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Abstract— Malaria eradication of the worldwide is currently
one of the main WHO’s global goals. In this work, we focus
on the use of human-machine interaction strategies for low-
cost fast reliable malaria diagnostic based on a crowdsourced
approach. The addressed technical problem consists in detecting
spots in images even under very harsh conditions when positive
objects are very similar to some artifacts. The clicks or
tags delivered by several annotators labeling an image are
modeled as a robust finite mixture, and techniques based on
the Expectation-Maximization (EM) algorithm are proposed for
accurately counting malaria parasites on thick blood smears
obtained by microscopic Giemsa-stained techniques. This ap-
proach outperforms other traditional methods as it is shown
through experimentation with real data.

Index Terms— Crowdsourcing, Malaria thick smear, EM
algorithm, robust clustering.

I. INTRODUCTION

Malaria is a serious infectious disease that is widespread in
tropical and subtropical regions around the equator. Manual
microscopic examination of Giemsa-stained thick and thin
blood films is the gold standard approach to diagnose this
disease. However, reliable detection of malaria parasites in
microscopic images demands for trained technicians result-
ing in a very expensive and time consuming strategy. There-
fore, automated methods for enumeration and identification
of malaria parasites in an unsupervised manner are highly
advised (see [1] for a comprehensive review).

The vast majority of automated processes have been
developed using thin blood films since the parasite specie
of the infection becomes easier to identify as the parasites
remain inside Red Blood Cells (RBCs). Thus, different image
processing strategies using thin blood films are found in [2],
[3], [4], [5], [6], and most of them follow a similar workflow.
After the image acquisition and digitalization there is a pre-
processing or filtering step to reduce the noise and smooth
the image. Afterwards, in the image segmentation step, RBCs
are delimited using, for instance, circular Hough transform
[2], Otsu thresholding and watershed [3] or gradient edge
techniques [4], [5]. The feature extraction step, generally,
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consists on assigning some features related to size or color
to each identified potential RBC, and finally, in the classifier
step, the parasites are sorted into species by applying a
classification algorithm, such as SVM [3], a feedforward
Neural Network (NN) [5] or a recursive NN [6].

Still, the reliability in detecting and counting parasites is
higher with thick blood films due to its higher concentration
of parasites. For instance, this is exploited in [7] where,
after an image segmentation process, the stained chromatin
regions are identified as potential parasites, and their size
is used as the feature to classify them into positive or
negative. Accuracy achieved both on positive and negative
rate outperforms, in some cases, automated methods using
thin films.

To the best of our knowledge, [8] and [9] are two innova-
tive projects that have gone one step further in the automation
process of malaria diagnostics by the development of human-
machine algorithms based on processing crowdsourced data.
Through dedicated on-line gaming platforms, these projects
offer digitized blood images through the web to volunteers
who deliver their tags to be processed by a central de-
cision algorithm. Whereas in [8], [10] single-cell images
of thin smears are uploaded to the platform and a binary
decision on each RBC is taken based on multiple gamers,
the approach in [9] is based on a new tool for parasite
counting on thick blood smears. In [9], clicks of several
gamers located around the same position and pointing at
potential parasites are firstly grouped together. A quorum
algorithm is implemented afterwards to label each group as
positive or negative. Although good accuracy results were
reported in [9], some open issues remain unsolved as the
analysis of crowdsourcing potential to count parasites with
more heterogeneous recorded images and the exploration of
more complex algorithms to combine the clicks of several
gamers. Our work addresses these challenges, analyzing
images taken from thick blood smears in heterogeneous
environment conditions and applying strategies based on the
Expectation-Maximization (EM) algorithm [11] in both, the
potential parasites identification stage and the final labeling
process of each potential parasite.

