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a b s t r a c t

We have studied the properties of the pixel updating coefficients in the 2D ordered subsets

expectation maximization (OSEM) algorithm for iterative image reconstruction in positron

emission tomography, in order to address the problem of image quality degradation—a

known property of the technique after a number of iterations. The behavior of the updat­

ing coefficients has been extensively analyzed on synthetic coincidence data, using the

necessary software tools. The experiments showed that the statistical properties of these

coefficients can be correlated with the quality of the reconstructed images as a function

of the activity distribution in the source and the number of subsets used. Considering the

fact that these properties can be quantified during the reconstruction process of data from

real scans where the activity distribution in the source is unknown the results of this study

might be useful for the development of a stopping criterion for the OSEM algorithm.

© 2010 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Positron emission tomography (PET) produces quantitative

images that illustrate the distribution of a radiopharmaceu­

tical in a living organism that are employed for the extraction

of physiological or pathological information. PET imaging is

used in a wide area of medical disciplines such as oncology,

neurology, cardiology, and drug development [1–4].

PET images are produced following data acquisition in a

process known as image reconstruction. In contrast with ear­

lier systems where analytical algorithms have been employed

(such as filtered back projection (FBP), and directly adapted

∗ Corresponding author. Tel.: +30 210 7276938.
E­mail address: tzanakos@phys.uoa.gr (G. Tzanakos).

from X­ray computerized tomography systems), modern PET

systems typically employ iterative image reconstruction algo­

rithms based on statistical algorithms that better suit the

Poisson nature of positron emissions. A drawback of these

algorithms as compared to conventional analytical solutions

has been their high computational complexity. Due, however,

to the constant improvement of computing technologies, effi­

cient programming methodologies and clever implementation

techniques that employ symmetries [5] and other modeling

aspects, this weakness has been currently partially overcome.

Iterative image reconstruction algorithms initially calcu­

late a first estimation of the radioactivity distribution in the

source. This estimation is then forward­projected and there­

0169­2607/$ – see front matter © 2010 Elsevier Ireland Ltd. All rights reserved.
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upon the new estimated projections are calculated. In each

iteration the estimated and measured projections are com­

pared and a new estimate of the radioactivity distribution

is calculated. This procedure is repeated until a pre­defined

number of iterations have been performed or until the opti­

mum image has been obtained according to a pre­defined

criterion. The iterative algorithms that have been widely used

in PET scanners are the maximum likelihood expectation

maximization (MLEM) [6] and ordered subsets expectation

maximization (OSEM) [7].

The main advantage of iterative algorithms is that they

incorporate a model of the acquisition process in the image

reconstruction task. In PET imaging, the data acquired have

Poisson nature and the image quality is affected by atten­

uation, scatter and random coincidence effects. The entire

acquisition process can be modeled in the system matrix ˛.

Each element of this matrix represents the probability that

a gamma ray emitted by a pixel i is detected by a specific

pair of scintillation detectors in opposite positions, forming a

line of response (LOR) j. The MLEM algorithm solves the prob­

lem of image reconstruction by producing an estimate of the

true activity distribution in the source that would maximize

the probability to observe the measured counts. The OSEM

algorithm represents an accelerated variant of the MLEM algo­

rithm, where the projection data are grouped into subsets.

The incorporation of an accurate model of the acquisition

procedure in the system matrix, allows the MLEM and OSEM

algorithms to produce images with fewer artifacts than FBP.

On the other hand, iterative algorithms demonstrate a noise

degradation of the images produced as a result of the iterative

process. Various methods have been investigated for solving

this problem. One possible way is to stop the reconstruction

after an arbitrary number of iterations and then post­filter the

resulting image [8]. The most attractive method of this cate­

gory is the replacement of the ML criterion with a maximum

posteriori (MAP) criterion by applying a Bayesian prior [9,10].

A second method is to stop the reconstruction, based on a

specific stopping rule.

The present work deals with the study of several properties

of the updating coefficients in the OSEM algorithm that poten­

tially can give insights in the development of a stopping rule

for this iterative procedure. Different research groups have

tried to develop several stopping rules for the MLEM algorithm,

however to the best of our knowledge, there is no published

work on the development of a stopping rule for the OSEM

algorithm.

