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ABSTRACT 

Optical Coherence Tomography (OCT) has shown a great 

potential as a complementary imaging tool in the diagnosis 

of skin diseases. Speckle noise is the most prominent artifact 

present in OCT images and could limit the interpretation 

and detection capabilities. In this work we evaluate various 

denoising filters with high edge-preserving potential for the 

reduction of speckle noise in 256 dermatological OCT B-

scans. Our results show that the Enhanced Sigma Filter and 

the Block Matching 3-D (BM3D) as 2D denoising filters 

and the Wavelet Multiframe algorithm considering adjacent 

B-scans achieved the best results in terms of the 

enhancement quality metrics used. Our results suggest that a 

combination of 2D filtering followed by a wavelet based 

compounding algorithm may significantly reduce speckle, 

increasing signal-to-noise and contrast-to-noise ratios, 

without the need of extra acquisitions of the same frame. 

Index Terms— Optical Coherence Tomography, 

speckle, denoising, dermatology 

1. INTRODUCTION 

Optical coherence tomography (OCT) is a non-invasive 

technique that presents an in vivo view of the superficial 

layers of tissue in real-time [1]. In scattering tissues OCT 

offers a penetration depth of 1–2 mm with typical axial and 

transverse resolutions between 1–10 μm and approximately 

20 μm, respectively, depending on the wavelength region 

[2]. As a diagnostic tool, it is broadly used in ophthalmology 

since its introduction and its potential usefulness in other 

specialties like dermatology in the diagnosis of skin diseases 

[3] has been proved. In particular OCT has shown promising 

results as a non-invasive alternative to excisional biopsy 

helping in the detection of tumors, such as malignant 

melanoma and basal cell carcinoma, complementing other 

imaging tools such as dermoscopy or confocal laser scan 

microscopy [2, 4]. 

Speckle noise is the most prominent artifact present in 

the OCT images. It limits the interpretation and diagnosis 

and reduces both  contrast and signal to noise ratio (SNR) 

[5]. In images of highly scattering biological tissues, speckle 

has a dual role as a source of noise and a carrier of 

information on tissue microstructure. The signal-carrying 

speckle is generated by single back scattering of the incident 

light, while the signal-degrading speckle is generated due to 

interference of photons multiply scattered in reverse and 

forward direction [6]. The resulting speckle pattern is visible 

in the image as a grainy appearance which blurs structural 

detail information.  Therefore special care should be taken, 

because removing the speckle could imply deleting useful 

information. 

Much work has been performed for reducing speckle 

noise. We can make a first classification of speckle 

reduction techniques in software and hardware solutions [7]. 

The hardware based techniques require the modification of 

the optical setup or the scanning protocols. The goal is to 

obtain several tomograms that are averaged to obtain final 

images with a reduction in speckle contrast. The main 

challenge of these methods is to acquire images in a way 

that the speckle pattern changes, but produces a minimum 

alteration of the image structure. Other solutions try to 

acquire  several B-scans in consecutive time intervals from 

the same location of the sample, but with a slightly changed 

ensemble of the illuminated scattering particles [7]. Another 

popular approach to differentiating speckle pattern is  

angular compounding, that consists in averaging 

tomographic images acquired from different observation 

angles [8]. Finally in the last few years several new methods 

have been proposed to improve the lateral resolution beyond 

the diffraction limit using structured interferences in a 

similar way as in confocal microscopy [9]. 

Software based speckle reduction techniques can be 

applied without modifying the acquisition configuration. 

The drawback is that they could need high computation 

requirements and could affect the resolution of the image or 

incorporate artifacts that may alter the interpretation of the 

features of interest. We can include in this group multiple 

methods like local averaging over all A-scans of each 

tomogram [10], averaging multiple B-scans [11], digital 

filtering the B-scans using digital filters [5], using complex 

diffusion filtering [12], wavelet transformations [5, 13, 14] 

among others. 