The rest of this paper is organized as follows. A two-
stage algorithm is presented in section II to count malaria
parasites using crowdsourced data. Results and discussions
are presented in section III and finally section IV concludes
the work.
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II. TWO-STEP ALGORITHM

Our approach consists of two stages: an unsupervised soft
clustering of the tags where potential parasites are identified,
followed by a labeling of those potential parasites for a
final decision. The algorithm for the first stage has been
presented by one of the authors and tested with synthetic
data in [12], whereas for the second stage we design a
detection algorithm based on [13], considered a pioneering
work on latent variable models applied to crowdsourcing.
In this work, these two algorithms are linked together and
tested on Malaria parasite quantification using crowdsourced
data. For the sake of clarity, we continue with some notation
and a brief description of the proposed clustering algorithm.
Afterwards, we present an intermediate step that links the
results of the clustering stage to the detection stage, and
finally we present the detection stage.

A. Clustering Stage

Let’s assume that clicks of R gamers tagging a digitized
microscopic blood image are available. The number of clicks
delivered by the rth gamer is denoted by Nr for r =
1, · · · , R, and the set of clicks of gamer r is given by Xr :=
{xr,i ∈ R2×1;∀i = 1, .., Nr}. Fig. 1 shows with crosses the
clicks of 20 gamers in an image. These clicks are modeled as
a mixture of M Gaussian components, which correspond to
the potential malaria parasites, plus a uniformly distributed
random variable that captures outliers corresponding to tags
marked by inexpert or malicious gamers. Assuming indepen-
dence among gamers, the likelihood function of all clicks
X := {X1, · · · ,XR} is therefore given by

f1(X ;θ1) =
R∏
r=1

Nr∏
i=1

(
pr

M∑
m=1

πm N (xr,i;µm,Σm)

+ (1− pr)gU (xr,i

)
(1)

where N (xr,i;µm,Σm) is the likelihood function of click
xr,i given the mth Gaussian component with mean µm
and covariance matrix Σm for m=1, . . . ,M ; {πm;∀m=
1, · · · ,M} are the probability of occurrence of the Gaussian
components or potential parasites; gU (·) is the pdf of a
2-dimensional uniformly distributed random variable with
support the set of pixels’ coordinates of the image; and
{pr;∀r=1, · · · , R} is the probability that a click provided
by gamer r corresponds to one potential parasite. Vector θ1
gathers the set of all unknown parameters, namely

θ1:=[M;µ1; ...;µM;vec(Σ1);...;vec(ΣM );π1;...;πM ;p1;...;pR].
(2)

Interestingly, the set of parameters {pr;∀r = 1, · · · , R}
provides gamers’ reliability; the more pr is close to 1, the
more reliable is the rth gamer.

The clustering algorithm presented in [12] estimates the
parameter vector in (2) by maximizing the log-likelihood
function in (1) using a numerical approach based on the
EM algorithm. The proposed algorithm initializes θ1 con-
veniently, and operates in an iterative fashion alternat-
ing between an expectation (E) step and a maximization

(M) step. In the E-step it basically updates the value of
{αr,i;∀r, i}, which denotes the a posteriori probability that
click {xr,i;∀r, i} corresponds to a potential parasite given
a previous parameter estimate. In the M-step the parameter
estimates in (2) are updated for being used in the next
iteration. The estimation of the number of Gaussian com-
ponents or potential parasites M is incorporated into the
algorithm by: (a) assuming a Dirichlet-type prior for the
{πm;∀m=1, · · · ,M} that promotes sparsity in the mixture,
and (b) computing the Bayesian Information Criterion as a
criterion to terminate EM iterations and to select M . Further
details of the algorithm can be found in [12]. The clustering
algorithm obtains an estimated value of the parameters which
is denoted by θ̂1, in such a way that not only assigns soft
labels of each tag to clusters, but also rates gamers according
to their performance, given by {p̂r;∀r = 1, · · · , R}, and
estimates the optimum number of potential parasites in M̂ .

