MOLECULAR IMAGE REGISTRATION USING MUTUAL INFORMATION AND
DIFFERENTIAL EVOLUTION OPTIMIZATION

Bartosz Telenczuk*, Maria J Ledesma-Carbayo®*, Javier A Velazquez-Muriel®,
Carlos O S Sorzano *, Jose-Maria Carazo* and Andrés Santos®

! Wroclaw University of Technology, Poland
SETSI Telecomunicacién, Universidad Politécnica de Madrid, Spain
# Centro Nacional de Biotecnologia-CSIC, Madrid, Spain
® Egcuela Politécnica Superior, Univ. San Pablo - CEU, Madrid, Spain

ABSTRACT

In this work we propose a novel rigid image registration ap-
proach to determine the position of high-resolution molecular
structures in medium-resolution macromolecular complexes.
Mutual information similarity measure is used as an alterna-
tive to the cross-correlation coefficient commonly applied in
this context. The optimum of the objective function is sought
by means of differential evolution algorithm. This global op-
timization technique yields robust registration, exhibits fast
convergence and is easy to use. In order to additionally im-
prove its accuracy we combine it with a local gradient search
strategy. The registration framework is tested both on sim-
ulated and experimental data sets forcing large rotations and
translations. Results in terms of success rate and execution
time, indicate the suitability of the proposed approach.

1. INTRODUCTION

Three-dimensional electron microscopy is a powerful tech-
nique that allows imaging macromolecular structures nearly
at their native state [1]. The micrographs obtained by the mi-
croscope are X-ray projections of the specimen under study
and they are reconstructed into a volume which is compatible
with the experimental data acquired. The resolution of these
reconstructed volumes range between 6 and 25 A.

This medium-resolution information can be complemented
with high-resolution data coming from X-ray diffraction ex-
periments, Nuclear Magnetic Resonance or molecular mod-
elling. These techniques produce high-resolution data of some
of the domains (pieces) of the macromolecular complex un-
der study. The combination of both kinds of information
(medium and high resolution data) provides a powerful tool
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to understand how each piece (known at high resolution) in-
teracts within the whole complex (known at a medium reso-
Iution) to perform a given biological function [1].

In order to combine these two data sources the spatial lo-
cation of the domain within the complex is needed. This is
a rigid registration problem in which the domain has six de-
grees of freedom (three translations and three rotations) to
fit within the bigger complex. In principle, there is no clue
about its location and the full space must be sought. Tradi-
tionally, it is done by maximizing the correlation of the two
volumes. Recently, the correlation has been computed locally
(only within the region occupied by the domain) and some
information about the molecule surface has been added [2].
However, the problem remains open since not always the al-
gorithm converges to the global maximum.

In this article, we study the possibility of replacing the
cross-correlation similarity measure by mutual information.
It is experimentally shown that the goal function in this lat-
ter case has fewer local maxima than that of cross correla-
tion. Furthermore, we employ a hybrid optimization tech-
nique that combines global and local strategies to correctly
and efficiently identify the position of the high-resolution do-
main within the medium resolution particle. In order to assess
the usefulness of the proposed registration algorithm, simu-
lated as well as experimental data were used.

2. METHODS

Main steps of the registration technique proposed to solve our
problem is shown in Figure 1. The key points we have worked
on to get a successful result are the similarity measure and the
optimization approach. The registration algorithm has been
implemented in C++ within the framework provided by In-
sight Segmentation and Registration Toolkit (ITK 2.1) [3].
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Fig. 1. Diagram of image registration steps

2.1. Similarity measure

The similarity measure establishes correspondence between
images by comparing pixel intensities or other image features.
In the literature many measures were proposed which proved
to be suitable for various applications [4]. In the context of
our problem the similarity measure more widely used is the
cross-correlation coefficient (CCC) [2]. In this work we pro-
pose to use mutual information (MI) [5] as an alternative, as
it is a good measure to detect nonlinear correlations between
voxels’ intensities adequate for images from different modal-
ities or different resolutions. We have actually used the im-
plementation of MI proposed by [6] and included in ITK 2.1.

A smoothing preprocessing step was performed on the
images to balance their resolutions. Moreover in order to re-
duce the influence of the background noise, MI was computed
only for those voxels whose intensity was greater than a given
threshold. Such masking is similar to calculation of local sim-
ilarity measures described in other works [7].

2.2. Optimization

The nature of our problem results in a similarity measure
function with many local minima apart from the global min-
imum. The main reason for this local minima is the uncon-
strained location of the high-resolution domain in the whole
complex and the possible symmetries found in the molecular
structures under study (see figures 3 and 4).

In such case finding the optimal solution poses a diffi-
cult task. Extensive search although frequently successful
requires much computation time which grows exponentially
with increasing number of parameters. On the other hand
gradient search based methods are easily attracted by local
minima and fail to find the best transformation parameters.
However computational cost and robustness are well balanced
by so-called global optimization algorithms.

