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ABSTRACT

In this article we propose and validate a fully automatic

tool for emphysema classification in Computed Tomogra-

phy (CT) images. We hypothesize that a relatively simple

Convolutional Neural Network (CNN) architecture can learn

even better discriminative features from the input data com-

pared with more complex and deeper architectures. The

proposed architecture is comprised of only 4 convolutional

and 3 pooling layers, where the input corresponds to a 2.5D

multiview representation of the pulmonary segment tissue to

classify, corresponding to axial, sagittal and coronal views.

The proposed architecture is compared to similar 2D CNN

and 3D CNN, and to more complex architectures which in-

volve a larger number of parameters (up to six times larger).

This method has been evaluated in 1553 tissue samples, and

achieves an overall sensitivity of 81.78 % and a specificity

of 97.34%, and results show that the proposed method out-

performs deeper state-of-the-art architectures particularly

designed for lung pattern classification. The method shows

satisfactory results in full-lung classification.

Index Terms— Computed Tomography, Emphysema,

Tissue Classification, Convolutional Neural Networks

1. MOTIVATION

Chronic Obstructive Pulmonary Disease (COPD) is the fourth

leading cause of death worldwide, and it is estimated to be the

third one in a few years, which has led to an increasing inter-

est of population studies that allow a better understanding of

its patophysiology. COPD is defined as persistent obstruction

of the airways. It can be divided into two main phenotypes:

chronic bronchitis and pulmonary emphysema that causes an

overall decrease in the lung elasticity affecting the lung tis-

sue. The progression of emphysema has traditionally been

evaluated by spirometric pulmonary function tests (PFTs), al-

though nowadays it is considered as a non-specific parameter

and non-sensitive to very early stages of the disease.
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Densitometric analysis in chest CT is widely accepted as

an alternative measurement of pulmonary emphysema more

specific and sensitive than PTFs for in vivo studies [1]. This

method is based on the choice of a Hounsfield threshold in-

side the lung mask to discriminate between emphysematous

and non-emphysematous tissue. Although a densitometric ap-

proach may be able to quantify the disease extension, it may

not be able to classify it into different subtypes. That is why

other methods based on texture information [2–4] or local his-

tograms [5] have been proposed to carry out an emphysema

subtype classification.

Recently, two approaches have been published to tackle

the parenchyma patterns classification problem employing

CNNs [6, 7]. In [6], a specific CNN to classify 2D patches

into interstitial lung patterns was proposed, whereas [7] used

the same CNN proposed in [6], but pre-trained with a variety

of texture data.

In this work we aim to compare these previously proposed

CNN architectures in the emphysema subtyping problem with

respect to 3D, 2.5D (multi-view) and 2D simpler architec-

tures.

2. METHODS

In this work, we proposed a CNN for objective and auto-

mated classification of emphysema patterns on chest CT im-

ages, considering a total of six radiographic tissue patterns:

normal parenchyma (NP) and five emphysematous subtypes

(paraseptal (PS), panlobular (PL) and mild, moderate and se-

vere centrilobular (CL1, CL2, CL3) emphysema).

Deep architectures usually include hundreds of thousands

of parameters, imposing considerable computation and a large

number of training samples. In this work, we propose a rela-

tive simple architecture with a reduced number of parameters

that tackle the emphysema classification problem considering

a 2.5-dimensional representation of the input data. To jus-

tify the usage of the proposed architecture, we compared it to

different 2D- and 3D- CNNs, as well as the CNN proposed

in [6]. We also compared the proposed method with a state-

of-the-art work for emphysema subtypes discrimination that

uses local intensity probability distribution functions subse-

quently classified with a KNN classifier [5].
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Fig. 1: Proposed multi-view CNN (2.5D CNN) for emphysema classification. 2D and 3D architectures are the same as the

2.5D network, except for the input dimensionality, and the convolutional operations in the 3D case. Filter size and pooling size

in convolutional (CONV) and max-pooling (MAX) layers specify their size on each dimension (2D or 3D depending on the

architecture).

2.1. Multi-view Convolutional Network (2.5D CNN)

2.1.1. Architecture

The proposed multi-view CNN architecture is shown in Fig-

ure 1, and it is composed of 4 convolutional, 3 max-pooling

layers and 3 fully-connected layers. The input of the network

consists of a multi-view (2.5D) representation of pulmonary

segment tissue under study. Therefore, the input is comprised

of three 2D patches of size 31x31 pixels, corresponding to the

axial, sagittal and coronal views.

