
P
b

A
G
a

b

c

d

e

f

a

A
R
R
A

P
8
8
8
0
8

K
P
I
M
M
S
U

1

i
c
[
o
n
m

(
(

0
d

Computerized Medical Imaging and Graphics 34 (2010) 131–141

Contents lists available at ScienceDirect

Computerized Medical Imaging and Graphics

journa l homepage: www.e lsev ier .com/ locate /compmedimag

ET image reconstruction: A stopping rule for the MLEM algorithm
ased on properties of the updating coefficients

nastasios Gaitanis f,b,1, George Kontaxakis d,e,2, George Spyrou b,3,
eorge Panayiotakis f,4, George Tzanakos a,c,∗

University of Athens, Department of Physics, Division of Nuclear & Particle Physics, Panepistimioupoli, Zografou, Athens 15771, Greece
Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efessiou 4, Athens 11527, Greece
University of Cyprus, Department of Physics, Faculty of Pure and Applied Sciences, Nicosia 1678, P.O. Box 20537, Cyprus
Universidad Politécnica de Madrid, E.T.S.I. Telecomunicación, Dpto. Ingeniería Electrónica, 28040 Madrid, Spain
Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
Department of Medical Physics, Medical School, University of Patras, 265 00 Patras, Greece

r t i c l e i n f o

rticle history:
eceived 9 January 2009
eceived in revised form 3 July 2009
ccepted 20 July 2009

ACS:
7.57.−s
7.57.nf
7.57.uk
2.70.Uu
7.57.U−

a b s t r a c t

An empirical stopping criterion for the 2D-maximum-likelihood expectation–maximization (MLEM) iter-
ative image reconstruction algorithm in positron emission tomography (PET) has been proposed. We have
applied the MLEM algorithm on Monte Carlo generated noise-free projection data and studied the prop-
erties of the pixel updating coefficients (PUC) in the reconstructed images. Appropriate fitting lead to an
analytical expression for the parameterization of the minimum value in the PUC vector for all non-zero
pixels for a given number of detected counts, which can be employed as basis for the stopping criterion
proposed. These results have been validated with simulated data from real PET images.

© 2009 Elsevier Ltd. All rights reserved.
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. Introduction

Positron emission tomography (PET) imaging is currently used
n a wide area of medical disciplines, such as oncology, neurology,
ardiology, as well as in pre-clinical research and drug development

1–4]. Image reconstruction plays an important role on the quality
f the images produced by a PET camera [5]. Modern PET scan-
ers employ iterative image reconstruction algorithms such as the
aximum-likelihood expectation–maximization (MLEM) [6] and
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ordered subsets expectation–maximization (OSEM) [7] algorithms
as well as several of their variants [8]. The MLEM algorithm has
attracted considerable interest in the area of emission tomography,
as it produces images with better quality than other techniques.
However in practice, these iterative methods are computationally
intensive and lack robust stopping criteria. A stopping criterion is
essential because images produced in PET with MLEM algorithm
have been observed to become noisier as iterations proceed. The
modern PET image reconstruction methods either apply a regular-
ization approach in order to maintain the level of noise in the images
at a constrained level and repeat the process for an arbitrary num-
ber of iterations, or stop the iteration algorithm (MLEM or OSEM)
after several iterations and then apply a filtering method in the

reconstructed image [9]. From the literature however the existence
and use of a robust stopping criterion for this iterative method is
absent.

The issue of image reconstruction in emission tomography
can be regarded as a statistical estimation problem. The MLEM

http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
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mailto:gkont@die.upm.es
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mailto:panayiot@upatras.gr
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lgorithm provides an iterative formula to solve the problem of
mage reconstruction in PET using maximum-likelihood estimation
MLE) techniques by maximizing the probability to observe the
iven counts represented by the vector �y corresponding to the true
ctivity distribution �x in the source, under a Poisson probability
odel for the positron emission proposed by Shepp and Vardi [6].

he MLEM algorithm produces images with fewer artefacts than
ther analytical methods, such as filtered back-projection (FBP), it
an use an incomplete data set and does not require equally spaced
rojection data [10].

Many researchers have developed and proposed various stop-
ing rules for the MLEM algorithm. Veklerov and Llacer [11]
roposed a quantitative criterion with a simple probabilistic inter-
retation that allows the user to stop the algorithm just before
he effect of deterioration begins. The 2D image is reconstructed
sing the MLEM algorithm and a parameter H is calculated at each

teration. This parameter is a part of the Pearson’s �2 test. When
he parameter H reaches its minimum value, the image quality is
upposed to be optimal. The same authors in another paper [12]
tudied a stopping criterion based on a figure of merit (FOM) sim-
lar to the root mean squared (RMS) error and the reconstruction
lgorithm was stopped when this FOM reached its minimum value.
his stopping criterion was tested using real data produced by a
rain PET scanner. Furthermore, Holte et al. [13] studied a stopping
ule based on the calculation of a parameter that takes into account
he pixel values of the initial and reconstructed image. This param-
ter is taking into consideration the properties of the reconstructed
mage and its minimum value defines the optimum image quality.
ecently, Bissantz et al. [14] proposed a method to calculate a stop-
ing rule for MLEM algorithm based on an analysis that takes into
onsideration the residuals between the forward projected image
nd the measured counts for each row of the sinograms. Up to now,
owever, none of these proposed approaches have been proven of
ractical value for application in the clinical routine for PET studies.

