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We have applied automated image analysis methods in the assessment of human kidney perfusion based
on 3D dynamic contrast-enhanced MRI data. This approach consists of non-rigid 3D image registration
of the moving kidney followed by k-means clustering of the voxel time courses with split between left
and right kidney. This method was applied to four data sets acquired from healthy volunteers, using 1.5 T
(2 exams) and 3 T scanners (2 exams).
CE-MRI
idney
ulti-modality non-rigid image

egistration
-means clustering
ime series analysis

The proposed registration method reduced motion artifacts in the image time series and improved
further analysis of the DCE-MRI data. The subsequent clustering to segment the kidney compartments
was in agreement with manually delineations (similarity score of 0.96) in the same motion corrected
images. The resulting mean intensity time curves clearly show the successive transition of contrast agent
through kidney compartments (cortex, medulla, and pelvis). The proposed method for motion correction
and kidney compartment segmentation might improve the validity and usefulness of further model-based

of ki
enal function pharmacokinetic analysis

. Introduction

The kidneys maintain normal homeostasis by filtering and
xcreting metabolic waste products, by regulating acid–base bal-
nce, and by moderating blood pressure and fluid volume [1].
ecrease in renal function is caused by many disorders, among

hese are diabetes mellitus and hypertension. Chronic renal failure
s an increasing problem world-wide; up to 5% of the world’s pop-
lation may in the near future suffer from end-stage renal disease
ESRD), with dialysis or kidney transplantation as the costly ther-

peutic alternatives [2]. Furthermore, renovascular disease seems
o be an individual risk factor for cardiovascular disease [3]. There-
ore, it is important – for patients and society – that methods are
eveloped to monitor renal function precisely, thus enhancing the
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assessment of disease progression, the prognosis, and follow-up
therapy.

At present, diagnosis of renal dysfunction is based on such
measurements as creatinine, urea, and electrolytes, as well as on
creatinine clearance. These indirect measurements have low sensi-
tivity, since a significant change in creatinine level is only detectable
after a 60% function loss has occurred, while creatinine clear-
ance overestimates the actual glomerular filtration rate (GFR) by
up to 20% [4]. In addition, these clinical chemistry measurements
cannot detect local differences in the kidneys and cannot distin-
guish between left and right kidney. To overcome these limitations,
dynamic contrast-enhanced MR imaging (DCE-MRI) has emerged
as a technique that can be used for the more accurate assessment of
regional renal function [5,6]. With this technique, signal intensity
evolution can be measured and visualized as images that reflect the
passage of an injected tracer or contrast agent through the organ.

An important obstacle to these dynamic measurement tech-

niques that complicates further analysis is the movement of the
organ of interest during image acquisitions, when the individual
voxels undergo complex displacements due to respiratory motion
and pulsation. Such movements are often overlooked in studies of
renal function [7–9]. However, without proper motion correction,
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he derived voxel time courses will not represent spatially fixed
idney volume elements, thus invalidating a major assumption
nderlying subsequent voxel-based time series analysis and phar-
acokinetic modeling. A major contribution of the present work

s that we performed geometric correction of these movements by
ntroducing multi-modality non-rigid image registration techniques.
he use of these techniques can improve the applicability and
linical value of recent developments in renal multi-compartment
odeling, in simulation, and in image-based estimation of renal

unction [10–13].
Another important issue in analyzing kidney function using

CE-MRI is the detection and segmentation of the renal com-
artments. Accurate parenchyma sub-segmentation enables the
ssessment of signal intensity time curves for those regions, lead-
ng to a more comprehensive evaluation of the status of the organ
nd of its functional compartments [14,10].

The assessment of MRI time series is usually carried out man-
ally or semi-automatically [6,15,16]. Typically, the user delineates
region of interest (ROI) from which a (mean) voxel time course

s extracted. In this way the ROIs are generally selected based on
he user’s knowledge of anatomy. Valuable information inherent
n the signal intensity time courses is not used. Manual ROI place-

ents are also subject to inter- and intra-observer variability [15].
n additional disadvantage of such methods is that they are slow,
ven though semi-automatically techniques do reduce the process-
ng time [17]. Automated computational techniques can overcome
hese drawbacks. Unsupervised data-driven approaches such as
lustering of the voxel time courses may lead to more accurate and
bjective segmentation within reasonable time.