In 1987 and 1988 Veklerov and Llacer [11,12] proposed two

stopping rules for the MLEM algorithm, both based on the

minimization of two specific figures of merit (FOM). The first

FOM was part of the Pearson’s �2 test and the second was

a parameter similar to root mean square (RMS) error. Holte

et al. [13] proposed a stopping rule for the MLEM algorithm

based on a parameter that takes into consideration the pixel

values of both the initial and reconstructed images. Accord­

ing to this assumption this stopping rule cannot be employed

in studies with real data, because the true activity distribu­

tion in the source is unknown. Moreover, Bissantz et al. [14]

studied a stopping rule for the MLEM algorithm by taking into

account the residuals between the forward projected image

and the measured counts in each row of the sinograms. Finally,

our research group has also published works [15–18] on a

new stopping rule for the MLEM algorithm that focus on the

pixel updating coefficients generated in the iterative process.

In our last paper [18], the behavior of the updating coeffi­

cients was studied versus different image activities and the

result was a quantitative relationship among them. Based on

this assumption a stopping rule was developed. The proposed

methodology has been found to work quite well independent

of the level and the shape of the activity distribution in the

source and the stopping rule was found to depend only on

the total number of counts in each image. Motivated by this,

the study of the properties of the pixel updating coefficients

has been expanded for the case of the OSEM algorithm, which

in fact represents an accelerated version of the MLEM algo­

rithm. In practice, most clinical systems that employ iterative

image reconstruction utilize the OSEM algorithm instead of

the MLEM. Since the latter can be considered a special instance

of the OSEM algorithm (with number of subsets equal to one),

it is essential to study the behavior of the pixel updating coef­

ficient when employing a variable number of subsets.

This paper is organized as follows: in the subsequent sec­

tion there is a brief summary of the OSEM algorithm, the

model of the PET scanner employed, the methodology for the

calculation of the system matrix and the coincidence data

generation using Monte Carlo techniques. Section 7 presents

the results obtained from the analysis of the properties of the

pixel updating coefficients and focuses on the behavior of their

minimum value for the non­zero pixels in the phantom image.

The discussion makes evidence that a correlation can be found

between the minimum value of the updating coefficients vec­

tor and the quality of the reconstructed images.

2. Ordered subsets expectation
maximization (OSEM)

In the OSEM algorithm the data are grouped into ordered sub­

sets (OS). Consequently, the same procedure applied in the

pixel updating scheme of the MLEM algorithm is then applied

to the data of each of these subsets. The image acquired after

the first sub­iteration over one subset, constitutes the initial

image of the pixel updating scheme which employs the data of

the next subset and so on. The image obtained after one itera­

tion over n subsets in the OSEM algorithm, has been observed

to be visually similar to the image resulted after n iterations

of the MLEM algorithm over the complete set of data acquired

in the PET scan.

Let x
0 be a uniform initial image, and x

(k) be an estimation

of the true activity distribution x after k iterations. In addition,

let S1, S2, . . ., Sn represent the nth subset to which the data vec­

tor y has been divided into, i = 1, 2, . . ., I be the image pixels and

j = 1, 2, . . .., J the lines of response. With the above definitions

the mathematical formulation of the OSEM reads [7]:

xi
(k) = x

(k−1)
i

C
(k−1)
i

(1)

Ci
(k−1) =

1
∑

j ∈ Sn
aij

∑

j ∈ Sn

aijyj
∑I

i′=1x
(k−1)
i′

ai′j

(2)
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Fig. 1 – The eighteen slices of Hoffman brain phantom.

where yj represents the projected data in jth line of response

and ˛ij is the system matrix element. The coefficient C
(k−1)
i

updates the value of the ith pixel at iteration k. Eq. (2) shows

that C
(k−1)
i

depends only on the observed counts yj in each sub­

set and on the system matrix element ˛ij that corresponds to

that particular pixel and line of response, the value of which

is calculated once, during the initialization time. In studying

the behavior of the updating coefficients of the OSEM algo­

rithm for different number of subsets, we expect to have a

first indication about the correlation of the coefficient C and

the number of subsets. This is a study that further expands

the one that we performed about MLEM.

