetric mode was run and the
provided result was used regardless of the convergence of the algo-
rithm. The maximum of iterations was set to 400.

For the discrete wavelet transform we relied on the implemen-
tation in Galassi et al. (2009) and used the centered Daubechies
wavelet family of maximum phase with five vanishing moments
(Daubechies, 1988). For the ICA based methods the optimization
of the objective function was achieved using the rank-1 method
of the shifted limited-memory variable metric algorithm (VAR1) by
Vlcek and Luksan (2006) as implemented in Johnson (2011) when
running non-linear registration (breaking conditions: Maximum of
300 iterations, or 0.001 absolute x-tolerance, or 0.001 relative
objective function value), and the simplex algorithm of Nelder
and Mead (1965) implemented in Galassi et al. (2009) when run-
ning linear registration (breaking condition for the simplex algo-
rithm was set to 0.01, and its start step size to 0.001).

For QUASI-P a gradient decent provided significantly better re-
sults than VAR1 and we used the method implemented in Galassi
et al. (2009), a start step size of 0.01, and a stopping condition of
0.001.

The parameters used to run the non-linear registrations are gi-
ven in Table 2. In addition, SERIAL used a weighted sum of normal-
ized gradient fields (NGF) (1.0) and the sum of squared differences
(SSD) (1.0) as registration criteria.

Li and Sun (2009) does requires three parameters for ground
truth estimation that are not given in the article. After conversation
with the authors, we set these parameters to a = 0.1, b = 4, and
q = 0.85.

If linear registration was to be run – stand alone or followed by
non-linear registration – then the bounding box amplification
parameter was set to s = 1.3, and if only non-linear registration
was to be run it was set to s = 2.0. For all additional parameters that
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are not given here, the default values as implemented in the
respective software libraries were used.

All experiments and timings were run on a AMD Phenom II X6
1035T processor (2.6 GHz), Gentoo/Linux 64 bit. The software was
compiled with GNU g++ (Gentoo 4.5.3-r1), and optimization flags -
O2 -march = native -mtune = native -funroll-loops -ftree-vectorize.

4.4. Validation

Time–intensity curves of sections of the myocardium are the
prominent feature on which a medical indication would be based.
Therefore, we will base our validation on the comparison of man-
ually acquired time–intensity curves bK ðsÞref of 12 sections s 2 S of the
myocardium compared to automatically obtained ones before bK ðsÞorig
and after bK ðsÞreg registration (Fig. 11). For a better comparison the
time–intensity curves were normalized linearly so that the manual
obtained series bK ðsÞref cover an intensity range of [0,1].

In order to estimate these time–intensity curves, for all data
sets in each slice the LV-myocardium was segmented and the cen-
ter of the LV as well as the RV insertion point from the short-axis
images were identified. Since it is difficult to identify the LV center
directly, we selected three points on the outer wall of the LV myo-
cardium, evaluate the circle passing through these points and use
the center of this circle as LV center. Using the LV center as angular
point and beginning at the RV insertion point, the myocardium was
segmented clock-wise into 12 segments enclosing equal angles
(Fig. 11, left). Finally, time–intensity curves were evaluated based
on the average pixel intensities of these segments (Fig. 11, right).

For comparison of the curves before and after registration we
evaluated Pearsons correlation coefficient R2 between the manu-
ally obtained time–intensity curves and the time–intensity curves
that were obtained by using the segmentation of one reference
slice as mask for all frames. Here, higher correlation indicates a
better registration.

Secondly, the Normalized Mean Squared Error (NMSE)

NMSEðbK ðsÞÞ :¼ 1
N

P
t2HðbK ðsÞðtÞ � bK ðsÞrefðtÞÞ

2

bK ðsÞ � bK ðsÞref

; ð10Þ

is used as a quality measure, and it is evaluated before NMSEðbK ðsÞorig


 �
Þ and after NMSE bK ðsÞreg


 �
 �
registration; smaller values indi-

cate better motion compensation.
Finally, we consider the average standard deviation of the inten-

sity in the 12 segments si of the myocardium rsi ;t :¼
P

t2HrðsiÞ as
obtained by using the myocardial mask of one reference frame of
the motion-corrected sequence. Here, smaller values also indicate
a better registration.
Unreg
Reg

Hand−segm

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 10

In
te

ns
ity

Fig. 11. Example segmentation of a slice of the myocardium (left). The RV insertion po
myocardium is segmented clock-wise into 12 segments that enclose equal angles. An
corresponding manually obtained curve is given on the right.
For the automatic extraction of the time–intensity curves, we
choose the reference frame 30, since it lies in the middle of the ser-
ies and should reduce the effect of accumulating errors when
applying SERIAL, without having any specific influence on the
other methods. Because all segmentations were done before the
image registration was executed, the masks for the myocardium
within the reference frame have to be transformed using the regis-
tration transformation. Only for SERIAL the original mask can be
used for the automatic analysis. Therefore, for all other algorithms
it also has to be considered that the masks for automatic intensity–
time curve extraction are subject to registration errors.