The present paper deals with the problem of defining a stopping
ule for the MLEM algorithm that is independent on the character-
stics of the reconstructed image. For this purpose, we take into
onsideration the statistical behavior of the MLEM algorithm and
ocus on the study of its pixel updating coefficients (PUC). Studies
f the behavior of these coefficients are absent from the literature
xcept for some initial work published by our group [15–17]. In
ontrast to previously proposed methods, this approach focuses on
he behavior of the pixel updating coefficients of the MLEM algo-
ithm, which is shown here to be independent on the reconstructed
mages and their characteristics.

In the next sections, the basic methodology employed for this
ork is presented, with emphasis to the figures of merit employed
ere for the image quality estimation. Section 3 presents the main
esults of the study on the pixel updating coefficients vector, focus-
ng on the properties of its minimum value for the non-zero pixels
n the reconstructed image. A correlation study for this value with
he image topology and activity distribution levels in the source is
erformed, leading to a quantitative expression that can be used
o formulate an empirical stopping criterion for the iterative image
econstruction algorithm employed. Finally, a validation step of the
roposed stopping rule is performed using simulated data from real
canned PET images from a mouse phantom.

. Materials and methods
.1. The PET scanner model

A single-ring PET camera has been modeled with 128 scintilla-
ion crystals on the ring, a detector width of 7.36 mm and a field
f view (FOV) of 200 mm × 200 mm. The detector ring radius is
ging and Graphics 34 (2010) 131–141

150 mm. The total number of detector pairs in coincidence is 8128.
Several image sizes have been studied:

(a) 64 × 64 (pixel size = 3.12 mm),
(b) 128 × 128 (pixel size = 1.56 mm),
(c) 256 × 256 (pixel size = 0.78 mm) and
(d) 512 × 512 (pixel size = 0.39 mm).

For the simulation of the operation of the scanner, Monte Carlo
methods were used; Firstly, the distribution of annihilation events
into a pixel and secondly, the production of gamma rays and their
detection by the detectors were simulated. The detector efficiency
was assumed to be 100%. Compton scattering or photoelectric
effects were not taken into consideration. For this study, we devel-
oped our own Monte Carlo simulation code based on ANSI C (see
also Section 2.6).

2.2. Maximum-likelihood expectation–maximization (MLEM)
algorithm

The counts registered by the detector pairs in coincidence are
represented by the vector y(j) = [y(1), y(2), y(3), . . .., y(J)], where J is
the total number of detector pairs allowed to detect coincidences
defining a line of response (LOR). If K is the number of detector crys-
tals on the ring, then J = K(K − 1)/2 is the total number of detector
pairs in coincidence. If I is the number of pixels in the image vector
x, the probability P(y|x) of observing y(j) is a likelihood function L(x)
of the unknown emissions x(i). The variables y(j) are independent
and Poisson distributed, with expectation ỹ(j), where:

ỹ(j) = E[y(j)] =
I∑

i=1

x(i)˛(i, j) (1)

The transition matrix a(i,j) represents the probability for an
event generated in the area of the source covered by pixel i to be
detected by LOR j. Since x(i) are independent Poisson variables, a lin-
ear combination of these variables as the one in the above equation
is also Poisson distributed. Considering the above, the likelihood of
the observed data is:

L(x) = P(y|x) =
J∏

j=1

e−ỹ(j) ỹ(j)y(j)

y(j)!
(2)

The likelihood function L(x) expresses the Poisson probability
to observe the given counts in detector pairs in coincidence if the
true density is x(i). Combining the Eqs. (1) and (2) the log-likelihood
function is produced [6]:

l(x) = log(L(x))=−
J∑

j=1

I∑
I=1

x(i)a(i, j)+
J∑

j=1

y(j) log

(
I∑

i=1

x(i)a(i, j)

)

−
(

I∑
i=1

log(y(j)!)

)
(3)

In the MLEM algorithm the estimate of the image vector that
maximizes L(x) is the maximum-likelihood estimate of x given y. In
other words, the problem of image reconstruction in PET is to esti-
mate or guess the true unobserved counts x in each pixel taking into
account the observed counts y in all detector pairs in coincidence.