B. Intermediate Step

After clustering, some preliminary tasks are implemented
before the detection algorithm. Firstly low reliable tags, i.e.,
{xr,i;∀r, i} such that α̂r,i < 0.5, are discarded from the data
set. Then, a set of vectors {ym ∈ RR×1;∀m = 1, · · · , M̂},
is generated such that the rth entry yrm = 1 if there exists a
tag xr,i ∈ Xr that satisfies

π̂mN (xr,i; µ̂m, Σ̂m) > π̂nN (xr,i; µ̂n, Σ̂n); ∀n 6= m

π̂mN (xr,i; µ̂m, Σ̂m) > π̂mN (xr,j ; µ̂m, Σ̂m);∀j 6= i

Otherwise, yrm = 0. So, the click xr,i is associated to
the mth Gaussian component if the Maximum A Posterior
probability of click xr,i given the mth Gaussian component
is the highest with respect to the set of clicks Xr of the
gamer rth and is the highest with respect to the Gaussian
component nth,∀n ∈ {1 . . . M̂}. Vector ym can be seen
as a set of R binary labels given by the gamers to the
mth potential parasite. So, after assigning labels following
the previous procedure, the data set in the second stage is
Y := {y1, ...,yM̂}.

C. Detection Stage

In the detection stage, we apply an EM algorithm based on
the work in [13]. This algorithm infers the gamers accuracy
in terms of the sensitivity and specificity parameters, the
prior probabilities and the unobserved true labels from the
gamers’ tags in a jointly manner. In our case, the distribution
of each vector ym is modeled as a mixture of two R-
dimensional Bernoulli distributions, the positive if the mth

potential parasite has been generated by a true parasite
and the negative otherwise, with µ and (1 − µ) as their
prior probabilities. We associate these probabilities to a
binary random variable ω, i.e. Pr{ω = 1} = µ. The
likelihood function of the data set Y is then parametrized
by θ2 := {µ,ρ1,ρ0} where {ρ1,ρ0} ∈ RR×1 model the
sensitivity and the specificity of the gamers respectively, with
coordinates ρrk = Pr{yrm = k|ω = k}, for k ∈ {0, 1}

2284



and r = 1, . . . , R. Under these assumptions the likelihood
function of the dataset Y is

f2(Y;θ2) =
M̂∏
m=1

(
µB1(ym;ρ1)+(1−µ)B0(ym;ρ0)

)
(3)

where Bk(ym;ρk) is the conditioned probability function of
a multivariate Bernoulli distribution, i.e., for k ∈ {0, 1} and
m = 1, ..., M̂ ,

B1(ym;ρ1) =

R∏
r=1

(ρr1)
yrm(1− ρr1)(1−y

r
m)

B0(ym;ρ0) =

R∏
r=1

(ρr0)
(1−yrm)(1− ρr0)y

r
m

Since a closed-form maximization of f2(Y;θ2) is not pos-
sible, we resort to the EM algorithm. For this, we associate
a latent variable vm = {0, 1} with each vector ym so that if
vm = 1 means that the mth cluster is a parasite, and vm = 0
otherwise. The complete likelihood function is given in (4).

f(Y,V; θ2) =
M̂∏
m=1

(µB1(ym;ρ1))
vm((1− µ)B0(ym;ρ0))

(1−vm)
(4)

where V := {v1, ..., vM̂} is estimated by iterating till
convergence steps (5) and (6).
• E-Step: The expectation of the logarithm of the likeli-

hood function in (4) with respect to the latent variables
conditioned to the observed variables Y and given a
previous estimate of θ2 is obtained.

Q(θ2; θ̂2) = EV log(f(Y,V; θ2))

This step basically requires the computation of the
posterior probability of the latent variables as follows.

v̂m = Pr{vm = 1|Y;θ2}

=
µB1(ym;ρ1)

µB1(ym;ρ1) + (1− µ)B0(ym;ρ0)
(5)

• M-Step: The conditional expectation obtained in the E-
step is maximized with respect to the parameters θ2,
i.e. θ̂2 = argmaxθ2 Q(θ2; θ̂2) and leads to

µ̂ =
1

M̂

M̂∑
m=1

v̂m;

ρ̂r1 =

∑M̂
m=1 v̂my

r
m∑M̂

m=1 v̂m
; ρ̂r0 =

∑M̂
m=1(1− v̂m)(1− yrm)∑M̂

m=1(1− v̂m)

(6)

To improve the robustness of the overall procedure, the
initial value of the variables v̂m,∀m are computed from the
estimated probabilities of the M̂ potential parasites identified
in the first stage, as v̂m = γπ̂m, where γ is a normalization
constant that sets the maximum value in V to 1.