Other measures have been presented in the literature that quan-
tify the registration quality based on comparing manual segmenta-
tions features before and after registration, see e.g. Milles et al.
(2008) and Xue et al. (2008). As discussed in Wollny et al. (2010a),
a validation based on comparing manually segmented shapes is
not a reliable option for our target application. Specifically, the accu-
rate tracking of the myocardium through time in perfusion studies
is not an easy and repeatable task because it is difficult to track
the inner boundary of the ventricle properly: On one hand, at the
beginning of the series the myocardium and the left ventricular cav-
ity exhibit the same intensities, and on the other hand the papillary
muscles and the myocardium often also exhibit the same intensities
throughout the series. Segmentation errors, however, will show up
in any segmentation based quality assessment, but may have no
influence on the tracking of the time–intensity curves, the feature
the final analysis of the perfusion series is based on. For the sake
of completeness we will provide two measures that rate the regis-
tration accuracy based on segmentations, the dice index (DI) be-
tween the manually obtained myocardial shape and the reference
shape that is propagated through the series (higher values are bet-
ter), and the boundary root mean square error (BRMSE) of the accord-
ing myocardial contours and the propagated reference contour
(smaller values are better).

All measures given here will be evaluated for all 58 frames of
each series, and the means are evaluated over all sections of all
slices of all data sets. Since the samples can be matched based on
section, frame, slice, and data set the one-sided t-test for paired
samples is used to test the significance improvements of the ob-
served validation measures (Sokal and Rohlf, 1995).
5. Results

Using the parameters given above, we were able to achieve a
significant reduction of motion with all tested methods for all
slices, including the data sets with a more erratic breathing pat-
tern. For all cases, the RV and LV labeling scheme was successful
istered
istered

ented

 20  30  40  50

Time

int is indicated by a circle and based on its location and the center of the LV the
example of the time–intensity curves before and after registration as well as the
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as was the segmentation of the LV bounding box. The quantifica-
tion of the registration quality by the measures given above is
summarized in Table 3. The full results of the significance tests
for the differences between the methods are given in the accompa-
nying material.

With the automatic ICA based mask creation the size of the re-
gion to be processed was reduced to an average of 90 � 90 pixel for
non-linear registration only, and 58 � 58 for all approaches that in-
clude linear registration.

The best motion compensation results were obtained by run-
ning ICA-T+SP, i.e. by running an initial ICA-based two-pass linear
registration optimizing a translation only, followed by an at-most
three-pass non-linear registration. This approach performed best
across all measures resulting in consistently better validation mea-
sures as compared to the remaining methods across all validation
measures (Table 4). Only for Pearsons correlation coefficient R2 and
BRMSE and when comparing to ICA-SP, the difference in the results
is of only low significance.

As second best methods, ICA-SP and ICA-T-PGT perform equally
well and result in better motion compensation than the remaining
three tested methods SERIAL, QUASI-P, and ICA-T. These three
methods give a mixed picture regarding the validation measures
and no clear ranking can be given.

In addition we tried to run PGT without initial linear registra-
tion, but this generally does not result in proper motion compensa-
tion proofing that this algorithm indeed requires initial linear
registration.

The run-times of the linear registration scheme are very low –
as it can be expected. Motion compensation that first utilizes linear
registration still have a very low run-time and even ICA-SP
achieves the registration at a rate below one frame per second, de-
spite the multi-pass scheme. This low run-time can be attributed
to the automatic extraction of a region of interest around the LV
that is used to reduce the computational load during registration
and to the use of the shifted limited-memory variable metric algo-
rithm used for optimization. However, for SERIAL and QUASI-P this
optimization algorithm did not yield as good results as using gra-
dient decent which is known for its slow convergence. In addition,
SERIAL and QUASI-P, both always run at the full image resolution,
Table 3
Results for the validation measures given in the text, the best results are shaded with gray
The significance of the difference of ICA-T+SP when compared to the other motion compe

Table 4
Results of the significance test of ICA-T-SP method compared to the other methods using
validations measures and tested methods but Pearsons correlation coefficient R2 and BR
significance (p < 0.1).