In this paper we present an automated 3D non-rigid image reg-
stration and pattern recognition technique, applied to dynamic
ontrast-enhanced MR imaging, to extract useful voxel-based func-
ional information from the kidney.

. Related work

.1. Image registration

During the past three decades several registration techniques
ave been developed and applied to medical imaging. Comprehen-
ive surveys are presented in [18,19]. In the present work we have
ocused on non-rigid (deformable) registration methods relevant
n cases where the imaged object can become deformed during the
bservation time. A high degree of deformation and displacement is
specially prominent in dynamic cardiac imaging, breast imaging,
nd abdominal imaging.

Motion correction of contrast-enhanced image time series is a
pecial case of image registration, where two types of motion and
eformation are present and visible in the images. The first type

s motion and deformation of tissues as a result of e.g. breathing
r pulsation, while the second is motion of the contrast agent. To
orrect for motion resulting from breathing and pulsation, the regis-
ration method needs to be unaffected by intensity changes caused
y the accumulation and excretion of the contrast agent.

A solution for tissue displacement in the registration of contrast-
nhanced kidney time series was proposed by Lee et al. [20]. They
ligned kidneys on the basis of their centers of gravity computed
rom predefined contours around each individual kidney and for
ach time point. Another approach to the registration of kidney data
ets was proposed by Sun et al. [21]. These authors posed an energy
inimization method, through the integration of a subpixel motion

odel and temporal smoothness constraints. From experimental

bservations on contrast-enhanced renal perfusion MRI images of
he rat kidney, they concluded that the movement introduced by
reathing is mainly a head-to-feet motion with a subpixel displace-
ent. In contrast to these methods that deal with 2D dynamic series
ging and Graphics 33 (2009) 171–181

and involve either manual intervention or head-to-feet constraints,
Song et al. [22] proposed an automated 3D registration framework
based on wavelet and Fourier transforms. Their algorithm consists
of three steps: first, de-noising by edge-preserving anisotropic dif-
fusion; second, edge detection by 3D dyadic wavelet expansion;
and third, 3D rigid registration based on Fourier transform. Another
important solution was proposed by Rohlfing et al. [23] for model-
ing liver motion and deformation. Their intensity-based non-rigid
registration method uses B-spline deformation model and normal-
ized mutual information as a similarity measure.

To compensate for the motion and deformation of the human
kidneys during DCE-MRI acquisitions, we have used an approach
similar to Rohlfing et al. [23]. We focused on multi-modality reg-
istration techniques, which enable the registration of images with
complex intensity dependencies, e.g., of images acquired with dif-
ferent imaging techniques. In our case, these approaches provide
the invariance to the presence and flow of the contrast agent. Thus,
individual images of the time series can be independently regis-
tered on the selected reference frame, without using any temporal
constraints. This assures that temporal information is not distorted,
which is important, since temporal information is later used for the
analysis of renal function.

2.2. Voxel-based time series analysis

In order to analyze voxel-based time series automatically, with-
out the need of manual interaction for segmentation of left and
right kidney and their functional compartments, we present a
fully data-driven approach based on clustering. Clustering has been
successfully applied in fMRI, especially for contrast-enhanced per-
fusion studies of the brain [24–26], DCE-MRI of the breast [27], or
automatic arterial input function selection [28]. Clustering seems
also to be reasonable for the analysis of the perfusion time series
of the human kidney. In our approach we have applied k-means
clustering [29] to split the function of left and right kidney auto-
matically, and to obtain different regions of the kidney according to
their dynamic contrast enhancement patterns.

3. Materials and methods

3.1. Data and acquisition

In the present study we have used two different pulse-sequences
for the acquisition of 3D perfusion time series having a different
temporal and spatial resolution as well as a different length. On
the 1.5 T Siemens Symphony scanner and 3.0 T Sigma Excite GE
we used a 3D volumetric interpolated breath-hold examination
(VIBE) and a 3D liver acceleration volumetric acquisition (LAVA),
respectively. Altogether, four data sets were obtained in four exams;
each exam resulted in one data set. Table 1 gives the main acqui-
sition parameters. All data were recorded from healthy volunteers,
1 female (exams 2 and 3) and 2 males (exams 1 and 4). The study
was approved by the regional Ethical Committee of Western Nor-
way.