In this paper we assess the potential use of several 

denoising filters in the reduction of speckle noise in 

978-1-4799-2374-8/15/$31.00 ©2015 IEEE 494



dermatological OCT imaging. We include in the evaluation 

well known 2D filters previously used in speckle reduction, 

such as versions of Enhanced Sigma (ES) [15], Adaptive 

Wiener (AW) [16] and Adaptive Wavelet Thresholding 

(AWT) [17] filters but also recent denoising filters with high 

edge-preserving capabilities like Non Local Means (NLM) 

[18] and Block Matching 3-D (BM3D) algorithm [19]. 

Finally we evaluate the combination of previous 2D filters 

with B-Scan Fusion based on wavelets decomposition 

(WFS) [20]  and wavelet denoising considering multiple B-

scans (WFM) [14] to assess the improvement of this 

strategy with respect to filtering single frames. We evaluate 

filter performance through common speckle-reduction 

performance metrics [5, 13, 21, 22] including Signal to 

Noise Ratio (SNR), Contrast to Noise Ratio (CNR), 

Equivalent Number of Looks (ENL) which is a measure of 

the smoothness of homogeneous regions of interest, and 

Edge-Enhancing Index (EEI) to assess the ability to enhance 

edges. 

2. METHODS 

2.1. Denoising filters 

In the evaluation we have tested seven different denoising 

filters. Five of them (ES, AW, AWT, NLM and BM3D) are 

methods that are applied to individual B-scans. In addition 

we have applied other two B-scan compounding methods 

(WFS and WFM) to groups of two frames. 

The Sigma Filter, also known as Lee Filter [23], is 

based on the two-sigma probability of Gaussian distribution 

and incorporates the speckle multiplicative noise model. 

Besides its simplicity it provides a good balance between 

filtering accuracy and computational complexity. We use an 

implementation that improves the preservation of small 

edges decomposing the image in several components and 

applying to them the sigma filter (ES). Adaptive Wiener 

filter (AW) calculates the local mean, the variance and the 

noise power estimation and uses these local statistics 

adaptively to generate a pixelwise Wiener filter. The 

Adaptive Wavelet Thresholding (AWT) performs a discrete 

wavelet transform and estimates the noise standard 

deviation from the detail coefficients at the first level, 

defines an adaptive threshold based on the previous 

estimation and a penalization method provided by Birgé-

Massart, applies a global soft threshold  to the coefficients 

and finally perform the inverse discrete wavelet transform 

[17]. The NLM method [18] uses a weighted averaging 

scheme to perform image denoising. The approach is to 

build a pointwise estimate of the image where each pixel is 

obtained as a weighted average of pixels centered at regions 

that are similar to the region centered at the estimated pixel. 

The estimates are non-local as in principle the averages can 

be calculated over all pixels in the image. A variation of 

NLM was proposed with the BM3D algorithm [19], based 

on an enhanced sparse representation in transform domain. 

The enhancement of the sparsity was achieved by grouping 

similar 2D fragments of the image into 3D data arrays (3D 

groups) and applying collaborative filtering to these groups. 

Finally as we work with 3D volumes (sets of multiple 

B-scans), we have also evaluated two methods based on 

compounding strategies. The Image Fusion (WFS) based on 

wavelet decomposition transforms the original images 

(adjacent B-scans in our study) combines the coefficients on 

the transformed space and then applies the inverse transform 

to obtain the final result [20].  Finally the Wavelet 

Multiframe (WFM) algorithm [14] uses wavelet 

decompositions of single frames for a local noise and 

structure estimation. Based on this analysis, the wavelet 

detail coefficients are weighted, averaged and reconstructed. 

In both cases we use two consecutive frames (or B-scans) to 

perform the calculations. 