Serial QUASI-P

df t p t p

R2 467 4.14 2e�05 5.37 6.3e�08
MNSE 467 �6.72 2.7e�11 �6.11 1e�09
r 467 �3.60 0.00018 �6.17 7.6e�10
BRMSE 38 �6.90 1.7e�08 �8.55 1.1e�10
DICE 2261 29.50 2.2e�16 20.52 2.2e�16
since both methods do not offer any means to automatically ex-
tract regions of interest.

Running the ICA based motion compensation algorithm for the
simulated breath-holding data also resulted in a proper identifica-
tion of the ICs related to motion and RV/LV enhancement and to
proper motion compensation, showing that this method is also
applicable to data that was acquired with initial breath holding.

Finally, no significant differences of the performance of the mo-
tion compensation algorithms could be observed between rest and
stress studies.

6. Discussion

Image registration is an established method to compensate for
breathing motion in myocardial perfusion data sets, and the use
of ICA as proposed in Milles et al. (2008) provides an elegant
way to create synthetic reference images for such a registration
that exhibit intensity distributions that are close to counterparts
from the original series thereby simplifying image registration.

Milles et al. (2008) focused on identifying the features that need
to be retained, i.e. RV/LV enhancement and baseline, However, for
sequences that were acquired free breathing, the labeling scheme
sketched by Milles et al. (2006) and used by Gupta et al. (2010)
is not suitable, because its presumptions about the maximum
weight values and its time point do not generally hold. Also, Gupta
et al. (2010) reported that the labeling method fails if strong mo-
tion is present.

Still, ICA is well suited to separate a quasiperiodic motion com-
ponent from the other features of myocardial perfusion series,
namely LV/RV enhancement, perfusion, and baseline – regardless
whether this motion takes place during the whole image acquisi-
tion sequence (free breathing), or only at the end of the acquisition
sequence (initial breath holding). However, to properly identify the
ICs in such a setting it is better to shift the focus to the feature that
needs to be removed – the motion.

Therefore, we presented a new labeling scheme based on a dis-
crete wavelet analysis of the mixing value curves that first focuses
on the identification of the motion component(s) and the number
of ICs the results in the best separation of signals. By identifying
. ICA-T+SP provides the best motion compensation results for all validation measures.
nsation methods is given in Table 4.

the one-sided paired t-test. The improvement is highly significant (p < 0.05) for all
MSE when compared with ICA-SP. In these two cases the improvement is of a low

ICA-T ICA-T-PGT ICA-SP

t p t p t p

7.19 1.3e�12 3.10 0.001 1.42 0.078
�6.87 1e�11 �4.29 1.1e�05 �2.81 0.0026
�8.79 2.2e�16 �4.99 4.3e�07 �1.37 0.085
�3.74 0.00031 �3.67 0.00037 �2.04 0.024
20.53 2.2e�16 14.53 2.2e�16 7.82 4.1e�15
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the IC(s) corresponding to the breathing motion that is quasiperi-
odic over the whole acquisition time or part of the series and then
eliminating it from the reference image creation, we were able to
create series of reference images that are free of motion. Note, that
Gupta et al. (2010) did not normalize the mixing curves to have a
zero mean. Therefore, by leaving out one component in the refer-
ence image creation, an intensity bias is introduced into the syn-
thetic reference image and consequently they had to use a more
complex registration criterion, namely cross correlation. Since we
normalize the mixing value curves to have a zero mean and create
an additional feature image that retains the extracted information,
we avoid the introduction of this intensity bias in the synthetic ref-
erence images when the motion component is dropped from the
mix. As a result we obtain synthetic references that truly exhibit
similar intensity distributions like the original images, and we
can use the sum of squared differences as registration criterion.

To label the components related to RV and LV enhancement we
proposed an approach that lowered the requirements for the RV
and LV mixing value curves as compared to the ranking proposed
by Milles et al. (2006). They base the labeling on the global maxi-
mum of these curves, and assume that the global maximum of the
enhancement curves always coincides with the enhancement peak,
an assumption that does not hold if strong or free breathing move-
ment is present. Our approach identifies the maximum gradient
weighted by its time-position and only after the identification of
motion related components and a possible baseline component,
thereby making RV and LV enhancement component labeling more
robust. With our labeling approach, motion and RV and LV
enhancement components were properly identified in all 39 free
breathing image series as well as the data sets simulating initial
breath holding.