Recently many new schemes for finding global optima of
nonlinear functions have been proposed. Some of them in-
clude: Nelder-Mead simplex algorithm, simulated annealing,
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Fig. 2. Example of the combination of the high-resolution
domain PDB-1a8d02 into the medium resolution fragment C
of the Tetanus toxin PDB-1A8d, as it would be reconstructed
from electron micrographs. Notice that both data sources are
three-dimensional.

genetic algorithms and stochastic equations. Differential Evo-
Iution (DE) is an evolutionary strategy introduced by Storn
and Price in 1996 [8] which proved to be very efficient in
many complex optimization tasks. The main advantages of
DE are its convergence properties, robustness and simplicity
of usage and implementation.

In the method a population of random parameter vectors
is generated and in every generation a set of new vectors is
constructed from already existing elements by the simple rule:

Vi g+1 = Ly, +F- (QTZ,G _gm,G) ’
1=1,2,., NP, (1)

where v; o1 i a new perturbed vector, z; « is a population
vector, 71,72, r3 are random numbers, G is the generation
number, F' is a weighting factor and N P is the population
size.

The resulting vector v; 4, is then compared to another vec-
tor randomly drawn from the population. The one that yields
the best value of the objective function is retained for the next
generation. Additionally, in order to increase diversity of the
population, crossing-over with probability C'R can be intro-
duced. The algorithm is repeated a selected number of gener-
ations G (there is no stopping condition).

In most cases DE optimization converges to a solution
near to the global minimum, however it often fails to find pre-
cisely the optimal transformation. In order to improve the
accuracy we introduced a hybrid algorithm (DE+G). First, a
rough solution is found by means of DE and then it is refined
by Regular Step Gradient Descent (RSGD) method.

3. EXPERIMENTS

In order to assess the usefulness of the proposed registration
algorithm, simulated as well as experimental data were used.
The full complex of the simulated data was generated from
the C fragment of the Tetanus toxin (entry 1a8d in the Protein
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Fig. 3. Local correlation coefficient calculated at different
rotation angles.

Data Bank (PDB, http://www.rcsb.org/*pdb*)) and its resolu-
tion was computationally lowered to 8A. Its second domain
(1a8d02, from aminoacid 247 to aminoacid 452), an all 3
structure, was lowered to 3A and the goal was to find the lo-
cation of this domain within the full complex. The sampling
rate for the full complex was 2A/pixel while for the domain
was 1A/pixel (Figure 2).

The chaperonin GroEL of E. Coli was used as the first
experimental case (entry 1081 in the Macromolecular Struc-
ture Database, MSD (http://www.ebi.ac.uk/msd/index.html)).
This entry is an experimental reconstruction at 6 A resolu-
tion of the protein. The resolution of domains 1, 2 and 3 of
chain B of GroEL (entry loel in PDB) was lowered to 3A.
The sampling rate was 1 A/pixel for the three domains and
the protein.

A second set of experimental data was used: the structure
of N-ethyl maleimide sensitive factor at 11A resolution as
experimentally reconstructed (MSD entry: 1059) was used as
the full complex to find its D2 domain (PDB entry: 1d2n).
The resolution of the domain was lowered to 3A. The sam-
pling rate was 1 A/pixel for both volumes.

The previously described data were originally pre-aligned,
and therefore the location of the domains in the full proteins
were known. This data setting allowed us to perform multi-
ple experiments altering the location of the subdomains with
different ranges of translations and rotations.

The following experiments were then conducted on the
Tetanus toxin data set. First, the MI and CCC similarity mea-
sure functions were compared for different ranges of rota-
tions. Secondly, the hybrid optimization (DE+G) method pro-
posed was tested in terms of efficiency and success rate in
comparison to DE and RSGD. A registration is considered
successful if the difference between the attained MI value and
the known optimum one is smaller than 10% of the latter.

Finally, different experiments were conducted taking into
account all the test data sets to tune the algorithm parameters
in order to get a good compromise between success rate and
efficiency.
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Fig. 4. Mutual information calculated at different rotation an-
gles.

4. RESULTS

The comparison of MI vs CCC similarity measures can be
observed in figures 3 and 4 calculated for different angles of
rotation around two perpendicular axes. Figure 3 shows the
landscape of the CCC objective function. There is a global
minimum but surrounded by many local minima. Figure 4
shows the MI similarity function with a single well pronounced
global minimum corresponding to the best alignment of the
two images.

Optimi-  Correct Mean Error [rad] Time

zation o 1) y [s]

Gradient  15/31 -0.14 0.11 -0.10 5.6
(48%) +0.51 +0.60 +1.49

DE 31/31 -0.03 0.02 0.02 41.9
(100%)  +0.16 +0.15 +0.16

Hybrid 31/31 -0.002  -0.012 0.000 454
(100%) 4+0.008 +0.038 +0.019

Table 1. Efficiency and accuracy of optimization algorithms
after 31 experiments with angles in range of —m =+ rad. Suc-
cessful rate, mean error of final angles and approximate eval-
uation time of one registration are given.

Table 1 compares evaluation time and accuracy of the
three different optimization methods. RSGD is the fastest
one, but fails for more than 50 % of initial conditions. Al-
though DE optimization needs much more metric evaluations
(> 1000) and consequently is much slower, it proves to be ro-
bust and accurate. The accuracy of the method can be further
improved with little computational overhead by usage of hy-
brid approach which gives ten times better estimation being
only 10 % slower.