Emphysematous patterns in CT images are mainly char-

acterized by local texture patterns. To capture these local pat-

terns and to reduce the complexity of the network, and hence

the number of parameters, we use relatively small kernels in

the convolutional layers and reduce the number of pooling

operations through the network compared to standard convo-

lutional networks.

The network training is based on an optimization prob-

lem that minimizes the loss function. In this work we use

the Stochastic Gradient Descent (SDG) method updated with

Nesternov momentum [8] to minimize the categorical cross

entropy.

2.1.2. Overfitting prevention

Convolutional Neural Networks easily overfit the training

data. In this work we apply 4 different techniques to prevent

and reduce the overfitting. First, we have applied a regular-

ization of the loss function. L2 regularization penalizes the

square magnitude of the parameters (w) in the loss function

by adding the term 1/2λw2, where λ is the regularization

strength. This method penalizes sharp changes in the param-

eters preferring soft ones. The second technique employed

is data augmentation. We apply data augmentation using

7 different spatial transformations by rotating 90, -90 and

180 degrees, flipping along horizontal and vertical axes and

combining both transformations over the training dataset.

Another prevention technique is early stopping, where the

training stage is stopped before overfitting process begins.

Finally, we have applied dropout to prevent the overfitting,

by randomly dropping units with a given probability (p=0,5)

from the network during training.

2.2. Comparative methods

2.2.1. 2D and 3D CNN

For comparative purposes, we also designed the 2D and 3D

versions of the proposed architecture. Both networks have

the same configuration as the one proposed with the only dif-

ference that the convolutional operations in the 3D CNN are

made in three dimensions.

For the 2D CNN, the input consist of an image patch of

size 31x31 pixels in the axial plane, whereas for the 3D CNN,

the input corresponds to a 3D segment of size 31x31x31 pix-

els (see Figure 1).

2.2.2. State-of-the-art CNN

To justify the usage of the proposed CNN we also re-

implemented the CNN proposed in [6], where the authors

focused on detecting patterns of interstitial lung diseases

from 2D patches. The input of the CNN is a 32x32 image

patch which is convolved by a series of 5 convolutional layers

with 2x2 kernels, and followed by one average pooling with

size equal to the size of the final features maps. Finally, the

classification stage is comprised of 3 fully-connected layers.

The authors proposed the use of LeakyReLU as a non-

linear activation function for both convolutional and fully-
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Table 1: Description of the dataset and distribution along dif-

ferent emphysema patterns.

Lung pattern NP PL PS CL1 CL2 CL3

Num. Samples 447 250 152 223 299 182

connected layers, and Adam optimizer for minimizing the cat-

egorical cross-entropy during training.

3. EXPERIMENTS AND RESULTS

3.1. Dataset and Evaluation setup

267 CT scans were selected from the COPDGene study. CT

scans were acquired with equipment from 3 vendors and a

total of 9 different models. Through these scans, an expe-

rienced pulmonologist manually placed 1553 points corre-

sponding to six different radiographic patterns (see Table 1).

This database has been previously used for automated emphy-

sema classification in [9]. Of all of these points, 390 were ran-

domly selected for testing (around 25%), while the remaining

points were randomly split using a 10-fold cross validation

scheme leading to the training and validation sets. The fi-

nal evaluation of the proposed method as well as a compari-

son with other CNNs and state-of-the-art methods were car-

ried out on the test set. Training sets was used for training

the algorithms, while the validation sets were used to hyper-

parameter tuning of the proposed architecture.

To evaluate the methods, we consider the sensitivity (SN),

specificity (SP), geometric mean (GM) and balanced accuracy

(BA), defined as:

SN =
TP

TP + FN
SP =

TN

TP + FP

GM =
√
TP ∗ TN BA =

SN + SP

2

(1)

, where TP, FP, TN and FN stand for true positives, false pos-

itives, true negatives and false negatives rates respectively.

3.2. Validation

The proposed multi-view CNN, as well as other CNNs are

trained on Regions of Interest (ROIs) extracted around the

manually labeled points. The size of the ROIs are selected

in accordance with each network architecture as described in

Sections 2.1.1 and 2.2.1.

The only pre-processing performed on the dataset was

subtracting the mean and dividing by the standard deviation

computed on the training and validation sets to normalize the

image ROIs.

The framework used in this work to train the CNNs is

based on Theano and Lasagne libraries using a PC with GPU

NVIDIA TITAN X Pascal 12GB, CPU Intel Core i7 3.6 GHz

and 32GB of RAM.