2.2. Enhancement metrics 

As defined in [5, 13, 21, 22] Signal to Noise Ratio (SNR) or 

Peak Signal to Noise Ratio is defined as:  

SNR = 10 log[ max(I)2 / σ2 ]      (1) 

where I is the pixel value of the target OCT image, and σ
2
 is 

its noise variance. Contrast to Noise Ratio is:  

CNR = (1/R)∑ (μr
R
r=1 − μb)/√σr

2 + σb
2      (2) 

where 𝜇𝑏, 𝜎𝑏
2 are the mean and variance in a background 

noise region. 𝜇𝑟, 𝜎𝑟
 2are the mean and variance of all 

regions of interest (R), including the homogeneous and 

heterogeneous regions of interest. Equivalent Number of 

Looks (ENL) is a measure of the smoothness of a 

homogeneous region of interest: 

ENL = (1/H)∑ ( μh
2H

h=1 / σh
2)                     (3) 

where 𝜇ℎ, 𝜎ℎ
2are the mean and variance of all homogeneous 

regions of interest (H). Except for the SNR calculations, all 

the other parameters were computed from logarithmic OCT 

images. 

Finally Edge-Enhancing Index is defined as: 

EEI =  
∑ |Rf1 − Rf2|N

n=1
∑ |R1 − R2|N

n=1
⁄   (4) 

where R1 and R2 represent the original values of the pixels 

on either side of the edge, and R1f and R2f are the 

corresponding filtered values over region of interest with 

edges (N).  

3. EXPERIMENTS AND RESULTS 

A dataset with 256 B-scans (1000x580 pixels) for the 

quantitative evaluation was acquired by scanning a 

dermatological human in-vivo tissue with a custom-

designed spectral domain OCT system operating in the 1300 

nm wavelength region. The broadband superluminescent 

diode operated at a center wavelength of 1320 nm and had a 

full-width at half-maximum bandwidth of 100 nm. The 

system was capable of providing axial and transverse 

resolutions of 8 µm and 20 µm respectively. Typical 

scanning dimensions covered a volume of 7x3.5x1.5 mm
3
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(1024x512x1024 voxels). We perform the global evaluation 

of all the denoising filters in four steps.  

The pre-processing step consists in the alignment of 

the image stack, adjusting each A-line of each image to keep 

the edge between the skin and the air constant in all the 

images.  

The next step is the digital filtering of each B-scan 

before the B-scan compounding operation. For each 

individual B-scan the five digital filters described were 

applied: the ES Filter with a window size of 5 pixels, the 

AW Filter with window size of 5 pixels and a noise 

estimation based in the mode, the AWT Filter with the 

wavelet family Coiflet 2, a level of decomposition of 3, and 

an estimation of the noise based on the detail coefficients of 

the first level. The NLM used a kernel ratio of 4, a window 

ratio of 4 and filter strength of 0.06. The BM3D filter used a 

sharpening parameter of 1.11. The detail description of the 

previous parameters is beyond the scope of this paper. A  

complete description of these methods can be found in [14-

20]. 

In the third step we apply the two proposed 

compounding filters (WFS and WMF) with groups of two 

adjacent B-scans previously filtered. For WFS we use the 

wavelet family Coiflet 1, the maximum fusion method for 

the approximation coefficients, the minimum for the details 

component and a level of decomposition equal to 6. For 

WFM we use 5 as decomposition levels, the Haar basis 

family, p controlling the noise reduction of 1.1 and as 

weight mode a combination of significance and correlation 

weights.  

Finally we calculate the enhancement metrics (SNR, 

CNR, ENL and EEI) and display the results. The original 

raw B-scans have SNR, CNR and ENL mean±standard 

deviation values of 22.27±0.55 dB, 1.12±0.07, 82.15±3.42 

respectively. Tables 1 and 2 show the subsequent 

improvement of the enhancement metrics with respect to 

these values except EEI which always compares the filtered 

and the original values (see (4)). 

The results show that all the denoising filters improve 

the image quality metrics (SNR, CNR, ENL and EEI). The 

best results are accomplished using the combination of 

digital filtering individual B-scans followed by the image 

compounding of two adjacent B-scans using the WFM 

algorithm (Tables 1 and 2). With this strategy the 

enhancement metrics increase in all the filters and reduce 

the speckle noise, improving the possible study of details in 

the image (Figures 1 and 2).  
 