3. PET scanner configuration

For the study of the behavior of the pixel updating coefficients

in the OSEM algorithm, a single­ring PET scanner was sim­

ulated. The detector ring was composed of 128 scintillator

crystals with widths of 7.36 mm each. The size of the field of

view (FOV) was 200 mm × 200 mm. The radius of the detector

ring was 150 mm. The number of all possible lines of response

(LORs) was 8128. The image array size was 128 × 128 pixels that

each has a size of 1.56 mm. Monte Carlo methods was used to

simulate the operation of the PET scanner: the activity dis­

tribution in the source, the generation of annihilation events,

the gamma ray propagation and detection by the scintillator

detectors. All noise sources (Compton scattering, photoelec­

tric effects and random coincidences) have not been taken

into consideration. Two­dimensional (2D) data acquisition has

been assumed for this case, which corresponds to the case of

PET acquisition with septa.

4. The system matrix ˛

The system matrix depends entirely on the configuration and

the geometry of the PET scanner. For the calculation of the

system matrix Monte Carlo methods were used. In every pixel

of the image grid, 1 × 107 annihilation events were uniformly

generated and the resulting gamma rays isotropically dis­

tributed in the 2D space. Each element of the system matrix

represents the transition law from the image activity distri­

bution to the detected counts. A given matrix element, ˛ij, is

estimated from:

aij =
Nij

Ntot
(3)

where Nij is the number of gamma rays emitted by the ith pixel

and detected by the jth LOR, while Ntot is the total number of

gamma rays generated in the area of the ith pixel.

5. Generation of the projection data

For this study the digital Hoffman brain phantom was used

[19]. This phantom is composed of eighteen slices as shown

in Fig. 1. The pixel value in the phantom image corresponds to

the activity distribution in the area covered by this pixel. Using

Monte Carlo methods, pairs of gamma rays were generated in

numbers proportional to the corresponding pixel values.

For the simulation of gamma ray propagation, a dedi­

cated algorithm was developed. This algorithm generated the

annihilation events of the phantom active areas (areas with

non­zero activity distribution level). Once a pair of gamma rays

was produced, its propagation to the detectors was simulated

and the vector of the projection data was updated. The detec­

tor efficiency was assumed to be 100% and the OSEM algorithm

was used to reconstruct the image from the generated projec­

tions.

6. Software implementation and hardware
requirements

For the development of the algorithms that were essential

for the simulation process the computer language ANSI C

was used. For the analysis of the histograms of C values, the
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Fig. 2 – Logic flowchart of the proposed algorithm. The

decision box was used to produce the results of

Figs. 11 and 12. For all other figures the decision box is not

valid.

free software ROOT v4.0/08 [20] was utilized. A PC platform

has been employed, equipped with a Pentium 4 at 3.0 GHz,

1.5 GB RAM, under the Microsoft Windows XP (Version 2002)

operating system. The memory requirement for the calcula­

tion of system matrix ˛ for the image size of 128 × 128 pixels,

was approximately 1.065 GB. The size of the produced system

matrix was 1.11 GB. In order to optimize the memory require­

ments and the matrix size, a sparse matrix technique has been

used, where the stored system matrix was coded in three dif­

ferent sub­matrices. One was for the pixel i, one for the line of

response j – where the emitted gamma rays from pixel i were

detected – and one matrix for the value corresponded to a spe­

cific pair i, j was stored. The total size of the three sub­matrices

was 56.5 MB (16.1 + 14.9 + 25.5 MB). The logic flowchart of Fig. 2

presents the methodology that was used to produce the results

of Figs. 11 and 12. For the results presented in all other fig­

ures, the decision box in the flowchart is not valid. Instead,

the algorithm ran for a predetermined number of iterations.

7. Results

When employing the OSEM algorithm on the generated data,

the image quality initially improves as the number of iter­

ations increases. However, if the iterations continue after a

certain point, the resulting images become noisier. This is

Fig. 3 – Hoffman brain phantom slice 9, with 1 M counts

activity, reconstructed after 2, 25, 59 and 250 iterations.

demonstrated in Fig. 3 where the reconstructed images after

2, 25, 59 and 250 iterations are shown for slice 9 of the Hoff­

man phantom with 1 M counts and 2 subsets. The images

after the initial iterations are quite smooth and at around the

60th iteration reach their best quality. After this point, the

image quality deteriorates. This phenomenon can be quanti­

tatively described by using the normalized root mean squared

deviation (NRMSD). Other research groups have also used a

similar figure of merit [21,22]. In their works, these groups

used the averaged mean square error, which measures the dif­

ference between the reconstructed and phantom image in a

scale. When the phantom image changed, the scale was also

changed and the comparison of noise levels between two dif­

ferent reconstructed images was not straightforward. In this

paper we further improve this figure of merit weighing with

the sum of squared pixel values of the phantom image. In this

way, the NRMSD measures the difference between the recon­

structed and phantom image, normalized to values between

0.0 and 1.0, which allows the comparison of image differences

between various reconstruction parameters (image activity

and number of subsets):