The application of maximum-likelihood estimation techniques in
(3) leads to an expression for the update of the ith pixel at iteration
(k + 1) as follows:

x(k+1)(i) = x(k)(i)C(k)(i) (4)



al Ima

w
o
i
a

C

a

x

s

(

(

(

e
w
d
s
a
i
g

2

M
f
w
m
a
I
e
j
P

t

Once a gamma-pair is produced, it is allowed to propagate to the
scanner detecting elements. The detection efficiency of each coin-
A. Gaitanis et al. / Computerized Medic

here C(k)(i) is the updating coefficient and depends on the data
f measured counts y and the forward projection of the estimated

mage vector x at iteration k, as well as on the transition matrix
(i,j):

(k)(i) = 1∑J
j=1˛(i, j)

J∑
j=1

y(j)∑I
i=1˛(i, j)x(k)(i)

˛(i, j) (5)

Solving the Eqs. (4) and (5), the EM algorithm can be expressed
s:

(k+1)(i) = 1∑J
j=1˛(i, j)

x(k)(i)

J∑
j=1

y(j)˛(i, j)∑I
i=1x(k)˛(i, j)

, i = 1, 2, ..., I (6)

Analyzing Eq. (6), the MLEM algorithm can be described in three
teps:

a) Start with an initial estimate x(0), where x(0)(i) > 0 for i = 1, 2, 3,
. . ., I.

b) If x(k) denotes the estimate of x at the kth iteration, calculate a
new x(k+1) by Eq. (6).

c) If the resulting image quality offers an acceptable result then
stop, else return to (b).

For the above iterative scheme a robust stopping criterion is nec-
ssary, which would allow the selection of the reconstructed image
ith a good signal-to-noise quality among the set of the images pro-

uced by the iterative procedure. This iteration algorithm must be
topped after some iterations because if more likelihood is desired,
fter a certain optimum point the resulting images become nois-
er [11]. For this study, the MLEM algorithm was developed by our
roup employing ANSI C.

.3. The transition matrix

The calculation of the transition matrix was done by employing
onte Carlo (MC) simulation techniques. MC technique was pre-

erred because it is not so complicated such as analytical methods
hich are also used in the calculation of transition matrix [18]. Each
atrix element a(i,j) represents the transition law from the image

ctivity distribution x(i) to the measured data (detected counts) y(j).
t therefore represents the geometrical acceptance of annihilation

vents generated in pixel i, as they are detected in the detector pair
. Clearly, then, the transition matrix depends on the geometry of a
ET scanner, namely, on the image grid and the scanner layout.

For the calculation of the transition matrix elements annihila-
ion (e+ + e− = � + �) events are generated uniformly inside the area

Fig. 1. (a) Slice No. 9 of Hoffman Brain phantom
ging and Graphics 34 (2010) 131–141 133

of the source covered by pixel i, producing gamma ray pairs dis-
tributed isotropically in space. These gamma rays are propagated
to the scintillation detectors on the PET camera ring. The gamma
rays are produced back-to-back forming a straight line. The inter-
section of this line with the scanner detectors defines which two
detectors will be set in time coincidence. A success is characterized
by a coincidence detection of the two gammas by the gamma ray
detectors forming the detector pair j. The transition matrix element,
a(i,j) is computed by the following expression:

˛(i, j) = Nij

Ntot
(7)

where Nij is the number of gamma rays emitted from a specific pixel
i and detected by the detectors in pair j, and Ntot is the total number
of gamma ray pairs emitted from this pixel i. In other words the
matrix element ˛(i,j) characterizes the geometrical acceptance of
a given detector pair j with respect to the source of annihilation at
image pixel i. A different matrix has been calculated for all image
grids employed in this work. In each case 107 gamma rays per pixel
have been simulated, resulting in a minimum relative error (worst
case) less than 1%.

2.4. PET image generation

For the study of the behavior of the update coefficients C in the
MLEM algorithm, two sets of digital phantoms were used. The first
is the MOBY phantom (129 2D slices) [19] and the second consists
of 18 2D slices from the digital Hoffman brain phantom [20]. One
characteristic slice from each phantom is shown in Fig. 1. For each
one of the phantoms employed, simulated data sets at different
activity distribution levels have been generated using Monte Carlo
methods. The Digimouse phantom [21] was used for the validation
of the method.

