EDITORIAL COMMENT

Magnetic Resonance Identification of the Ventricular Tachycardia Critical Isthmus

Finding the Needle in the Haystack*

Henry R. Halperin, MD, MAP,
Saman Nazarian, MD
Baltimore, Maryland

Significant strides have been made in development of catheter-based therapeutics for cure of malignant ventricular arrhythmias. Notable initial milestones included the first intracardiac recordings made by Hecht (1), and demonstration of catheter-based cardiac stimulation by Furman and Robinson (2). Later, Wellens et al. (3) demonstrated that programmed electrical stimulation could reliably initiate and terminate ventricular tachycardia (VT) circuits in susceptible individuals. These tools allowed electrophysiologists to grow in their understanding of VT mechanisms, critical pathway, and sites of origin, and potential new therapeutics.

In 1978, Josephson et al. (4–6) demonstrated that intracardiac recordings made by Hecht (1), and demonstration of catheter-based cardiac stimulation by Furman and Robinson (2). Later, Wellens et al. (3) demonstrated that programmed electrical stimulation could reliably initiate and terminate ventricular tachycardia (VT) circuits in susceptible individuals. These tools allowed electrophysiologists to grow in their understanding of VT mechanisms, critical pathway, and sites of origin, and potential new therapeutics.

See page 184

In 1978, Josephson et al. (4–6) demonstrated that intracardiac recordings made by Hecht (1), and demonstration of catheter-based cardiac stimulation by Furman and Robinson (2). Later, Wellens et al. (3) demonstrated that programmed electrical stimulation could reliably initiate and terminate ventricular tachycardia (VT) circuits in susceptible individuals. These tools allowed electrophysiologists to grow in their understanding of VT mechanisms, critical pathway, and sites of origin, and potential new therapeutics.

In 1978, Josephson et al. (4–6) demonstrated that intracardiac recordings made by Hecht (1), and demonstration of catheter-based cardiac stimulation by Furman and Robinson (2). Later, Wellens et al. (3) demonstrated that programmed electrical stimulation could reliably initiate and terminate ventricular tachycardia (VT) circuits in susceptible individuals. These tools allowed electrophysiologists to grow in their understanding of VT mechanisms, critical pathway, and sites of origin, and potential new therapeutics.

Study of VT and the formulation of an approach to eliminate it. Due to the complex nature of the information derived from such studies, 3-dimensional mapping systems have been developed to summarize the electrical and anatomic information gathered during the study (15,16). Such systems simplify the localization of diseased and slow conduction zones via voltage and activation mapping, but the solution to the VT puzzle is only attainable through the appropriate use and understanding of electrophysiology maneuvers.

Cardiac magnetic resonance (CMR) is capable of providing high resolution images of intramyocardial scar through the late gadolinium enhancement (LGE) technique (17–19). Heterogeneous tissues surrounding areas with dense LGE are hypothesized to be the imaging equivalent of slow conduction zones in patients with ischemic cardiomyopathy (20,21). However, although the relationship between inducibility of VT and extent of LGE in ischemic cardiomyopathy has previously been reported (22,23), little data exists regarding direct electrophysiology measures and maneuvers from heterogeneous sites identified by CMR (24).

In this issue of the Journal, Perez-David et al. (25) present the results of a study that compares LGE features using a 1.5-T magnetic resonance scanner, in 18 patients with sustained monomorphic VT, to 18 matched control subjects. The investigators chose to use the method (20) for defining the infarct core and heterogeneous tissue as regions with signal intensity threshold >3 and between 2 and 3 standard deviations higher than remote normal myocardium, respectively. Continuous heterogeneous corridors were then defined as the presence of heterogeneous tissue in consecutive planes surrounded by scar and connected to normal myocardium by at least 1 side. The underlying hypothesis is that slow conduction channels during electrophysiology study would correspond to continuous heterogeneous corridors defined by CMR was then tested. The VT and control groups were similar in scar, heterogeneous tissue, and overall myocardial mass. However, patients in the VT group were more likely to exhibit continuous corridors of heterogeneous tissue. To make the images most suitable for comparison to endocardial voltage maps, the investigators then created 3-dimensional color-coded shells displaying the subendocardial signal-intensity distribution. Continuous corridors of diseased but conducting tissue on endocardial voltage mapping corresponded to continuous corridors of heterogeneous tissue identified by LGE. Of 26 total corridors in 17 of 18 patients with VT, 15 corresponded to a critical isthmus for VT. These results are remarkable. Perez-David et al. (25) have demonstrated the biologically plausible but up to now unproven connection between heterogeneous tissue on CMR and slow conduction zones identified by endocardial mapping. Additionally, they have shown that sites that electrophysiology maneuvers identify as critical VT isthmus sites often reside in heterogeneous tissue identified by CMR.

*Editorials published in the Journal of the American College of Cardiology reflect the views of the authors and do not necessarily represent the views of JACC or the American College of Cardiology.

From Johns Hopkins Hospital, Baltimore, Maryland. Dr. Halperin is funded by grants R01-HL64795 and R01-HL09461, from the National Institutes of Health. Dr. Nazarian is funded by grant K23-HL089333 from the National Institutes of Health.
These findings have important differences with previous studies. In contrast to findings of previous publications (22,23), the VT and control groups of the current study were not different in scar and heterogeneous tissue mass. This inconsistency may be attributable to differences in patient populations and definition of infarct core and heterogeneous tissue on LGE, or the use of inducibility at electrophysiology study as a surrogate of spontaneous VT. Alternatively, the inconsistency may reflect the fact that a marker of risk in a larger population may not offer adequate resolution in an enriched sample of at-risk individuals. If validated in future studies, the association of continuous corridors of tissue with spontaneous VT may improve the arrhythmic risk stratification of patients with ischemic cardiomyopathy. Another inconsistency with previous studies resides in the location of critical VT zones in the current cardiomyopathy. Another inconsistency with previous studies resides in the location of critical VT zones in the current study versus that performed by Desjardens et al. (24).

Desjardens et al. (24) found that the majority of critical VT isthmus sites were within the infarct core as defined by LGE, whereas Perez-David et al. (25) found all critical isthmus sites within heterogeneous tissue. This difference may reflect current CMR shortcomings in scar resolution and volume averaging in the infarct core and border zones. Until higher resolution images capable of resolving the intricate architecture of fibrotic tissue and surrounding healthy myocytes are clinically feasible (26), electrophysiology characterization of CMR surrogates will be limited by the reality that the currently visualized “infarct core” and “heterogeneous tissue” is a mixture of true infarct core, true heterogeneous tissue, and artifacts, particularly those produced by volume averaging of infarct core with healthy tissue.

The investigators have presented data to support further research in visualization of the substrate for VT. Identification of the infarct core and its associated heterogeneous tissue before the electrophysiology study and integration of such information into mapping systems will likely decrease procedure and fluoroscopy duration by focusing our attention on areas with diseased tissue. However, the electrophysiologist must remember that LGE image signal intensity is very sensitive to the assigned inversion time, poor ECG gating in the setting of arrhythmia, artifacts from fat in the atrioventricular groove or epicardium, and artifacts from respiratory motion. Additionally, volume averaging may represent a perfectly sharp but slanted scar border as “heterogeneous tissue” on LGE. Once such CMR limitations are addressed, we will know where on the LGE image to focus our attention. However, as is evident from the outstanding report by Perez-David et al. (25), solving the VT puzzle will still need an electrophysiologist who is adept at maneuvers to distinguish critical sites from bystanders.

REFERENCES

Key Words: ablation • heterogeneous imaging • magnetic resonance imaging • ventricular tachycardia.