NRMSD =

√

√

√

√

√

√

√

√

√

I
∑

i=1

(xi − x̂i)
2

I
∑

i=1

x̂2
i

(4)
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Fig. 4 – NRMSD versus number of iterations for Hoffman slice 9 with activity of 1 M counts.

where x and x̂ are the reconstructed and phantom image vec­

tors respectively and i is the pixel number.

Theoretically, the best achievable image corresponds to

the one obtained when NRMSD reaches its minimum. Fig. 4

shows that for the images obtained from data generated from

the Hoffman slice 9 (using OSEM with 2 subsets) the NRMSD

decreases up to the 59th iteration. After this point, the NRMSD

increases, demonstrating a quantitative measure of the image

deterioration due to the added noise. It is obvious that the

NRMSD can be used only in studies in which the true activity

distribution is known, therefore it cannot be used as a figure

of merit for the monitoring of the image quality in real PET

scans.

The phenomenon of the image deterioration led research

groups to propose the stopping of the OSEM algorithm after a

pre­defined number of iteration [23]. In this case, however, the

reconstruction process does not take into consideration the

special characteristics of each data set. Analyzing the behav­

ior of the NRMSD for various data sets in the case of simulated

data from the Hoffman brain phantom, we observed that the

appropriate number of iterations depends on the total activ­

ity in the source and its distribution in the phantom image.

Fig. 5a shows the NRMSD curves obtained for slices 2, 9, and

14 of the Hoffman brain phantom simulated for 1 M counts and

employing two subsets for OSEM­based image reconstruction.

Fig. 5b presents the data obtained from slice 9 at 1 M, 3.2 M and

6 M counts respectively. This shows that the best images are

obtained at different iteration numbers, according to the min­

imum NRMSD criterion. It demonstrates that the convergence

rate of the OSEM algorithm depends on the activity distribu­

tion in the source and on the total number of counts. The

afore­mentioned observation led us to study here the behav­

ior of the updating coefficients of the OSEM algorithm as a

function of the source activity distribution levels.

The histograms in Fig. 6 show the distribution of the values

of the updating coefficients C for reconstructed images from

the Hoffman brain phantom slice 9 (6 M counts, 2 subsets) at

iterations 5, 10, 20 and 40. Similarly, Fig. 7 shows the corre­

sponding histograms when selecting 8 subsets for the same

datasets. These values of C correspond to the non­zero pix­

els of the reconstructed image. From these histograms one

can observe that there are two well identified regions: (i) one

around Ci ≈ 1.0 that corresponds to the image pixels for which

reconstruction has produced a good approximation with their

true value in the phantom distribution, and (ii) a tail with

values Ci < 1.0 that corresponds to pixels for which such con­

vergence has not yet been achieved.

In order to study the effect of Poisson noise on the recon­

structed images, we have used the Hoffman slice 10 for

simulations at two different activity distribution levels with a

total of 100k and 200k counts respectively, and we created five

different realizations for each case, adding randomly Poisson

Fig. 5 – NRMSD versus number of iterations for: (a) three

Hoffman brain phantom slices with the same activity and

(b) Hoffman brain phantom slice 9 with different activities.



224 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 9 ( 2 0 1 0 ) 219–229

Fig. 6 – Histograms of the updating coefficients, C, at different iteration numbers for Hoffman slice 9 reconstructed with

OSEM and 2 subsets. The leftmost non­zero bin in each histogram is defined as Cmin.

noise in the data. In this way, we had six (one noise­free and

five with Poisson noise) realizations for each activity distri­

bution level. The Poisson noise was added as follow: in each

non­zero pixel of noise free image, a new randomly value was

created based on Poisson distribution. For each non­zero pixel,

the Poisson distribution had as mean value the pixel value and

as standard deviation the square root of the mean value. Then,

we reconstructed all images for 250 iterations with 2 sub­

sets and we then plotted the graphs of Cmin versus iterations

and the NRMSD versus iterations. As shown in Fig. 8, for the

case of 100k counts (Fig. 8a), the minimum NRMSD is reached

after 20 iterations, while for the case of 200k counts (Fig. 8b),

this occurs after 25 iterations. It is clear that there is a small

dependence of NRMSD versus iterations especially at small

number of counts, as expected from Poisson statistics. This

effect becomes smaller as the number of counts increases.