Exams 1 and 2 used the VIBE protocol with flip angle = 9◦, TR =
3.3 ms, and TE = 1.79 ms. Exam 3 used the LAVA protocol with flip
angle = 12◦, TR = 2.59 ms, TE = 1.10 ms, whereas exam 4 used this
protocol with flip angle = 12◦, TR = 2.74 ms, and TE = 1.14 ms. In
all examinations a paramagnetic contrast agent was used (Omnis-
can,GE Healthcare, Oslo, Norway). A dose of 2 ml (0.5 mmol/ml
Gadodiamide) of contrast agent was injected after recording the

fifth 3D volume. In exam 1, additional 15 volumes were recorded
at non-uniform time intervals. In exams 3 and 4 we recorded
additional 55 volumes and in exam 2, 113 further volumes were
recorded. The total acquisition time in exam 1 was 7 min 12 s with
pauses of 62 s after volume 11, 70 s after volume number 16, and
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Table 1
Description of the pulse-sequences (VIBE or LAVA) used in this study.

Exam Scanner Sequence Spatial res (mm) Matrix Temporal res

1 1.5 T VIBE (1.48 × 1.48 × 3.00) (256 × 256 × 20 × 20) n.e.
2 1.5 T VIBE (1.48 × 1.48 × 3.00) (256 × 256 × 20 × 118) 2.5 s
3 × 0.8
4 × 1.7
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algorithm with K = 3 (“cortex”, “medulla”, and “background”). The
cluster centroid were initially chosen by random. The clustering
itself was repeated ten times to not get biased due to the initializa-
tion. We performed the clustering only for the middle slice of the
acquired 3D volumes and used only a short part of the sequence that
3.0 T LAVA (0.86
3.0 T LAVA (1.72

xam 1 has been recorded with non-equidistant time sampling (n.e.).

2 s between volumes 18 and 19, respectively. The first 11 mea-
urements were sampled at intervals of 2.5 s, the rest at 30 s per
ne single volume. For the other examinations, acquisitions took
lace for 4 min and 55 s (exam 2), 3 min (exam 3), and 3 min and
2 s for exam 4 at fixed time intervals (cf. Table 1).

.2. Non-rigid image registration

The registration of abdominal DCE-MRI time series is a chal-
enge. Since both rigid and non-rigid transformations are present,

e chose a two-step (rigid and non-rigid) three-dimensional regis-
ration algorithm to recover these. The transformation is obtained
y optimizing the similarity between the frame under investigation
nd a reference frame. The temporal intensity variations caused by
he passage of the tracer lead us to the use of a similarity metric from
tatistical information theory for the whole algorithm: the Mat-
es implementation of the mutual information metric [30], usually
hosen for multi-modality registration.

In our approach, registration starts with a simple rigid registra-
ion algorithm, where the transformation is defined by a small set of
arameters and the optimization is carried out with a regular step

mplementation of the common gradient descent method [31]. In
his way, the main head-to-feet displacement tendency can be cor-
ected easily. The intermediate result is later used to initialize the
on-rigid step.

The non-rigid transformation component incorporates an
mplicit spatial deformation model described by B-splines basis
unctions, which are uniformly placed on a grid of control
oints. The deformation is obtained by optimizing coefficients
f these functions using a quasi-Newton BFGS optimizer [32]. A
ulti-resolution strategy was included in order to reduce the com-

utational cost and to increase the robustness of the algorithm. The
oarse-to-fine effect was created by sub-sampled images and by up-
ampling the warping grid, where the latter one served as a way of
egularization. A more detailed description of the implementation
an be found in [33].

Fig. 1 sketches the proposed registration method implemented
n C++, using functions of the open source software toolkit Insight
egmentation and Registration Toolkit (ITK).