A dedicated algorithm was developed for the generation of anni-
hilation events of the phantom active areas, in accordance with the
physics of positron emission. The number of the generated events
in each pixel was proportional to the pixel values of each phantom
slice. Each annihilation event leads to the production of a pair of
gamma rays, emitted isotropically in space in opposite directions.
cidence detector pair is assumed to be 100%. Monte Carlo generated
lines of response form therefore the simulated “measurements” of
the scanner. The MLEM algorithm has been used to reconstruct
the corresponding image and this reconstructed image has been
compared with the source phantom.

and (b) slice No. 65 of MOBY phantom.
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indicating the onset of image deterioration. We have studied the
relationship among these two FOMs. In Fig. 3 the NRMSD versus
the corresponding �2 is plotted for various slices of the Hoffman
phantom and for various activity levels. It is clear that there is a one-
34 A. Gaitanis et al. / Computerized Medic

.5. Image quality figure of merit (FOM)

For the comparison of x and x̂ (the reconstructed and true image
phantom), respectively) the difference image x − x̂ is studied. This
ould be done by examining the difference pixel by pixel, or by
omparing corresponding groups of pixels in a selected region of
nterest (ROI) or by forming global quantities involving all the pixels.
uch global quantities may be constructed from the sum of squares
f the differences of the values (deviations) of each pixel, namely
I

i=1

(x(i) − x̂(i))2.

Two such quantities have been employed in this work:

.5.1. The normalized root mean square deviation (NRMSD)
From the definition of the root mean square deviation (RMSD):

MSD =

√∑I
i=1(x(i) − x̂(i))2

I
(8)

here I is the total number of pixels, and dividing by the RMS of x̂,
amely by:

MS =

√∑I
i=1x̂(i)2

I

new quantity can be defined that is called here normalized root
ean square deviation (NRMSD) and is expressed as:

RMSD =
√∑I

i=1(x(i) − x̂(i))2∑I
i=1x̂(i)2

(9)

The denominator in this expression is a fixed quantity (the total
umber of counts in the true image) that normalizes NRMSD to
alues between 0 and 1.

.5.2. The chi-square �2

We define the quantity �2 as follows:

2 = 2
I

I∑
i=1

(x(i) − x̂(i))2

x(i) + x̂(i)
(10)

This provides a more accurate comparison that can be achieved
y weighting the difference (x(i) − x̂(i))2 by the inverse of the vari-
nce of the difference, which in the case of Poisson statistics is just
(i) + x̂(i). In this case, differences with large statistical errors would
ontribute less to the summation in (10) and differences with small
tatistical errors should contribute more. In the present study both
ndicators have been used, namely the NRMDS and the �2.

It should be stressed at this point that these image compar-
sons are not unique and the choice of the method has to do with
he objectives of the image analysis at hand. In the case of image
econstruction from measured projection data it is obvious that the
ctivity distribution in the true image is not available. Therefore
or real data a figure of merit based on image differences cannot
e used. In contrast, in the special case of Monte Carlo simulation
hen one starts with a phantom and simulates the image acquisi-

ion process, followed by image reconstruction, one ends up with
oth quantities x and x̂. In this case, a single index of quality (a sin-
le FOM) can be used to characterize the image quality at a given
teration.
.6. Software and hardware requirements

The Monte Carlo simulation as well as the reconstruction algo-
ithm was coded in ANSI C. We used the free software ROOT v4.0/08
22] for the image analysis. The computer program run in a Pentium
ging and Graphics 34 (2010) 131–141

4, with 3.0 GHz CPU and 1.5 GB RAM which used the Microsoft Win-
dows XP, Version 2002. For image size of 128 × 128 the calculation
of the transition matrix required memory equal to 532 MB. The size
of the produced transition matrix was 1.11 GB. Due to its large size,
the stored transition matrix was coded in three different matrices.
One was about the pixel i, one about the line of response j – where
the emitted gamma rays from pixel i were detected – and one matrix
in which the value for a specific pair i,j was stored. The total size
of the three new matrices was 56.5 MB (16.1 + 14.9 + 25.5 MB). The
total time which was needed for the calculation of transition matrix
and its re-storing in three different matrices is almost 105 h.

3. Results and discussion

3.1. Quality of the reconstructed image versus number of
iterations

Fig. 2 shows the log-likelihood, the NRMSD, and �2 as a function
of the number of iterations for slice 14 of the Hoffman phantom. The
log-likelihood increases slowly, after a rapid phase during the initial
iterations, towards its maximum. Both image quality FOMs initially
decrease up to some iteration, implying an improvement in image at
each step during this early phase, and then they show an increase
Fig. 2. Reconstruction of the Hoffman phantom slice #14 with 2.1 M counts activ-
ity: plots of the log-likelihood function, normalized RMS distance (NRMSD) and �2,
versus iteration number.
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ig. 3. NRMSD versus �2 for Hoffman slices #4, #10, #14 and #17 with activity 500k,
M, 2.1 M and 3.2 M counts respectively.

o-one correspondence between NRMSD and the corresponding �2.
e can draw the conclusion that the use of only one of the three

uantities is enough for the characterization of the image quality.
he log-likelihood cannot be used at it monotonically increases.
n the other hand NRMSD and �2 are better indicators having lin-
ar relationship between them. We select to use the NRMSD, since
imilar quantities (MSE, RMS) have been used by many authors
o characterize image quality in image reconstruction algorithms
10,23–26].