Our primary focus was to apply non-linear registration to
achieve motion compensation, therefore, the proper labeling of
the RV and LV components and the segmentation of a region of
interest (ROI) around the LV based on the corresponding feature
images comes as a bonus that makes it possible to speed up regis-
tration by either restricting the registration to this ROI, and/or by
first running a linear registration algorithm. Other than Milles
et al. (2008), who based a bounding box creation on the RV/LV peak
enhancement images that may picture the cavities at extremal
points of the breathing motion, we used the corresponding IC
feature images, since here the cavities are located at their average
position. We based the segmentation of the RV/LV cavities on a k-
means classification instead of thresholding so that we do not have
to make any assumptions about the intensities that are required
when setting a threshold. With this alternative labeling and seg-
mentation scheme we were able to successful identify motion
and RV/LV enhancement and automatically segment a LV bounding
in all 39 slices of the 13 patient data sets that were acquired free
breathing and included rest and stress studies.

If only linear registration is to be run, the selection of a proper
bounding box scaling parameter s to set the size of the ROI be-
comes a delicate task: A small value may result in the ROI not cov-
ering the LV myocardium completely, and a large value will result
in a ROI that contains non-moving body parts that hinder a proper
linear alignment. If the linear registration is followed by non-linear
registration, then it is best to select a larger s to make sure that the
whole LV myocardium with its whole movement range is covered.

Our results show, that the results of motion compensation by
applying linear registration can be improved by running an addi-
tional non-linear registration. Also running the ICA based motion
compensation by only applying non-linear registration performs
better then employing linear registration only.

Because initially, the synthetic references created by the ICA
based motion compensation scheme are quite blurry, it is best to
apply the motion compensation algorithm in a the multi-pass
fashion. To achieve full registration employing non-linear based
registration, it is best to put a high penalty on the nonlinear trans-
formations in the first registration pass, and give more freedom to
the transformation in subsequent passes, when the newly created
reference images are less blurry.

Running one of the proposed ICA based registration schemes
has its advantage over running QUASI-P. On one hand, with QUA-
SI-P the final registration is dependent on the initial registration
phase: A failed registration here results in various badly created
synthetic references that result in a final bad registration. On the
other hand, as reported in Wollny et al. (2010a), since the reference
image creation is based on the linear interpolation the references
may not model well the fast enhancement of RV and LV, resulting
in bad synthetic references and hence in a bad registration in this
part of the series. Because in this study we used more data sets, the
latter problem of QUASI-P became more evident, resulting in nota-
ble worse performance of the algorithm as compared to the results
presented in Wollny et al. (2010a). Also QUASI-P does not provide
automatic means to speed up registration, like the ICA based ap-
proach does, which results in a relatively large run-times.

Since with the ICA based motion compensation scheme, for
each original image of a perfusion sequence a corresponding syn-
thetic reference image is create, registration errors in one frame
have no influence on the performance of the motion compensation
for the reminder of the sequence. Hence an accumulation of errors,
as it can be seen in SERIAL is not possible and consequently the ICA
based methods provide better motion compensation.

The pseudo-ground-truth (PGT) based registration scheme pro-
vides results that are of a similar quality as the ICA-SP registration
scheme. However, in the estimation of PGT it is assumed that the
pixel-wise second order derivative of the intensity change over
time is low, yet image acquisition itself may introduce intensity
variations over time that do not result from the breathing move-
ment (see, e.g., Fig. 11, right, manually obtained curve) Therefore,
the generation of a pseudo ground truth by also smoothing over
time may overcompensate. In addition, PGT requires an initial lin-
ear registration that in turns requires the proper identification of a
ROI around the LV myocardium. If no such region can be identified
automatically, a PGT based approach will require manual interac-
tion or it will fail. In such a case the purely non-linear motion com-
pensation approach ICA-SP can still successfully be applied on the
full image scale.

Since the ICA based methods provide a simple way to automat-
ically define a region of interest around the LV myocardium, regis-
tration can be speed up significantly, and as a result all ICA based
methods are computationally less demanding than SERIAL and
QUASI-P. Given a successful estimation of such a region of interest
an additional speedup can be achieved by preceding the non-linear
registration by linear registration.