Because of the absence of standard test data, the quality of the
on-rigid registration method cannot be directly assessed. Conse-
uently, experiments are often performed on simulated data or
y analyzing properties of the deformed grid or the similarity of
egistered images. All these methods have certain limitations. We
ecided to use an evaluation based on comparison with an alterna-
ive registration algorithm, which is in almost all aspects different to
he algorithm described above. This alternative algorithm is based
n a Gaussian deformation model, an intensity-based point sim-
larity measure [34], and a symmetric approach [35]. The results
btained by both algorithms were compared by means of their
espective intensity time courses corresponding to small regions

f interest (ROIs) that were manually selected on different kid-
ey sections. Furthermore, obtained variances within the defined
OIs were analyzed by the F-test [36] to investigate whether there
re significant differences between the registered and unregistered
ata. The null hypothesis H0: �2

registered ≥ �2
unregistered was tested
6 × 2.4) (512 × 512 × 44 × 60) 3.0 s
2 × 2.4) (256 × 256 × 22 × 60) 3.7 s

against the alternative H1: �2
registered < �2

unregistered. A significance
level of 5% was set for rejecting the null hypothesis.

3.3. Voxel-based time series analysis by k-means clustering

K-means clustering [29] is an iterative process aiming at to min-
imize the objective function

E =
K∑

k=1

∑

x ∈ Ck

d(�x, �mk) (1)

across all clusters C1, . . . , CK , where K is the number of predefined
clusters, mk is the centroid of cluster Ck, and �x are the data points. In
this approach the DCE-MRI data are represented for each voxel i as
an intensity vector �Ii = (I1

i
, . . . , It

i
, . . . , IT

i
) ∈RT where t = 1, . . . , T

denotes a time point in the sequence of volume acquisitions. We
found that the cosine distance function [37] was a good choice for
the metric (d), i.e.

d(�Ii, �Ij) = 1 − cos ˛ (2)

where

cos ˛ =
�Ii�Ij

|�Ii||�Ij|
(3)

describes the cosine of the angle between �Ii and �Ij in RT .
Our clustering approach is depicted in Fig. 2. First, we preprocess

the data by a k-means clustering procedure to extract automatically
the single kidneys from the recorded image series, in order to pro-
vide a separation between left and right kidney. We initialized the
Fig. 1. Processing scheme describing our registration algorithm. The result from
the first step (rigid registration) is used to initialize the second step (non-rigid
registration).
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ig. 2. Scheme for automatic clustering of motion-corrected DCE-MRI voxel time ser
he kidneys. Voxel time courses within each of the kidney masks are then clustered

aptured the initial cortical phase of the enhancement (cf. upper
art of Fig. 2). The rationale behind this is twofold: firstly, assum-

ng that the kidney is usually centered in the 3D volume, its largest
xtension is around the middle slice, so that a well-fitting bound-
ng box/mask including the whole kidney is assured. Secondly, such
hort sequences are sufficient because the characteristic wash-in
art of the intensity curve for the renal cortex is at about 15–20 s

in a healthy patient) after injection. Using this technique, the cor-
ex could be identified easily and clearly. Moreover, the clustering of
he kidney perfusion time series revealed that the cortex of the kid-
ey can be automatically identified by the intra-cluster distance of
he corresponding cluster being the minimum of all found classes.
means (K = 3) clustering was first applied to detect the renal cortex and to separate
. Data shown are from exam 3.

The found members of the cluster could be mapped back into an
image. The separation of the kidneys is then obtained by applying
connected-components-labeling and morphological operators on
this image to derive a bounding box/mask.

In the second step (cf. lower part of Fig. 2), the obtained masks
of each kidney are used to extract VOIs (volumes of interest) of
the single kidneys from the original data. The clustering is then

repeated on these voxel time series to analyze the perfusion of the
renal organ. The k-means algorithm is initialized by 5–7 classes in
order to detect and segment different compartments of the kidney.
Here, similar to the initial step, random initialization of the cluster
centroids was performed.
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Table 2
Evaluation of uncorrected and motion-corrected DCE-MRI data with respect to signal variation within manually delineated ROIs during time.