We should stress the differences of the use of NRMSD in image
econstruction as compared to the use of MSE and RMS and image
nalysis. RMS may not be the best FOM of image quality when
he objective is to study and compare features of an image related
o a specific diagnostic task or other properties of the underlying

ethods employed. In such cases researchers may use other FOMs,
or example detectability, contrast, spatial resolution [27]. In image
econstruction, however, where the image starts deteriorating due
o added noise after a number of iterations, NRMSD or �2 can be
n indicator of the iteration at which the iterative process must
e halted in order to have the best signal-to-noise characteristics
ossible in the result obtained.

For studies based on Monte Carlo simulations the activity
ensity vector x is known for both the true (phantom) and the
econstructed images and hence it is possible to compute image dif-
erences. In the case of image reconstruction with real (measured)
rojection data the NRMSD or �2 are not possible to be computed.

n this case it is necessary to find and develop an image quality
ndex based only on the inherent properties of the collected data.
uch an index should accurately reflect the properties of the (unob-
ervable) NRMSD. In this work Monte Carlo generated 2D datasets
re employed and iteratively reconstructed using the MLEM algo-
ithm, as discussed in the previous sections. The iteration where the
ptimum NRMSD occurs is recorded, along with the corresponding
inimum value of the updating coefficients C for this iteration. The
RMSD is plotted in Fig. 4 as a function of the number of itera-

ions for various activity distribution levels. The plot shows that
he image quality, as expressed by the NRMSD, improves quickly
n the beginning, followed by a wide minimum and subsequent
eterioration. Fig. 4 shows that the NRMSD has its minimum value
t iterations 35, 99, and 248 corresponds to 200k, 1.0 M and 4.0 M
ounts respectively. The variation of the NRMSD around the regions
f the minima is less that 1% over a range of about 50 or so iterations,

s image activity increases. In addition, this figure shows, based on
he value of the NRMSD, that images with lower statistics �x are of
ower quality than the ones produced from data sets with a high
otal number of counts.
Fig. 4. NRMSD versus number of iterations for Hoffman slice #14 with activities of
200k, 1 M, and 4 M counts.

3.2. The variable Cmin and its properties

From Eq. (4) it can be seen that the evolution of the coefficients
C is responsible for the convergence rate as a function of the num-
ber of iterations. The behavior of the pixel updating coefficients C
has been studied and analyzed in the present work. The updating
coefficients for non-zero pixels in the true (phantom) image tend to
reach a value around 1.0 after a large number of iterations. There-
fore, it can be concluded that for pixel i the value of C(k)(i) will be
tending to value 1.0, namely:

lim
k→∞

C(k)(i) = 1.0 (11)

On the other hand, the pixel updating coefficients C for the back-
ground (zero content) pixels do not converge to 1.0 but get values
different than 1.0.

Motivated by the above observations we have studied further
the evolution of the coefficients C for all non-zero pixels of the
reconstructed image as the number of the iterations increases. Fig. 5
shows histograms, namely distributions of the values of the updat-
ing coefficients C for the Hoffman brain phantom slice 14 as a
function of the MLEM iterations. These histograms correspond to
the C values of the non-zero pixels in the phantom image. These
histograms have two components:

1. one component around C(i) = 1.0 that corresponds to those pixels
for which reconstruction is completed and

2. a tail, namely a region of C(i) < 1.0 that corresponds to pixels that
need further iterations in order to reach their true value.

The tail distribution in the histograms shown in Fig. 5 with val-
ues lower than 1.0, corresponds to the part of the image that has
not yet reached convergence. Such observation is also in line with
the already proven fact that different regions in the reconstructed
image have different convergence rates when algorithms such as
the MLEM are employed. We show here that the minimum value of
the tail is related to the noise characteristics of the reconstructed
image. From these plots, it can be observed that as the iterative
process progresses, two characteristics emerge:
1. the minimum of the tail distribution shifts to higher values close
to 1.0, and

2. the Gaussian-like peak distribution around 1.0 becomes nar-
rower and narrower.
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ig. 5. Histograms of the updating coefficients C, at different iteration number of th
s defined as Cmin.

We define a vector variable: C(k)
min = min{C(k)(i), i = 1, . . . , I},

here I is the total number of pixels in the image and k is the iter-
tion number. C(k)

min is the minimum value of the vector of the pixel
pdating coefficients C(k)(i) among the non-zero pixels in the recon-

(k)
tructed image at the current iteration k; Cmin can be read out easily
rom the corresponding histogram.