We also tested our algorithm on simulated breath holding data
which is still widely used in the clinical routine. Here the wavelet
based labeling scheme was also able to properly identify the ICs
resulting in successful bounding box creation and identification
of the motion component. With these prerequisite in tact, it was
possible to run the motion compensation scheme and achieve full
motion compensation. This is an advantage over the heuristic
curve length based scheme presented in Wollny et al. (2011) that
can only be applied to free breathing acquired data.
7. Conclusion

We presented a motion compensation scheme that loosely fol-
lows the approach presented by Milles et al. (2008) in using an ICA
to identify main features of the perfusion series and create syn-
thetic references from these features in order to achieve motion
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compensation by image registration. Since Milles et al. (2008) IC
labeling approach is not suitable for perfusion sequences that were
acquired free breathing, and tends to fail for sequences that exhibit
strong motion (Gupta et al., 2010), we replaced their labeling
scheme by a new, more robust approach, that is based on an initial
time–frequency analysis and first focuses an the identification of
motion that is then omitted in the creation of synthetic references.

Which this new labeling scheme we were able to identify the IC
component related to motion successfully in all free breathing ac-
quired sequences and all simulated breath holding sequences.
Since we employ non-linear registration, this was sufficient to
achieve full motion compensation in all cases.

Nevertheless, our enhanced labeling scheme also made it possi-
ble to properly identify the ICs related to RV and LV enhancement,
and with the segmentation approach based on k-means classifica-
tion the LV and RV cavities could be segmented successfully and a
bounding box enclosing the LV myocardium could be created in all
cases. Hence, it was possible to speed up non-linear registration by
restricting registration to the region of interest around the LV myo-
cardium (ICA-SP) or by preceding it with linear registration
(ICA-T+SP).

Our validation showed that the latter approach performed best
for all considered validation measures as compared to methods
published elsewhere (Wollny et al., 2010a,; Li and Sun, 2009) and
also required the lowest run-time of all methods implemented
and tested here that include non-linear registration.

Our proposed method works best with perfusion sequences that
were acquired free breathing, but it can also be applied to data that
was acquired with initial breath-holding, which is still the stan-
dard in most clinical applications.

Finally, ICA provides additional information about the perfusion
cycle, like the time points for RV and LV peak enhancement than
may be of use in the further automatic analysis of the perfusion
data.
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Appendix A. Estimation of breathing pattern

First, for all fc we evaluate the mean time index for the breath-
ing motion related wavelet coefficient level lmov according to

tðcÞmean;lmov
:¼
PNlmov

t¼0 t � f ðcÞt

			 			PNlmov
t¼0 f ðcÞc;t

			 			 ðA:1Þ
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3
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3

� �
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this value
falls, the component is labeled as either to exhibit movement at the
beginning, at the end, or continuously over time.

Then, we accumulate the coefficients sums SðcÞlmov
of the move-

ment related frequency levels according to their movement time
frame label obtaining sums Sbegin, Scont, Send. Based on which is
the maximum of these sums it is decided whether the breathing
movement was only at the beginning, continuous, or only at the
end of the acquisition series, and hence which breathing pattern
was used during acquisition time. Hereby we assume, that the
acquisition patterns breath holding – free breathing – breath holding
and free breathing – breath holding – free breathing are not used.

Appendix B. RV and LV cavity segmentation

The segmentation of the RV and LV cavities is based on the dif-
ference wLV �wRV of the RV and LV feature images. In this differ-
ence image, the RV cavity has a low intensity and the LV cavity a
high intensity.

In order to segment both objects, we first use morphological
gray scale opening and closing of radius 2 pixels to remove small
holes and connections, then classify the intensities using k-means
of initially seven classes. To segment the RV cavity we select the k-
means class corresponding to the lowest intensity label connected
components and identify the largest connected component as RV
cavity.

For LV cavity segmentation we select the k-means class corre-
sponding to the highest intensity, also run a connected component
labeling. Depending on the contrast agent dose and timing of the
imaging, more than one large connected component may result
from this labeling. Therefore, to identify the LV cavity, we do not
only use the area of the connected component to identify it, but
also its distance to the already segmented RV cavity, i.e. given
the geometric center cRV of the RV cavity and the centers cL of
the LV cavity candidates as well as their areas AL, we use the quo-
tient distðcRV ;cLÞ

AL
as the distant measure to be minimized.

Segmentation may fail, either because of a wrong identification
of the LV/RV components, or because k-means classification did
not sufficiently separate the intensity ranges, which usually results
in very large segmented regions. Therefore, as an heuristic to judge
success of the segmentation, we measure if the area of the esti-
mated cavity is below 1

10 of the whole image area. If this is not
the case then we retry segmentation using more classes in the k-
means algorithm. If the maximum of 13 classes is exhausted with-
out proper segmentation result, the segmentation is considered to
have failed.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.media.2012.02.004.
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