Exam Data set 3 Data set 1

ROI Cortex Medulla Pelvis Cortex Medulla Pelvis

Unregistered Mean 16.77 7.77 27.08 3.52 3.76 5.10
Median 10.31 6.51 27.16 3.30 3.30 4.68

Proposed method Mean 10.24 4.70 18.90 4.95 2.13 3.64
Median 7.26 4.10 15.31 4.14 2.07 3.57

Alternative method Mean 8.37 6.52 25.26 2.36 1.84 3.46
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Median 6.83 6.23

or each manually delineated ROI and each frame, the signal intensity standard dev
D values across all time-frames.

Similar to registration, the evaluation of segmentation results
s difficult due to the lack of clear standards [38]. In our case

e compared the automatic segmentation to manual delineated
by trained experts) regions in order to quantify the segmentation
rror. Commonly, overlap measures such as Dice, Jaccard/Tanimoto
TN), and Volume Similarity are applied [39]. Dice and Tanimoto
alternatively known as Jaccard Similarity) are related [38]. Vol-
me Similarity depends only on the number of voxels in the labeled
egions that are compared. It does not take the spatial relation of
he labeled regions into account. Therefore, TN has been selected.
N can be defined as follows: let I1, I2 denote two binary images
efined on a grid G of N pixels x. Let X = {x ∈ L|I1(x) = 1} be the
egmented region and Y = {x ∈ L|I2(x) = 1} the manually delineated
ask, then:
N(I1, I2) = |X ∩ Y | + |X ∪ Y |
|X ∪ Y | + |X ∩ Y |

(4)

N tends towards 1 if the similarity between the sets X and Y is
igh.

ig. 3. Evaluation of the registration algorithm based on the comparison between the mea
election is depicted to the left of the time courses. The selected time frames are those wh
ortex, medulla, and pelvis, respectively. Data from exam 3.
23.73 2.36 1.86 3.48

(SD) was calculated. The tabulated figures are given as mean and median of these

4. Results

In this section the results of the proposed algorithms obtained
for the four data sets (cf. Section 3.1 and Table 1) are presented. The
overall assessment of the proposed method consists of three steps:
(i) assessment of the registration method, (ii) analysis of the impact
of registration to clustering, and (iii) assessment of k-means based
segmentation compared to manual segmentation.

4.1. Non-rigid image registration

As outlined in Section 3.2, we compared two independent reg-
istration algorithms to assess the quality of the motion correction
results. The actual comparison was made with respect to mean sig-
nal intensity time courses within fixed ROIs obtained with each

registration algorithm.

Fig. 3 shows the extracted signal intensity time courses for the
manually delineated ROIs, superimposed on the slices depicted
on the left, belonging to each of the main kidney compartments
in exams 3. As previously mentioned, the intensity time courses

n intensity time courses within a ROI before registration and after registration. ROI
ere the kidney compartment is maximally enhanced: ∼30 s, 100 s, and 170 s for the
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Fig. 4. Comparison of clustering results using registered and unregistered data, respectively. The left image depicts the renal cortex clusters obtained from unregistered data.
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he right image shows renal clusters after motion correction. In the middle the me
orresponds to the segmented (red) region on the right. The dashed and dotted cu
btained without motion correction. Data from exam 3, slice 22/44. (For interpretati
f the article.)

apture the comparison between the original images (dashed
urves), those obtained from the application of the proposed
egistration algorithm (solid curves), and those obtained from the
mages registered with the alternative method (dotted curves). In
hese examples we have depicted the mean of the signal intensity
alues. Similar results were obtained for the remaining data sets.

In addition to depicting the mean signal intensity value of vox-
ls included in the selected ROIs, we have also paid attention to
he standard deviation of such a set of values. Table 2 shows the

ean and median standard deviation obtained for data sets 1 and
. Similar results are obtained for the other two data sets.