In this work we have studied the dependence of this variable on
he iteration number and its relationship to the minimum NRMSD
alue. Fig. 6 shows the dependence of C(k)

min for Hoffman slice 14
nstructed image for Hoffman slice No. 14. The leftmost value of C in each histogram

for 2.1 M counts. It demonstrates that C(k)
min increases monotonically

with the iteration number, showing thus a one-to-one correspon-
dence between iteration number and C(k)

min. We have studied the

law of the dependence of C(k)
min on iteration number by fitting the
data to variety of functions. The most successful has the following
form:

C(k)
min = A

k + ˛

k + b
(12)
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as a function of the number of iterations of Hoffman slice 14 for
mage of 2.1 M counts along with the fit by Eq. (12). The parameters of the fit are:
= 1.01 ± 0.002, ˛ = 4.22 ± 0.326, b = 26.3 ± 0.65.

here k is the iteration number, and A, ˛, and b are constant param-
ters. The fitting curve is also shown in Fig. 6. The values of NRMSD
nd C(k)

min were recorded at every iteration and are plotted against
ach other in Fig. 7, for various image activities. This plot shows that,
s C(k)

min increases, the NRMSD is decreasing up to the point when
t reaches its minimum value, NRMSDmin, which corresponding to
he image closest to the true one according to this FOM. For a given
ctivity, there is a unique value of C(k)

min that signals the occurrence of
he best achievable image in terms of NRMSD. Therefore following
he evolution of C(k)

min we can specify the end of the iterative pro-
ess. Fig. 7 shows that there is a weak dependence of the value of
he minimum NRMSD as a function of C(k)

min. This implies that C(k)
min

t the best achievable image is not the same for all activity distribu-
ion levels. In images of low activity distribution levels higher values
f minimum NRMSD are reached and lower C(k)

min values, while for
mages from high counts data the opposite is true.

The properties of the pixel updating coefficients described above
llow tracking the image quality by following the value C(k)

min which
an be calculated from the measured projections at each iteration.

.3. Dependence of C on the image characteristics
min

In this section we examine the dependence of C(k)
min on several

haracteristics of the image: the image topology, the pixel size, and
he image activity. In order to examine the dependence of image

ig. 7. C(k)
min

versus NRMSD for Hoffman slice 14 and for different image activities.

(

(

Fig. 8. C
min

as a function of image activity using the minimum NRMSD criterion for
an image grid of 128 × 128. The slices were chosen as to provide maximum coverage
of the image topology. (a) Slices #4, #10, #14 and #17 of the Hoffman phantom and
(b) slices #8, #23, #42 and #53 of the MOBY phantom.

topology we generated and reconstructed images of various slices
from the MOBY phantom and the Hoffman brain phantom. These
slices allow a variety of topologies to be studied. The dependence
on the activity level was studied with the above phantoms by gen-
erating and reconstructing images with a wide range of counts. In
addition, a number of different pixel configurations were studied,
in order to find out how the image grid might influence the results.

3.3.1. Dependence of C(k)
min on the image topology and activity level

We simulated the Hoffman and MOBY phantoms with a wide
range from 0.2 to 6.0 M counts. Each image is reconstructed on an
image grid of 128 × 128 pixels. For each activity we plotted the dis-
tribution of the values of the coefficients C and recorded the value
of a new quantity Copt

min namely the value of Cmin at optimum image
defined as follows:

Copt
min ≡ {C(k)

min, k = iteration at minimum NRMSD}

Fig. 8a shows the dependence of Copt
min on the number of counts

for the four slices 4, 10, 14 and 17 of the Hoffman phantom; whereas
Fig. 8b shows the same dependence for the four slices 8, 23, 42 and
53 of the MOBY phantom. The plots in Fig. 8 show that:

a) the value of Copt
min (Cmin at the best achievable image according to

NRMSD) increases monotonically as a function of the number

of counts,

b) the dependence curves have similar shapes and
(c) there is a characteristic clustering of the values of Copt

min for a
given number of counts implying a very small dependence on
the details of the images.
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Fig. 10. The average values of Copt
min

, over all slices of the Hoffman and MOBY phan-
toms, plotted versus image activity.
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ig. 9. Copt
min

versus the number of counts in the Hoffman slice No. 14 (for image sizes
4 × 64, 128 × 128, 256 × 256 and 512 × 512) using as image quality criterion the
inimum NRMSD.

Therefore for an image with a given number of counts one can
stimate from these plots the value of Copt

min. As previously discussed,
or the reconstruction of images from real acquisitions, one can
rack the image quality by following the evolution of C(k)

min as the
econstruction iterations proceed, until it reaches the value that cor-
esponds to Copt

min for the given number of counts. One can therefore
top the algorithm at that iteration.

.3.2. Dependence of Copt
min on the image grid

We have studied Copt
min as a function of the number of counts for

he same image and various image sizes from 64 × 64 to 512 × 512.
he results of this study are shown in Fig. 9 for slice 14 of the Hoff-
an phantom. These plots show that the value of Copt

min does not vary
ith the image grid size.