The final hard counting of the parasites is obtained by
quantifying the soft label v̂m to {0, 1}, i.e. if v̂m > 0.5
the mth potential parasite is labeled as positive, otherwise is
labeled as negative.

III. RESULTS AND DISCUSSION

In this section, we apply the two-stage algorithm to
digitized images that were tagged by volunteers through the
MalariaSpot platform [9]. The first digitized smear (Fig. 1)
comes from the Health Investigation Centre of Manhiça,
Mozambique. For the acquisition of the image, the Malar-
iaSpot team used a Nokia Xperia Z2, a conventional light
microscope (Zeiss, model AX05COP2), and a on market
plastic adapter to attach and align the cellphone camera to
the ocular lens of the microscope. It is important to note that
using mobile phones decreases image quality compared to
using the standard technology for clinical image acquisition.
This is an extra challenge to the study. The digitized smears
have been analyzed more than 5,000 times by non-expert
volunteers. The ground truth were previously identified and
located by experts in this image.

A second image is presented in Fig. 2. It has been
recorded by the standard method, a camera mounted on
the microscope. This image is better quality so it has been
included in this work as a benchmark example.

To analyze the results we count true/false posi-
tives/negatives denoted by TP , FP , TN and FN . For
instance, TP c denotes true positives after the clustering
stage and FNd denotes false negatives after the detection
stage. Variable Np denotes the number of parasites or ground
truth. Using these measures, results are presented through the
sensitivity, i.e. the fraction of ground truth that are identified
as parasites and denoted as Sc at the clustering stage and as
Sd at the detection stage. Similarly we give the precision at
the clustering stage, P c, as the fraction of potential parasites
that are positive and the precision at the detection stage, P d,
as the fraction of diagnosed parasites that are positive indeed.

Sc =
TP c

Np
; P c =

TP c

TP c + FP c
;

Sd =
TP d

Np
; P d =

TP d

TP d + FP d
.

(7)

A. Clustering results

In Fig. 1 we show results of one single trial for the
Outliers-EM (OEM) algorithm presented in Section II-A, ap-
plied over a thick blood smear. The ground truth consists of
Np = 12 parasites. The OEM algorithm was initialized with
M = 50 centroids. By processing the clicks of 20 gamers,
M̂ = 33 potential parasites (final number of centroids) were
identified, divided into 12 TP c and 21 FP c. A second
example with Np = 14 parasites, is shown in Fig. 2, where
processing the clicks of 21 volunteers, M̂ = 18 potential
parasites (final number of centroids) were identified, divided
into 14 TP c and 4 FP c.

The performance of the clustering OEM method presented
in subsection II-A is compared to the well known K-means
and another EM-based method, presented in [14] and denoted
hereafter by EMC. EMC is less robust than OEM because
it does not include the uniform distribution in the density
mixture to model outliers. Sensitivity and precision after
clustering, i.e. Sc and P c, are provided for Fig. 1 in Table I
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Fig. 1. Example using the clicks delivered by 20 gamers; Ground Truth
and Potential Parasites (Centroids).
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Fig. 2. Example using the clicks delivered by 11 gamers; Ground Truth
and Potential Parasites (Centroids).