Analyzing the variances within the defined ROIs of registered
nd unregistered data by the F-test shows no significant differ-
nces (p > 0.05). However, looking at the individual time points,
he variances and thus the standard deviations are significantly
educed compared to the unregistered cases. For example, within
he ROI placed in the cortex of data set 3, in 50% of the time points
reduction by the alternative method could be obtained.
.2. Impact of registration to clustering of voxel based time
ourses

In order to validate the complete processing of 3D DCE-MRI
ata, i.e. registration and clustering, we were interested in the

ig. 5. Clustering results for exam 1, left kidney (slice 10/20, frame 2/20). The upper row
ime course of the renal cortex. The lower row (b) depicts the cluster (white segment) an
otice that the time courses clearly identify the functional parts of the kidney (cortex an
artial volume effects.
nal intensity time courses for the cortex regions are plotted. The black solid curve
epresent time courses from red and green clusters (see arrows) in the left image,
he references to color in this figure legend, the reader is referred to the web version

impact of motion correction on the following clustering of the data.
Therefore, we compared the clustering results of registered and
unregistered data. The k-means clustering was initialized with the
same parameters (cf. Section 3.3) as for the corresponding regis-
tered/unregistered pairs of each data set. Fig. 4 depicts such result
for the left kidney of data set 3. Fig. 4 clearly shows that the cluster-
ing results in a different number of clusters (regions corresponding
to the cortex) when unregistered and registered data are compared.
In the unregistered case two regions representing the cortex (red
and green, left image, Fig. 4) are found whereas in the motion-
corrected case only one cortical region (red, right image, Fig. 4) is
computed. Between the colored cluster regions, the corresponding
derived time intensity curves are depicted.

4.3. Clustering of voxel-based time series

The evaluation of segmentation results is difficult, since in most
cases, similar to the registration, no clear standards exist. As a qual-
itative evaluation we calculated the mean intensity time courses

which have characteristic shapes for the segmented compartments
and are used for further functional assessment of the kidney [14,10].

Figs. 5 and 6 show the clustering results of the separated kidneys
of data sets 1 and 3 (1.5 T and 3 T scanner, respectively). For each
obtained cluster the corresponding mean intensity time course was

(a) depicts the cluster (white segment) and corresponding mean signal intensity
d corresponding mean signal intensity time course of the renal collecting system.
d medulla/pelvis). Three other clusters (not shown) represent the background and
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Fig. 6. Clustering results for exam 3, right kidney (slice 22/44, frame 2/60). The upper row (a) depicts the cluster (white segment) and corresponding mean signal intensity
t ding m
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ime course of the renal cortex. The middle row (b) depicts the cluster and correspon
luster and corresponding mean signal intensity time course of the renal pelvis. K-m
he background and partial volume effects.

omputed and plotted. In addition to these depicted time courses,
projection of the clustered region (bright pixels) onto the original

mage is given.
The clustering could detect the renal compartments (cortex,

edulla) and in case of data set 3 also the pelvis (in data set 1
he pelvis and the medullary regions are merged but may be eas-
ly separated in a post-processing step). The other clusters collect
ackground pixels as well as partial volume effects (data omitted).
imilar results were retrieved for the other data sets.

In addition, manual delineations have been carried out by
rained radiologists and compared to the regions derived from clus-
ering.

Table 3 shows the results for the comparison based on the pre-
iously described Tanimoto (TN) overlap measure (cf. Section 3.3).

or all four data sets high similarity could be obtained (average
N = 0.96). Standard deviations range between 1% and 6%.

The clustering results, i.e. the segmented kidney compartments
ould be directly serve as input for further processing or analy-

able 3
valuation of k-means based segmentation vs. manual segmentation.

xam TN

Mean Std

0.95 0.06
0.96 0.01
0.96 0.03
0.97 0.01

he average Tanimoto measure (TN) and standard deviations (Std) over all slices and
ata sets are given. Slices for which no manual mask could be identified (outermost
lices) were omitted from the evaluation.
ean signal intensity time course of the renal medulla. The lower row (c) depicts the
lustering was here initialized with K = 7. Four other clusters (not shown) represent

sis. As an example, Fig. 7 depicts time-to-peak (TTP) maps derived
automatically from the segmentation results.