Table 2: Comparison of the proposed CNN (bold) with other

CNNs architectures. Results are computed on the indepen-

dent test set. Evaluation metrics (SN, SP, GM, BA), the num-

ber of parameters involved and the time needed to train each

CNN are reported.

Method 2D 2.5D 3D Lung-CNN [6]

SN(%) 78.52 81.78 82.52 77.20

SP(%) 96.79 97.34 97.10 96.45

GM(%) 87.18 89.22 89.51 86.33

BA(%) 87.66 89.56 89.81 86.86

#Params 68918 69494 157558 467426

Time(s) 19.68 20.48 240.4 137.3

3.2.1. Comparision to other CNNs

Table 2 provides a comparison of the proposed multi-view

CNN with other CNNs, including the 2D and 3D version of

the latter, as well as the network proposed in [6]. All the net-

works were trained with the same samples, and tested in the

same test set. As derived from the Table 2, the proposed 2.5D

CNN achieves analogous results to those obtained using the

3D CNN, while keeping the same small number of parameters

and the same training time as in the 2D CNN case.

The proposed method also outperforms the CNN pro-

posed in [6], and considerably reduces the computational cost

by a factor around 6 to 7 in terms of number of parameters

involved in the architecture and training time.

3.2.2. Comparison to Local Histogram

As an additional comparative study, we also compared our

proposed method against a reference method in emphysema

classification. This method has been previously detailed

in [5]. Briefly, the local intensity distribution of a two-

dimensional ROI of size 31x31 pixels is computed using

a kernel density estimator (KDE), and a k nearest neighbors

(kNN) classifier assigns each ROI local histogram to its corre-

sponding emphysema pattern based on a majority consensus

from the k nearest training samples.

Our proposed method outperforms the results achieved

by [5], which obtained a sensitivity (SN) of 44.75%, speci-

ficity (SP) of 88.39%, geometric mean (GM) of 60.65% and

balanced accuracy (BA) of 66.57%. Although the training

time of [5] is lower than the time needed to train the proposed

CNN, the classification time is much higher due to the need

to compute the KDE features.

3.2.3. Analysis of the method’s performance

Figure 2 shows the confusion matrix of the proposed 2.5D

CNN. As can be seen, misclassifications generally occurred

within the centrilobular emphysema classes, due to their com-

mon nature that differ only by the disease stage. Confusion er-

ror also occurred between severe centrilobular (CL3) and pan-
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Fig. 2: Confusion matrix of the proposed method.

Fig. 3: ROC analysis for the proposed CNN and state-of-

the-art approaches. The ROC curves are obtained by macro-

averaging over all classes. The area under the curve (AUC)

are also reported.

lobular (PL) emphysema, since both classes involve a large

parenchyma destruction.

Figure 3 shows the macro-average ROC curves and the

area under the curve (AUC) for the proposed CNN and state-

of-the-art methods, where it can be seen that the proposed

method achieved the highest AUC.

For a further validation, we performed full-lung classifi-

cation on a severe emphysema CT scan (Figure 4). The clas-

sification was carried out at a sampling grid of 5x5x5 pixels

in each axial image slice. The rest of the voxels were classi-

fied using nearestneighbor interpolation. An expert evaluator

confirmed the good agreement of the resultant classification.

4. CONCLUSION

In this work, we present a relatively simple Convolutional

Neural Network (CNN) architecture for automated emphy-

sema classification in CT images, considering six different

tissue classes, including normal parenchyma and five emphy-

sematous patterns. The proposed architecture, which is com-

posed of 4 convolutional and 3 pooling layers, is consider-

ably simpler than other deeper state-of-the-art architectures

proposed in the literature that are specific for lung pattern

Fig. 4: Full-lung classification results for a severe emphysema

case.

classification [6], reducing the computational cost by a fac-

tor around six to seven, and outperforming the results.

Additionally, we showed that the 2.5D proposed approach

is optimally cost effective, since it is able to reflect 3D infor-

mation and achieve similar results to those obtained with 3D

CNNs, and have similar computation cost compared to 2D

approaches.

To train and test the proposed method, we used 1553 man-

ually labelled tissue samples corresponding to six different

tissue classes. Visual inspection of full-lung classification

and results in the test set (sensitivity of 81.78%, specificity

of 97.34%) prove the potential of the method for emphysema

detection and classification.
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