Similar observations can be made regarding the behavior of

Cmin against iterations. As demonstrated in Fig. 8, the Cmin val­

ues for the case of Poisson noise and noise­free data are similar

at the iteration at which the NRMSD reaches at its minimum

value. As the total number of counts in the data is increased,

the variations between Cmin and NRMSD curves are negligi­

ble. Our study is based on the record of Cmin values against

the minimum NRMSD. The plots of Fig. 8 show that Poisson

noise causes no significant modifications on the behavior of

the updating coefficients C on the iteration of interest and

hence the effect of Poisson noise in the data can be considered

negligible.

In Fig. 9, the minimum value, Cmin, of the updating coeffi­

cients vector for each iteration, is plotted as a function of the

NRMSD. We used the Hoffman slice 14 with 6 M counts activity

and the image was reconstructed with 2, 4, 8 and 16 subsets.

In these graphs, we observe three important features:

(1) The NRMSD is decreasing, with Cmin monotonically

increasing. There comes one iteration where the NRMSD

is minimum and that value corresponds to a unique value

of C
opt
min, which is defined below. It is clear that the num­

ber of iterations where the minimum NRMSD is obtained

varies with different number of subsets (see red arrows).

(2) This behavior is similar for different activity levels, and

the minimum NRMSD is reached with fewer iterations for

16 subsets than for 2 subsets.

(3) As the number of subsets is decreased, the NRMSD gets

lower values meaning lower noise level in the images, con­

sistent with Poisson statistics.
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Fig. 7 – Histograms of the updating coefficients C for Hoffman slice 9 reconstructed with OSEM and 8 subsets.

Fig. 9b–d shows the same results for activities of 4 M, 2.1 M,

and 1 M counts, respectively. All four plots show that for a

given number of subsets Cmin increases monotonically with

the image activity. This is shown better in Fig. 10a–d for Hoff­

man slice 14, where the dependence of Cmin versus the NRMSD

is plotted for the same number of subsets in each figure having

the different activities in the source as a parameter.

We have repeated the simulation for all the Hoffman brain

phantom slices for activities from 0.2 to 6.0 M counts. In each

case, the optimum minimum value of C histogram (C
opt
min) was

recorded following the rule:

C
opt
min ≡

{

C
(k)
min, k = iteration at minimum NRMSD

}

(5)

For each source activity, the value of C
opt
min was calculated

and averaged over all slices. The results are plotted in Fig. 11

for 2, 4, 8, and 16 subsets along with the results from 1 subset

[18], meaning MLEM. The error bars for each point illustrate

the uncertainty for each measurement of C
opt
min. As the number

of subsets is increased, the errors are increased too, denoting

that a relation between the number of subsets and the total

number of line of responses (LORs) has a crucial role in the

behavior of C
opt
min.

8. Discussion

The results presented above (Figs. 6 and 7) show clearly

that the minimum value, Cmin, of the updating coefficients

increases monotonically towards 1.0 as the number of iter­

ations increase and that there is a clear instance where

the image quality indicator, NRMSD, becomes minimum

(Figs. 9 and 10), defining thus the corresponding optimum

value of C
opt
min and, therefore, the iteration at which one can

stop the algorithm in order to obtain the optimal image. This

value, C
opt
min, depends on (a) the activity of the image and (b)

the number of subsets.

Fig. 11 shows that for a given number of subsets the quan­

tity C
opt
min, plotted as a function of the total activity, grows

monotonically with a considerable slope at the beginning, and

then with a much smaller rate for larger values of the total

activity, showing a tendency to saturate. The plot shows simi­

lar behavior for all different number of subsets. The values of

C
opt
min near saturation for a given total activity become smaller

as the number of subsets increase. It should be noticed that

for number of subsets ns = 1 (MLEM), the saturation value is

the largest and that the behavior for each number of subsets

is described by a different curve in the plot.
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Fig. 8 – The plots of the NRMSD and Cmin versus number of iterations, for Poisson and no Poisson noise images of Hoffman

slice 10 with 100k and 200k counts.