5. Discussion

In this paper we have introduced a set of automated methods for
the assessment of renal function from 3D DCE-MRI acquisitions,
comprising multi-modal, non-rigid 3D image registration and k-
means clustering that together enable the extraction of valid voxel
time courses from recorded data. Up to now, the problem of kidney
motion has generally been ignored when analyzing dynamic image
data using model-free descriptive techniques or pharmacokinetic
models [7–11]. However, registration should be an integral part of
any analysis of such data since the motion, e.g. due to breathing,
severely hampers the (voxelwise) time intensity curves which are
used as input for pharmacokinetic modeling or semi-quantitative
analyses.

The evaluation of image registration results is difficult since no
clear standards exist for this kind of data [38]. Here, to assess the
impact and performance of non-rigid image registration on voxel
intensity time courses, we compared the results of two registration
approaches developed by the authors. Inspecting Fig. 3, the registra-
tion methods could correct in most cases the time intensity curves
compared to known shapes from literature [40]. Also, derived aver-
age standard deviations from carefully selected region of interest in

the registered and unregistered data show a reduction in standard
deviation for the proposed methods compared to the unregistered
data, although the observed reduction is not significant. A rejec-
tion of the null hypothesis at 5% significance level was mostly not
successful for data retrieved from images acquired at time points
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ig. 7. Time-to-peak (TTP) parametric map of left kidney (exam 3) automatically ca
ight colors later arrival. The gray-scale bar to the right has values in seconds after
fth volume acquisition. Subfigure (a) depicts the cortex, (b) the medulla, and (c) the

s referred to the web version of the article.)

f the first pass of the bolus (0–40 s). This is due to the acquisi-
ion scheme. Like others [11,10], we acquired these images during
reath-hold, i.e. no or only few motion is present. Therefore, differ-
nces between registered and unregistered data might be low. On
he other hand, this result also shows that the presented approaches
o not distort the images if there is no or few motion. Furthermore,
ignificant reduction in variances within ROIs correlates with time
oints surrounding breath-taking events during acquisition. This
uggests that the developed registration algorithms could reduce
he motion within DCE-MR image time series.
Since interpolation is implicitly required during the registration
rocess, remaining differences between the two registration algo-
ithms cannot be avoided when comparing the intensity courses
cf. Fig. 3). Also note that two very different registration algorithms
re compared. Some differences are seen between results of each
ed from the clustering results. Dark colors represent early arrival of contrast agent,
st injection, where the contrast agent in this case was injected as a bolus after the
pelvis. (For interpretation of the references to color in this figure legend, the reader

of the registration algorithms, especially for frames that were dis-
torted due to extensive breathing motion. This is most noticeable
for the cortex region in Fig. 3 at 90 s. However, in both cases, the time
courses after registration are restored and characterize the tracer
concentration profile expected for the corresponding renal com-
partments [12,40]. The time course computed from the same ROIs
but without motion correction appears quite different and could
compromise subsequent its further analyzes, either being model-
free or model based.

Miscorrections only occur at time points where the subject takes

breath (sharp peaks in the time courses). This seems to be difficult
to handle for the registration approaches. To reduce such addi-
tional large breathing motion, probably a free breathing acquisition
scheme might overcome this problem. In addition, some sort of
respiratory gating could be applied [11] but temporal constraints
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ave to be taken care off when considering such approaches [41].
urthermore, the absence of a gold standard certainly limits the
xplanatory power of the presented results. To overcome the lack
f such a gold standard we are currently developing an in silico
hantom of the kidney, allowing for superimposing – not only –
otion [42]. With such a phantom, we hope to be able to evaluate

he registration of DCE-MRI data in more detail.
Nevertheless, also without a gold standard the importance of the

egistration and therefore, the abilities of the presented approaches
ould be demonstrated. In Fig. 4, clustering results of registered
nd unregistered data are depicted. Imagine the case of a possi-
le renal disease in a patient. On inspecting the left image in Fig. 4
he question arises of whether the black region represents a local
efect in the kidney due to some kidney disease. In comparison
o healthy cortex perfusion (black curve, Fig. 4), the correspond-
ng mean intensity time course of the green region (green curve)
eems to be degenerated. One might assume that renal disease was
resent. In this example, however, this is clearly misleading, since
he data has been taken from a healthy volunteer. Healthy renal
unction – i.e. normal perfusion – is expected and no splitting of
ompartmental regions into separate clusters should occur. This is
upported by the fact that the clustering seems to be sensitive to
he data (cf. Table 3 and Fig. 6). Furthermore, when anatomical prior
nformation is taken into account, all the regions obtained by clus-
ering the unregistered data should have been associated with the
enal cortex. The splitting of the cortex region in this example is
learly a result of motion artifacts present in the unregistered data.
ata processing like our approach, including image registration, can

