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Abstract.- Few works have been done about the dependency of the quantization noise with the sampling rate for 
uniform quantizers. Some of these works have considered the problem from a determinis tic point of view while others 
study it from a stochastic one, having explained the noise behavior in some specific cases. By using computer 
simulations with a sinusoidal input signal, here we show that the quantization noise spectrum can show a discrete or 
complex structure depending on the sampling rate used. The results confirm that an integer ratio between the sampling 
rate (fr) and the frequency of the input signal (fs) produces a quantization noise with components in odd harmonics of 
the signal frequency. If there is not such integer ratio between fr and fs, then the quantization noise can present a 
stochastic structure for some rational ratios. An additional result is that the phase of the input signal can also modify the 
magnitude of the spectral components of the quantization noise. These results show that the quantization noise is clearly 
dependent on the input signal and the sampling rate. 
 
 
I. INTRODUCTION 
   

Since the development of pulse count modulation 
systems, there has been a large interest in the study of 
the structure and behavior of the quantization noise 
generated by an ideal uniform staircase quantizer. 
However, this work has shown to be difficult due to the 
nonlinearity of the system. By this reason, it is generally 
accepted the simplified model in which the quantizer 
noise is a uniformly distributed white noise, 
independent on the signal driven the quantizer. This 
approximation can lead to inaccurate predictions in the 
results as has been signaled in some references [1] [2]. 
By this reason some researchers have studied the 
quantization noise behavior either from a deterministic 
or from a stochastic point of view. Based on their 
models, partial descriptions of this behavior have been 
obtained.   

In this paper, after presenting a brief revision of 
several classic papers that analyze the quantization 
noise, the sampling and quantization processes are 
analyzed in some particular cases, where the generally 
accepted assumption of additive white noise is clearly 
not valid and where other previous results need to be 
reconsidered. By using computer simulations, the noise 
spectra will be obtained in these case and some 
conclusions will be presented. 

 
 
II. BACKGROUND 

 
The first two works that studied quantization noise 

in an ideal uniform quantizer, were those written by W. 
R. Bennet [3] and Clavier, Panter and Grieg [4]. Bennet 
established that if quantum values have sufficiently 
close spacing, the quantized wave can be 
indistinguishable from the original one. In that work, he 
also commented that the analog-to-digital conversion of 

a single- or double-frequency signal generated a ragged 
spectrum or a spectrum with discrete frequency 
components, although he did not analyze the 
distribution of those discrete components. He studied a 
signal having energy uniformly distributed throughout a 
definite frequency band or a signal with a large number 
of input components. In these cases, he obtained a 
quantization noise with a uniform spectrum or at least a 
spectrum with very smoothed irregularities.  

In the second work, Clavier et al. made a complete 
analysis of the quantizer noise from a deterministic 
point of view. They calculated the distortion produced 
by a step function when the input signal was a sine 
wave, considering an integer number of samples in each 
period of the signal. Under these conditions they 
obtained that the distortion components were always 
odd harmonics of the frequency of the input signal. 

In 1960, Widrow [5] presented what is referred to 
as the quantization theorem, and the uniform white 
noise assumption gained a wide popularity being now 
commonly used. Seventeen years after Widrow’s work, 
Sripad and Snyder [6], using a stochastic method, 
established a necessary and sufficient condition to 
model the output of a quantizer as an infinite-precision 
input plus an additive, uniform, white noise. Their result 
expanded the class of input distributions for which the 
quantization noise is white, as Widrow had established 
that the quantization noise density is uniform if the 
input has a band-limited characteristic function. Sripad 
and Synder included other input functions like variables 
with triangular or Gaussian density functions. 