Fig. 9 – Cmin versus NRMSD for 2, 4, 8 and 16 subsets for Hoffman brain phantom slice 14 and activity of (a) 6 M, (b) 4 M, (c)

2.1 M and (d) 1 M counts. The optimal Cmin is where the NRMSD is minimum, and clearly the corresponding iteration

number is different for different subsets (see red arrows). The behavior is similar for different activities. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 10 – Cmin versus NRMSD for slice 14, and different activities for all subsets. The optimal Cmin increases with activity: (a) 2

subsets, (b) 4 subsets, (c) 8 subsets and (d) 16 subsets.

This is shown better in Fig. 12 where we plot the value of

C
opt
min versus the number of subsets, using the total activity as

a fixed parameter. In Fig. 12 the horizontal axis denotes the

base­2 logarithm of the number of subsets (e.g. value 2 means

22 = 4 subsets).

Thus, it becomes clear that the results of the study of the

MLEM algorithm (ns = 1) cannot predict the case of OSEM for

various numbers of subsets. Figs. 11 and 12 described a unified

picture of MLEM and OSEM reconstruction.

The results of our study show that for a given scan with

a given number of total counts one can reconstruct the opti­

mum image by selecting the reconstruction algorithm with a

chosen number of subsets. At each iteration the value of Cmin

results from the data and can be compared with the value

Fig. 11 – Cmin averaged over all Hoffman phantom slices as

a function of image activity for 1 (MLEM), 2, 4, 8 and 16

subsets.

Fig. 12 – Cmin averaged over all Hoffman phantom slices as

a function of the base­2 logarithm of the number of subsets

for several image activities.

of C
opt
min shown in Fig. 11 for the corresponding number of

subsets.

The effect of Poisson noise was shown in the plots of Fig. 8.

As shown there, the effect is not significant for large total activ­

ity and shows variations in the vicinity of minimum NRMSD of

the order of 5% for activity of 100k counts, becoming smaller at

higher total activities. The effect of Poisson statistics is shown

via the error bars in Figs. 11 and 12. For ns = 1 (MLEM) the total

number of counts is used in the estimation of Cmin, whereas

for ns = 16 only 1/16 of the data is used in each estimation of

Cmin, resulting to an uncertainty increase by a factor
√

16 = 4,

consistent with Poisson statistics.
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9. Conclusions

We have studied the properties of the updating coefficients

in the OSEM algorithm for image reconstruction in PET. We

have employed Monte Carlo methods for the modeling of

the data acquisition process for a PET tomograph and the

calculation of its system matrix for iterative image reconstruc­

tion using the OSEM algorithm. The digitized Hoffman brain

phantom has been employed for the generation of synthetic

projection data both in a noise­free case and a case in which

random Poisson noise has been added. The properties of the

pixel updating coefficients, C, for the OSEM iterative image

reconstruction algorithm have been analyzed and the effect

of Poisson noise on the image quality has been found to be

negligible. Their values for the areas in the phantom with

non­zero activity have been shown to follow a distribution

with a tail (values below 1.0) and a peak (values around 1.0).

As the iteration process progresses, the peak of this distribu­

tion becomes narrower while the tail shifts to higher values

close to 1.0. Based on these data, the relationship between

Cmin and the NRMSD has been studied as a function of total

activity in the source and the number of subsets employed in

the reconstruction. It should be stressed that the value of C

is estimated from the data at each iteration. This study has

shown that, at a given iteration, the image quality depends

on the number of subsets for the PET scanner geometry sim­

ulated here. Using averaged data from all image slices of the

Hoffman brain phantom a direct correlation has been found

between the average values C
opt
min and the number of counts

detected. Hence, the behavior of the values of the pixel updat­

ing coefficients can be correlated to a known parameter. The

aim of this work is to study the behavior of the updating

coefficient of OSEM algorithm and to try to define a relation

between a minimum number of subsets per total number

of LORs. The present work was focused in pointing at the

properties of the updating coefficients in relationship to the

quality of the reconstructed images using OSEM and studying

the dependence on total activity and number of subsets. Our

future plan is to expand this study in order to use these prop­

erties in defining a stopping rule for OSEM in a similar way

that we did for MLEM [18]. We also want to study the effect of

various configurations of PET scanners. In addition, we plan

to study noise effects resulting from attenuation and scat­

ter, using well validated simulation software packages, such

as GATE [24]. These studies shall be the subject of a separate

publication.
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