Filter Name SNR(dB) CNR ENL EEI 

ES 12.18 ±0.73 1.89±0.11 534±38 1.8±0.13 

BM3D 12.28±0.72 1.77±0.06 475±42 1.65±0.06 

AWT 10.73±0.47 1.74±0.05 468±27 1.33±0.07 

AW 10.3±0.27 1.73±0.09 471±34 1.74±0.14 

NLM 10.69±0.44 1.69±0.05 446±34 1.66±0.05 

Table 1. Mean ± Standard Deviation of the improvement in the 

Enhancement metrics using the set of 256 dermatological OCT B-

scans. 

 

Filter Name SNR(dB) CNR ENL EEI 

BM3D/WFM  17.28±1.73 3.25+0.23 1404±175 2.38±0.17 

ES/WFM 16.8±1.12 3.21+0.15 1288±116 2.27±0.15 

NLM/WFM 16.32±1.18 30.03+0.13 1166±112 2.31±0.16 

AWT/WFM 16.47±1.17 3.01+0.21 1149±95 1.97±0.14 

AW/WFM 15.96±0.94 2.95+0.15 1087±104 2.2±0.14 

ES/WFS 14.8±0.64 2.9+0.14 1068±107 1.62±0.11 

BM3D/WFS 16.1±1.32 2.96+0.21 1117±139 1.74±0.13 

NLM/WFS 14.57±0.81 2.78±0.15 994±109 1.73±0.13 

AWT/WFS 15.62±0.82 2.97±0.14 1089±124 1.52±0.12 

AW/WFS 13.71±0.53 2.67±0.12 933±99 1.63±0.12 

Table 2. Mean ± Standard Deviation of the improvement of the 

Enhancement metrics of the set of 256 dermatological OCT B-

scans global process combining 2D denoising filters and 

compounding algorithms. 

 

 
Figure 1. Dermatological OCT raw image before enhancement 

process B-Scan #1. Initial quality metrics SNR=21.89 dB, 

CNR=1.16, ENL=86.05 and EEI=4.34. ROIs used for the 

calculation of the quality ratios marked. White rectangle is used for 

noise estimation, red rectangles represent the homogeneous regions 

(H=4) and green rectangles the non-homogeneous regions, the 

three green rectangles at the top are used for the EEI (N=3). The 

sum of both are used to calculate the CNR (R=9).  
 

 
Figure 2. Dermatological OCT image (B-Scan #1) after applying 

the complete enhancement process with ES Filter followed by the 

WFM algorithm. Final quality metrics SNR=40.30 dB, 

CNR=41.57, ENL=1563.8 and EEI=12.99. Enhancement 

improvement values SNR=18.41 dB, CNR = 3.41, ENL=1447.7 

and EEI=2.99. Vertical white line corresponds to A-Line #150. 
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Figure 3. A-Line #150 profile of the Raw Image (black), the 

ES/WFM  (red) and AW/WFS  (blue) filtered B-Scan #1. 

4. CONCLUSIONS 

The evaluation of several 2D denoising filters applied to 

dermatological OCT images shows an improvement in all 

the quality metrics used in the study (SNR, CNR, ENL and 

EEI). An additional step that compounds adjacent B-scans 

enables an extra enhancement and the consequent reduction 

of speckle noise without the need of an extra acquisition of 

the same frame. The 2D filters that show better performance 

in the study are the ES Filter and the BM3D in combination 

with the WFM. Further work must be done considering the 

evaluation of other compounding algorithms (like BM4D 

among others), the creation of a gold standard image to 

assess edge capabilities and the analysis of computing 

performance issues in the global process. The qualitative 

assessment by specialists is also needed to confirm that the 

proposed enhancement scheme helps in the diagnosis of skin 

diseases.  
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