Next, in 1981, Claasen and Jongepier [7] 
considered a model for the error spectrum which only 
required knowledge of the amplitude distribution of the 
derivative of the input signal. With this model, they 
determined that when the sinusoidal signal has 
sufficient variation, it can be assumed that the 
quantization error has a white spectrum. Their model 



also predicted, for signals with not sufficient variations, 
poles in the spectrum of the noise at discrete frequencies 

02 Xww π=  being the input signal ( ) ( )twXtx 0sin= . 

In 1999, a deterministic approach to the problem of 
quantization was proposed by Bellan et al. [8]. They 
confirmed the results presented by Claasen and 
Jongepier, but they did not mention the work by Clavier 
et al. nor that by Gray about the presence of odd 
harmonics of the signal fundamental frequency. In the 
study by Bellan, the effect of the phase appears in a 
complex exponential factor, thus not affecting the 
magnitude spectrum of the quantization error.  

Finally, Gray in his work published in 1990 [1], 
confirmed the result obtained by Clavier et al. about the 
structure of the quantization noise spectrum, but he 
concluded that the odd harmonics of the frequency of 
the sinusoidal signal appear in the noise spectrum 
independently on the value of that frequency and its 
relation with the sampling frequency. He obtained an 
expression where the phase of the signal also appears in 
a complex exponential factor and therefore it does not 
affect the magnitude spectrum. 

Then the aim of our work has been to confirm or to 
reconsider the conclusions reached by R.M. Gray in 
1990 and by Bellan et al. in 1999. Additionally, we tried 
to call the attention about an important aspect in the 
process of analog to digital conversion: it is a dynamical 
process, with a strong dependency on the sampling rate. 

 
       

III. METHOD 
 

In order to study the behavior of the quantization 
noise produced in the process of uniform quantization of 
a sinusoidal input signal, computer simulations with 
MATLAB were performed, under different conditions. 
Computer simulations allowed us to use classical 
roundoff, avoiding completely the effect of other factors 
appearing in the operation of an analog-to-digital 
converter, like jitter, integral and differential non-
linearity, thermal noise, etc.  

In all the cases, the sampling process is simulated 
by generating a time variable with values determined by 
the specified sampling frequency and taking values of 
the sinusoidal signal at times determined by the time 
variable. Then the samples are quantized and the 
quantization error computed. Finally, the spectrum of 
the unquantized signal, the quantized signal and the 
error signal are computed. Here we present only two of 
several simulations realized. 

 
1. Integer and non-integer relation between 

sampling and signal frequencies. 
The aim of this simulation is to show the behavior of 
quantization noise when the relation between the 
sampling and the signal frequencies is an integer or a 
non-integer number. The simulation has been done 
following the steps: 

- A sinusoidal signal with zero phase is generated 
with the maximum resolution permitted by the 
computer and oversampled at 40 Ksamples/s. On 
the whole, 4096 samples are produced. 

- The signal is then quantified to 188 levels. 
This procedure is repeated for signals with frequencies 
800 Hz, 800.1 Hz and 801 Hz. That means an 
oversampling factor of 50, 49.99 and 49.94, 
respectively. 
 

2. Relation between the signal phase and the 
structure of the spectrum of the quantized signal. 
The procedure followed in the previous simulation is 
repeated here for the signal with a frequency of 800 Hz, 

once with a zero phase and another with a phase of 
2
π

. 

     
IV. RESULTS  
 
1. Integer and non-integer relation between sampling 
and signal frequencies. 

As shown in Fig. 1 the spectrum of the unquantized 
signal  (quantization given only by MATLAB’ 
resolution) presents only one peak that corresponds to 
the signal frequency. 

   

 
Fig. 1. Spectrum of the unquantized sinusoidal signal 
(frequency 800 Hz, phase equal to zero, sampling rate 40 
Ksamples/s). 
 