In order to evaluate the described registration technique in
real world problems we performed a series of tests in which
correct alignment of the molecules was estimated for 50 ran-



dom initial orientations of the domain. In spite of the fact that
initial rotation angles range from — to 7 radians most of the
solutions come very close to global optimum of MI while only
few registrations fail. Unfortunately if translations are also
introduced number of correct solutions decreases. In Table
2 accuracy of the hybrid optimization (NP = 30, G = 60,
F =04, CR = 0.9) is evaluated as a function of a range of
initial displacements along one of the axes (OZ). When initial
translation is increased the number of successful registrations
slightly decreases.

Initial Mean Error [rad] / [pixels] Correct
AZ @ I6} y Z
+1 -0.11 -0.04 0.02 0.05 45/50
+0.75 +0.39 4+0.56 +0.48 | (90%)
+5 0.22 0.03 0.12 0.18 40/50
+0.62 +0.87 +0.90 =+0.65 | (80%)
+9 -0.01 0.18 0.07 0.22 39/50
+0.76 +0.82 +0.72 +0.58 | (78%)
+15 -0.07 0.16 -0.08 0.17 38/50
+0.89 +0.81 +0.92 +2.59 | (76%)

Table 2. Accuracy of registration as a function of the range
of initial translation parameters (AZ). Translations X and Y
were fixed while angles varied in range of —7 < 7 radians.

Finally the same type of experiment was conducted tak-
ing into account all data sets and all possible translations and
rotations. It should be remarked that the range of initial trans-
lations is large (20 pixels). Different values for the algo-
rithm parameters were tested to find a good compromise be-
tween success rate and efficiency. Table 3 shows the success
rates for parameter values NP = 60, G = 200, F = 0.1,
CR = 0.5. With this setting the registration time was 75 sec-
onds in a standard PC (AMD Athlon XP 3200+). Success rate
can be improved by increasing the parameters N P and G, at
the expense of longer the computation times.

Images
Domain Molecule | Correct
PBD-1a8d02 PBD-1a8d 65%
PBD-1oelB1 MSD-1081 95%
PBD-10elB2 MSD-1081 76%
PBD-10elB3 MSD-1081 95%
PBD-1d2n  MSD-1059 86%

Table 3. Successful registration rate for the simulated (PBD-
1a8d ) and experimental (MSD-1059, MSD-1081) data sets.
Registration was run for 20 random initial parameters - all
translation parameters (X,Y and Z) varied in the range of
—20 =+ 20 and all rotations in the range of —7 + 7.
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S. CONCLUSIONS

In this paper, we have examined the problem of fitting atomic
models into three dimensional electron microscopy maps (3D
EM). We proposed using mutual information as a similarity
measure which outperforms more popular correlation coeffi-
cient. Its accuracy was further improved by applying mask
to input images which reduces contribution of background
noise.

Moreover we have described a new optimization algo-
rithm which is the combination of differential evolution and
gradient search strategies. Our experiments prove that it is
robust and flexible and performs very well even applied to
complex, non-linear objective functions. The algorithm com-
pares favorably to local search methods which usually depend
strongly on initial conditions.

In our study registration was successful in more than 65 %
of cases (for the worst case) in a trial setting of large transla-
tions and rotations. This percentage could be improved at the
expense of longer computation times. Results seem promis-
ing and should be confirmed on more experimental data.

6. REFERENCES

[1] M. van Heel, B. Gowen, and R. Matadeen, “Single-
Particle electron cryo-microscopy: Towards atomic reso-
lution.” Quarterly Review of Biophysics, vol. 33, pp. 307—
369, 2000.

[2] P. Chacon and W. Wriggers, “Multi-resolution contour-
based fitting of macromolecular structures.” J Mol Biol,
vol. 317, no. 3, pp. 375-384, Mar 2002.

[3] L. Ibanez, W. Schroeder, L. Ng, and J. Cates, The ITK
Software Guide. Insight Software Consortium, 2003.

[4] B. Zitova and J. Flusser, “Image registration methods: a
survey,” Image Vision and Computing, vol. 21, pp. 977—
1000, 2003.

[5] P. Viola and W. M. Wells III, “Alignment by maximiza-
tion of mutual information,” International Journal of
Computer Vision, vol. 24, no. 2, pp. 137-154, Sept. 1997.

[6] D.Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and
W. Eubank, “Nonrigid multimodality image registration,”
in Medical Imaging 2001: Image Processing, July 2001,
pp- 1609-1620.

[71 M. G. Rossmann, M. C. Morais, P. G. Leiman, and
W. Zhang, “Combining X-ray crystallography and elec-
tron microscopy.” Structure (Camb), vol. 13, no. 3, pp.
355-362, Mar 2005.

[8] R. Storn and K. Price, “Minimizing the real functions of
the ICEC’96 contest by differential evolution,” in IEEE
Conference on Evolutionary Computation, 1996.