using 20 and 50 gamers and averaging 1000 random trials.
In each trial the games have been selected at random. For
OEM and EMC the number of potential parasites is equal
to M c = M̂ , whereas for K-means the number of potential
parasites M c is the number of clusters and has been selected
as twice the average number of clicks per gamer. Notice
that at the clustering stage it is crucial to achieve a large
sensitivity in order to not miss true parasites, otherwise
there would be no option to identify them in the second
stage. At a lesser extent, higher values of precision are
preferred to improve results after the detection stage. As
it can be seen in Table I, OEM outperforms the other two
algorithms both in sensitivity and in precision. Interestingly,
using 50 gamers, the sensitivity of OEM is almost equal
to 1 meaning that the identified potential parasites include
all ground truth after the clustering stage without decreasing

TABLE I
CLUSTERING SENSITIVITY&PRECISION. IMAGES I1 (FIG. 1), I2 (FIG. 2)

Clustering Sc P c Sc P c

Stage 20 gamers 20 gamer) 50 gamers 50 gamers

K-Means I1 0.6933 0.2608 0.7025 0.2607
EMC I1 0.6525 0.3087 0.8108 0.1860
OEM I1 0.9350 0.4265 0.9992 0.2782

K-Means I2 0.9900 0.4243 0.9855 0.4211
EMC I2 0.9391 0.8539 0.9586 0.4935
OEM I2 0.9989 0.9084 1 0.5150

precision significantly. This conclusion is more consistently
supported in Fig. 3 where the Empirical Cumulative Density
Functions are plotted for both, Sc and P c. As it can be seen,
OEM shows the higher sensitivity and precision.
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x
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K-Means
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OEM
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c
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Fig. 3. Sc (Top) and P c (Bottom) Empirical Cumulative Density
Functions, 50 gamers. Clustering stage. Image shown in Fig. 1

The performance of the clustering stage, concerning the
benchmark image shown in Fig. 2 (I2) is shown in table
I and Fig. 4, and it outperforms the results obtained with
image in Fig. 1 (I1) as expected.

B. Detection results

The performance of the detection stage is analyzed both
with data obtained using image shown in Fig. 1 and with
data obtained using image shown in Fig. 2. We have run
1000 random trials. In each one, after applying the OEM
algorithm at the clustering stage the EM detection algorithm
presented in subsection II-B has been checked and compared
to the well known majority voting (MV) rule in terms of the
measured sensitivity Sd and precision P d. To give a single
quality measure we have also computed the average F-score
(8), since frequently an algorithm outperforms in sensitivity
but not in precision or vice versa.

Fs =
2SdP d

Sd + P d
(8)

From detection results it is verified the tight relation
between precision and sensitivity. Given the number of FP
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Fig. 4. Sc (Top) and P c (Bottom) Empirical Cumulative Density
Functions, 50 gamers. Clustering stage. Image shown in Fig. 2

TABLE II
DETECTION SENSITIVITY & PRECISION. IMAGES I1 (FIG. 1), I2 (FIG. 2)

Detection 21 gamers 21 gamers 51 gamers 51 gamers
Stage Sd P d Sd P d

MV I1 0.5699 0.8390 0.5724 0.8645
EM I1 0.7098 0.8068 0.8253 0.8017

MV I2 0.9899 0.9877 0.9364 0.9747
EM I2 0.9185 0.9917 0.9406 0.9738

obtained at the clustering stage, there is a trade-off, i.e. at the
detection stage the precision is improved at the expense of
worsen the sensitivity obtained at the clustering stage. From
the average F-score (8) shown in table III we can conclude
that EM and MV provide similar results when the clustering
stage works very well as with Fig.2 However, EM clearly
outperforms MV when results after clustering are worse, as
in Fig. 1 where images are measured in noisy conditions or
with decreased quality cameras.

IV. CONCLUSIONS

This paper addresses the problem of quantification of
malaria parasites in thick blood smears. A novel robust
unsupervised clustering and detection approach is proposed
to efficiently detect parasites present in crowdsourced im-
ages. The method delivers not only parasite positions but
also annotators’ reliability, and shows improved performance
compared to previous strategies. The method is tested and
validated using real experimental data. The images analyzed
are middle-parasitemia. Deeper analysis is required to adapt
the algorithms to low and high parasitemias.
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