 

Fig. 2. presents the spectrum of the same sinusoidal 
signal but now quantized with 188 levels. Here the 
spectrum of the sinusoid has several peaks in addition to 
the fundamental one. These peaks appear at all odd 
harmonics of the input signal fundamental frequency. 
This result agrees with that obtained by Gray [1] but 
here an integer relation (50) between the sampling rate 
and the frequency of the sinusoid is used. If the 
frequency of the signal is slightly changed (49.99 
instead of 50), then the power of the odd harmonics 
starts spreading in the frequency band establis hed by the 
sampling rate as shown in Fig. 3. This is an aspect that 
has not been presented before (at least at our 
knowledge). If the ratio between frequencies further 
differs from the integer value (now 49.93), the noise 
power spreads along the entire Nyquist band as is 
shown in Fig. 4. It must be remarked that for a large 
number of rational ratios, the spectrum acquires the 
structure that Gray presented, but this is not the case for 
all the ratios.  

 



 

 
Fig.2. Spectrum of the sinusoidal signal (800 Hz, zero phase, 
sampling rate 40 Ksamples/s) quantized using 188 levels. 
 
 
 

 
Fig. 3. Spectrum of a quantized sinusoidal signal of frequency 
800.1 Hz, sampled at 40 Ksamples/s.  
 
 

 
Fig. 4. Spectrum of a quantized sinusoidal signal of frequency 
801 Hz, sampled a t 40 Ksamples/s. 
 
 
2. Relation between the signal phase and the 
spectrum of the quantized sinusoidal signal. 
If the phase of the sinusoidal signal to be quantized is 
modified, the magnitude of the odd harmonics changes 
and, in some cases, some of the harmo nics can 

disappear. This effect can be appreciated comparing 
figures 2 and 5. The second and seventh odd harmonic 
have disappeared in fig. 5 or at least absorbed by the 
background level.  
 

 
Fig. 5. Spectrum of the quantized sinusoidal signal of 

frequency 800 Hz and phase 
2
π . 

 
Finally, it is important to say that similar results can 

be observed using undersampling. In the cases presented 
here, the possible aliasing could not be appreciated 
because high (aliased) harmonics would appear at 
frequencies of low harmonics. This aliasing would 
appear for example if using a sinusoid of frequency 
37.5KHz and a sampling rate of 4 Msamples/s. 

 
   

V.  CONCLUSIONS 
 

This work shows, as Gray and Claasen-Jongepier 
also showed, that it is not correct to model the output of 
a quantifier by an infinite precision signal plus additive 
white noise. When a sinusoidal signal is sampled and 
quantized, if the signal and the sampling frequencies 
have an integer, or in a large number of cases, a rational 
relation in the continuous time, the quantization error 
has odd harmonics of the input signal. This fact has also 
been observed by Kester [2] as he remarks that during 
the evaluation of analog-to-digital converters, discrete 
frequencies can appear in harmonics of the frequency of 
the input signal. But Kester does not mention that the 
quantization noise concentrates only in the odd 
harmonics, and that this accumulation can also appear 
for some other rational ratio different from the integer 
one. 

The harmonics disappear gradually or their power 
spreads in the whole band defined by the sampling 
frequency, as the signal or sampling frequencies change. 
This result is in contradiction with Gray’s results, as he 
says that the presence of harmonics is independent on 
the signal frequency or the relation between signal and 
sampling frequency. Gray’s analysis and Claasen-
Jongepier’s are still valid if their initial conditions are 
correct: if the quantization error is periodic or almost 
periodic, but this is only true, as we have shown when 
the relation between the input and the sampling 
frequencies is an integer or, in some cases, a rational 



number. The quantization noise presents a chaotic 
behavior because for some values of the relation 
between the signal and the sampling frequencies 
presents a very well defined structure, while for other 
values this structure is lost. 

The dependency with the signal phase should also 
be remarked. The harmonics amplitudes depend on 
certain degree of the signal phase, although the total 
error energy is obviously constant. Both Bellan et al. 
and Gray introduced the phase factor as a complex 
exponential, so it did not affect the magnitude spectrum. 

The presence of these harmonic components in the 
quantization error has to be considered when designing 
digital system that process analog signals. Although 
they are usually undesirable as they distort the digital 
signal, the effect could also be used to evaluate ADCs: 
the quantization noise could be well localized and any 
additional noise would be due to other sources . 
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