.3.3. Parameterization of Copt
min dependencies

In order to parameterize quantitatively the dependence of Copt
min

n the number of counts, we have fit the data of Fig. 8 (for all slices
f each phantom) using several functional alternatives. The most
uccessful parameterization has the form:

= D
Nc + ˛

Nc + ˇ
(13)

here Nc is the number of counts in millions. It should be noted
hat the data in Fig. 8 show a finite spread for a given number of
ounts. This spread is associated with the different topology of the
mages, which, as we have pointed out, has a rather weak effect.
herefore, to give a quantitative description of the dependence of
opt
min on the number of counts, Nc, taking into account the uncer-
ainty introduced by the image topology, we introduce a spread, or
n uncertainty of the value of Copt

min. In other words we will talk about

he mean behavior of Copt
min as a function of the number of counts,

c. For the estimation of the parameters D, ˛, and ˇ, we perform
he fitting using the weighted average and associated error of Copt

min
Fig. 10).
The values of the fitted parameters D, ˛, and ˇ are listed in Table 1
eparately for the Hoffman and MOBY phantoms, along with the
imits of Copt

min for Nc → 0 and for Nc → ∞. The difference of the two
imits at large Nc values is very small, about 0.01. Clearly both phan-
oms follow the same law. For this reason we have combined the

able 1
arameters of the of Cmin fit for the Hoffman and MOBY phantoms.

hantom D ˛

OBY 0.960 ± 0.003 0.130 ± 0.016
offman 0.970 ± 0.003 0.130 ± 0.020
oth 0.960 ± 0.003 0.130 ± 0.016
Fig. 11. The spread of the quantity Copt
min

(standard deviation) as a function of the

image activity. The fitting equation has the form A/
√

Nc where A = 0.034 ± 0.008
and Nc is the number of counts in millions.

results obtained from both phantoms given in Fig. 8a and b. We
have estimated the average values of Copt

min at each activity and fit
the result with Eq. (13). The resulting fit parameters are given in
Table 1. As we noted before we have attempted several other func-
tional parameterizations (e.g. polynomial, exponential, etc.) of the
data. These fits were much less successful in comparison with that
of Eq. (13). The spread of the values of Copt

min, around G, can be rep-
resented by the standard deviation �, which has been estimated as
a function of the image activity and plotted in Fig. 11. This spread
was found to follow a functional dependence of the form:

� = A√
Nc

(14)

showing clearly that the spread is of statistical nature and becomes
smaller and smaller as the image activity increases, and represents
the spread of the values of Copt

min as seen in Fig. 8.

3.4. A stopping rule for the MLEM algorithm

Based on the previous analysis a stopping rule for the MLEM

algorithm can be formulated, based on the variable C(k)

min and the
prediction of Eq. (13). From the measured projection data we can
calculate C(k)

min at every iteration and compare with the prediction
G, of Eq. (13) for a given number of counts. The condition to stop

ˇ Cmin (Nc → 0) Cmin (Nc → ∞)

0.250 ± 0.022 0.50 0.96
0.250 ± 0.027 0.50 0.97
0.250 ± 0.022 0.50 0.96
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Table 2
The results of the reconstruction process of four Digimouse phantom slices.

Digimouse slice Total counts G 3� 5� Stopping iteration
|Cmin − G| ≤ 3�

Stopping iteration
|Cmin − G| ≤ 5�

Iteration at
minimum NRMSD

N 50
N 35
N 10
N 27

t
t
s

2

3
4
5

C

i

F
d

o. 27 1.349 M 0.8972 0.08790 0.146
o. 59 2.180 M 0.9221 0.06921 0.115
o. 97 1.686 M 0.9099 0.07866 0.131
o. 127 2.570 M 0.9287 0.06376 0.106

he MLEM algorithm would be therefore for C(k)
min to reach or exceed

he value G, as predicted by Eq. (13). The scheme of the proposed
topping rule would be:

1. Knowing the total number of counts, predict the value of G using
Eq. (13).

. Compute the value of the pixel updating coefficients, C(k)(i) for
all pixels i = 1, . . . I, at iteration k.

. Calculate the image vector x(k+1)(i) = x(k)(i)C(k)(i).

. Compute C(k) = min{C(k)(i)}.
min

. Stop at iteration k for which the condition.