hus be able to overcome these problems.
The conclusion is that proper registration will improve any sub-

equent analysis of DCE-MRI recordings. This is also confirmed by
he recent work of Buonaccorsi et al. [13].

Furthermore, our results also show that clustering of time series
nables the segmentation of the kidney into meaningful functional
ompartments, i.e. renal cortex, medulla, and pelvis. Comparing the
egmentation results obtained by clustering, TN index values close
o one could be achieved for most of the slices in the 3D volume
standard deviation ≤ 0.06 for all data sets). However, clustering
ecomes difficult towards the outermost slices, since the kidney is
nly partly visible, or not visible at all in these slices. Hence, manual
elineation of the kidney also becomes difficult in these regions
or the human observer. Therefore, these slices have been excluded
rom the evaluation.

Moreover, intensity time courses calculated from the k-means
egmented regions were similar to corresponding time courses
eported in the literature [12,40]: (i) early peak with steep up-slope
orresponding to the first pass of the contrast agent through the
asculature of the cortex (cf. Fig. 6(a)), (ii) delayed and less distinct
eak, representing filtered contrast agent in the tubular and collect-

ng system of the medulla (cf. Fig. 6(b)), and (iii) very late (≈120 s)
nhancement of the pelvic region depicting the renal elimination
f contrast agent in the urine (cf. Fig. 6(c)).

We conclude that k-means clustering is a suitable approach
or time course analysis of renal perfusion studies when proper

otion correction is performed as a preprocessing step. A benefit
f this approach is that it is totally data-driven, requires no manual
nteraction (as compared to [16,17]), and therefore yields observer-
ndependent results. In addition, it also allows for automated split
unction between left and right kidney.

Our approach so far only deals with the processing of observed
ignal time intensity courses. The voxel-by-voxel relationship

etween signal intensity evolution and the contrast agent concen-
ration is actually non-linear and highly dependent on the pulse
equence and acquisition parameters being used, in addition to the
ntrinsic tissue T1 values [43]. In this paper, we have not consid-
red any specific pharmacokinetic modeling framework; we have

[

[
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assumed that linear approximation is adequate for our illustra-
tive purposes. Furthermore, more experiments on volunteers and
patients should be carried out in order to optimize acquisition
protocols and parameter settings for our image registration and
segmentation algorithms.

In summary, we conclude that the results obtained so far are
promising and show the potential of registration and automatic
data analysis methods, especially if combined. We also demon-
strated that registration, even without significant differences in
variance within selected ROIS is important for subsequent process-
ing of DCE-MRI data to obtain valid compartment segmentations
and time courses, both important for the (automated) quantifi-
cation of the physiology of kidney. By combining both of these
methods, this approach provides a powerful tool for the assessment
of renal function.

This work can form the basis for several further research direc-
tions. Firstly, parameter maps could be automatically derived from
the clustered time courses, such as time-to-peak (TTP) maps for
different segmented renal compartments. A graph, similar to Fig. 7,
could be then used for the qualitative assessment of renal disease
by clinicians and radiologists, or as an input for pharmacokinetic
models. Secondly, clustering is only one approach to unsupervised,
data-driven assessment of renal function. For example, indepen-
dent component analysis has become a popular tool for fMRI data
analysis of brain [44]. This method has been recently introduced by
Zöllner et al. [45] to the study of renal DCE-MRI data, and could be
compared to the k-means clustering methods.

In our future work we also plan to incorporate our methods into
a pharmacokinetic modeling framework in order to estimate func-
tional parameters, e.g., glomerular filtration rate. Accordingly, the
methods presented in this paper could be seen as an important
step towards an automatic and reliable approach to renal function
analysis.
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