(k)
min ≥ G (15)

s met.

ig. 12. Comparison of the source and reconstructed image using the stopping criterion o
ifference image for Digimouse phantom slices #27, #59, #97 and #127 respectively. The
75 55 57
105 79 63

88 66 51
120 91 98

At this point we should deal with the small but finite spread of
the values of C(k)

min shown in Fig. 8 and parameterized by Eq. (14).
If the algorithm is stopped at the value of G then the various slices
would be reconstructed at iterations around the minimum NRMSD.
A more careful inspection of the plots of NRMSD versus iteration
(Fig. 4), reveals that the NRMSD varies very slowly for iterations
beyond the one at minimum NRMSD, and much faster before that
iteration. Therefore, stopping the algorithm a little later after the
minimum does not change appreciably the image quality. However
care should be taken to prevent premature stopping before reaching

minimum NRMSD due to the abrupt fall of the curve before this
point. Having that in mind, the criterion in Eq. (14) can be relaxed
as follows:

|C(k)
min − G| ≤ ı (16)

f expressions 15 (see text). Left: source image, middle: reconstructed image, right:
color scale is common to all three images for each slice.
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here the limit ı can be expressed in terms of the standard devi-
tion, �. One choice can be ı = 3�, related to the fact that for a
aussian distribution the distance of ı = 3� from the mean G rep-

esents the 99.7% confidence level limit.

.5. Validation of the stopping rule

The stopping criterion has been validated using a set of real
scanned) images from the Digimouse phantom [21]. Using these
D images as inputs, we have generated projections using the
onte Carlo techniques applied in the previous cases and then used

he MLEM algorithm for the reconstruction of these datasets, apply-
ng the stopping criterion given by inequality (16) to reconstruct
ll 2D slices. We present here the results from representative slices
os. 27, 59, 97, and 127. Table 2 shows the number of counts for each

lice, the critical value G, the iteration at minimum NRMSD along
ith the iterations at which the algorithm stops, and for which in

nequality (16) holds for ı = 3�, and ı = 5�. Fig. 12 shows a compari-
on between the phantoms and the reconstructed images for ı = 3�.
lotted are the phantom image, the reconstructed image using the
topping rule and their difference in the same color code. As shown,
he difference image (right column) in each slice is quite low in
omparison to the maximum pixel value in each image. From this
omparison, it can be observed that images produced by the pro-
osed stopping criterion are close to the optimum images that the
LEM algorithm may produce.

. Conclusions

The present paper is reporting the discovery of some interest-
ng properties of the updating coefficients and their exploitation
n forming an empirical and practical rule for stopping the MLEM
lgorithm. For this purpose, the behavior of the pixel updating coef-
cients, C, was analyzed extensively. The values of C for non-zero
ixels follow a distribution with a tail that moves towards the value
f 1.0 as the iteration proceeds. Using Monte Carlo generated source

mages, a direct correlation of the minimum value, Cmin, with the
gure of merit, NRMSD, was observed. In other words Cmin, esti-
ated exclusively from the scanner data was found to be in a

ne-to-one correspondence with NRMSD. The value of Cmin at min-
mum NRMSD is a function of the number of counts in the image
nd can be predicted by using Eq. (13). For acquired images, where
RMSD is not available, the estimated Cmin is to be compared with

he value G, given by Eq. (13). The decision to stop iterating is given
y the inequality (16). This study was performed for different kinds
f images and the behavior of C values was found to be the same. The
inimum values of C are shown to be independent of the image size

nd nearly the same for different kind of images. The only param-
ter that seems to play a role in the behavior of C is the number of
ounts (activity) in each image. This study has been used to under-
ine the principle and relies on Monte Carlo generated images. There
re features that are not covered and which are under study:

(i) The effect of noise coming from absorption and scattering. In
real PET scanners these effects should be first corrected before
the algorithm gets applied. Because of the statistical nature of
the introduced noise one has to take the necessary steps. This
may involve applying a threshold to the values of the system
matrix as well as to the scanner data.
ii) The different geometry of PET scanners has an effect on the tran-
sition (system) matrix and the question whether the equation
that predicts the critical value of K has the same parameters.
This question can be resolved for a given scanner geometry by
simulation studies, that need be performed only once during
the commissioning period.

[
[

[
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Work on the performance of the method in real data including
all noise effects (attenuation, scatter, etc.) as well as for real clinical
PET data is currently ongoing and will be the subject of a sepa-
rate publication. This can be accomplished using a well-validated
simulation code such as GATE [28]. Such software facilitates the
simulation and measurement under realistic conditions the noise
effects from physics and geometry. Subsequently the resulting sino-
gram will be corrected by subtracting the noise due to scattering,
absorption and random effects. The resulting noise “free” projec-
tions will be used to reconstruct and study in the same way that we
studied before. Alternatively, one can compute for each image pixel
the Noise Equivalent Count Rate (NECR) and use it to study the prop-
erties of the image against activity. This will lead to a stopping rule
which we shall compare with the noise-free case. The possibility of
the optimization of Noise Equivalent Count Rate of the PET scanner
due to stopping rule can be explored in the case of noisy data. The
presented methodology can be extended to any imaging system
using MLEM algorithm such as SPECT. Also, similar methodology
can be implemented in the case of the OSEM algorithm.
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