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Purpose: In the present work, the authors compare geometrical and Monte Carlo projectors in
detail. The geometrical projectors considered were the conventional geometrical Siddon ray-tracer
�S-RT� and the orthogonal distance-based ray-tracer �OD-RT�, based on computing the orthogonal
distance from the center of image voxel to the line-of-response. A comparison of these geometrical
projectors was performed using different point spread function �PSF� models. The Monte Carlo-
based method under consideration involves an extensive model of the system response matrix based
on Monte Carlo simulations and is computed off-line and stored on disk.
Methods: Comparisons were performed using simulated and experimental data of the commercial
small animal PET scanner rPET.
Results: The results demonstrate that the orthogonal distance-based ray-tracer and Siddon ray-
tracer using PSF image-space convolutions yield better images in terms of contrast and spatial
resolution than those obtained after using the conventional method and the multiray-based S-RT.
Furthermore, the Monte Carlo-based method yields slight improvements in terms of contrast and
spatial resolution with respect to these geometrical projectors.
Conclusions: The orthogonal distance-based ray-tracer and Siddon ray-tracer using PSF image-
space convolutions represent satisfactory alternatives to factorizing the system matrix or to the
conventional on-the-fly ray-tracing methods for list-mode reconstruction, where an extensive mod-
eling based on Monte Carlo simulations is unfeasible. © 2010 American Association of Physicists
in Medicine. �DOI: 10.1118/1.3501884�
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I. INTRODUCTION

Positron emission tomography �PET� allows in vivo nonin-
vasive imaging to be applied in diagnostics and basic bio-
medical research. Nowadays, small animal PET has great
potential as a tool in preclinical areas such as drug develop-
ment, gene expression monitoring, or the development of
animal models of diseases.1–4 Nevertheless, given the differ-
ence in size between the small animals used �mice and rats�
and humans, the spatial resolution in small animal scanners
needs to be considerably improved with respect to human
scanners. Furthermore, a similar degree of sensitivity to that

found in human studies should be maintained, which is not
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an easy task if the spatial resolution has to be improved. So,
due to these high-resolution and high-sensitivity require-
ments, both the optimization of PET instrumentation and the
development of more accurate reconstruction algorithms are
needed.

Analytical reconstruction algorithms �such as filtered
backprojection� and iterative reconstruction methods �such
as those based on statistical models� are the two major types
of tomographic reconstruction methods. Nevertheless, statis-
tical reconstruction methods are becoming a standard proce-
dure in small animal PET due to the possibilities they offer

for improved image quality with respect to analytical
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methods.5 The most common statistical reconstruction
method is the maximum likelihood expectation
maximization6 and its accelerated version, the ordered subset
expectation maximization �OS-EM�.7

A key element of any statistical reconstruction algorithm
is the system response matrix �SRM�, which represents the
relationship between the image and the projection space.
Each element aij of this matrix corresponds to the probability
that a positron emission in voxel j results in the detection of
a coincidence event by detector pair i. Therefore, if the origi-
nal radioactivity distribution in voxel j is represented by qj

and ni is the statistical noise in the projection, the measured
projection pi can be described by the following equation:

pi = �
j=1

J

aijqj + ni, �1�

where i� �1, I�, j� �1,J�, and I and J are the total number of
lines of response and the total number of image voxels, re-
spectively.

The computation of the elements aij can be a very labo-
rious task due to the large size of the SRM. To date, several
approaches have been developed. To simplify computation
and storage, the SRM can be factorized into several
submatrices,8 each one related to a relevant aspect in the
image formation process. In this way, the effects of the par-
ticular system geometry, the attenuation in the subject, etc.,
can be calculated separately. While the attenuation matrix
can be calculated directly from the attenuation
measurements,9 other effects such as crystal penetration, pos-
itron range, intercrystal scatter, or noncollinearity require a
more extensive modeling. This modeling can be carried out
analytically by using measurements or Monte Carlo �MC�
simulations. In any case, the main factor of the SRM is the
geometrical component, which accounts for the geometrical
efficiency. The elements of this geometrical component are
usually calculated analytically, for example, using the Siddon
ray-tracer �S-RT�.10 This method is widely used because it is
fast and easy to implement. Furthermore, a spatial resolution
model can be easily incorporated into this ray-tracer by using
image-space convolutions11,12 so that the projection is mod-
eled as a 3D shift-invariant Gaussian function. Other accu-
rate projectors have recently been proposed: An analytical
calculation of the volume-of-intersection �VOI� providing a
uniformly continuous sampling of the image space was in-
troduced by Scheins et al.13 Additionally, a new method was
presented14 to accelerate the calculation of VOIs between
tubes-of-response �TORs� and voxels based on the Wu-
antialiased ray-tracer. These methods yield better images
than the Siddon ray-tracer, but more computational effort is
needed. A fast and efficient 2D geometrical projector based
on MC simulations using image basis functions �only geo-
metrical contributions are computed� has also been
proposed.15 In a previous study,16 we proposed a geometrical
projector, the orthogonal distance-based ray-tracer �OD-RT�,
based on computing the orthogonal distance from the center
of image voxel to the line-of-response �LOR�. A similar ap-

proach based on the orthogonal distance was also used by
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Lewitt,17,18 but in combination with spherically symmetric
basis functions �blobs�; in a recently published study,19 the
orthogonal distance was used to sample a Gaussian function.
The geometrical response matrix can be also derived by
measurements20,21 so that the matrix elements are obtained
by positioning the point source in the scanner field of view
and processing the response in the projection space �both
geometrical and detection physics components are included�.

As an alternative to factorization, Monte Carlo simula-
tions can be also used to compute the complete system re-
sponse model �MC-based SRM�.22–27 Although MC-based
SRM methods can improve the image quality by considering
almost all image degradation effects, their implementation
still remains a challenging computational task. Object scatter
could be, in principle, included into the SRM. To date, this
approach is seldom used for PET due to its computational
complexity.28 The accurate estimation of object scatter is
usually performed before reconstruction, for example, using
the single scatter simulation algorithms29–31 or the double
scatter simulation algorithm.32 The estimated contribution is
then included into the forward projection step of iterative
algorithms, instead of being within the SRM.

In general, the elements of the SRM can be either com-
puted off-line and stored on disk �MC-based SRM� or calcu-
lated during the reconstruction process �on-the-fly�. The latter
approach is suitable for list-mode reconstruction, where the
reconstruction process must be performed event by event,
and in the modern time-of-flight PET scanners.33 However,
to be efficient, on-the-fly approaches usually only compute
the geometrical component of SRM.

The aim of the present work is first to assess in detail the
performance of the geometrical OD-RT ray-tracer16 as an
efficient and accurate alternative to the conventional S-RT
and then to compare it to a more extensive modeling based
on Monte Carlo simulations and more accurate point spread
function �PSF� models for geometrical projectors. Both
simulated and experimental data from a small animal PET
scanner were used for this purpose, with the aim of investi-
gating whether or not the OD-RT method is sufficient for
complete SRM modeling. This could be of special interest
for list-mode reconstruction.

II. MATERIALS AND METHODS

II.A. Small animal scanner

Our work focuses on the commercial small animal PET
scanner rPET �Ref. 34� (Sedecal, Sociedad Espanola de
Electromedicina y Calidad S.A., Madrid�. This scanner is
characterized by four opposing planar pixilated detectors
with 35 axial�30 transaxial LYSO crystals �1.5�1.5
�12 mm3�. The intrinsic spatial resolution determined by
scanning a 22Na point source across its field-of-view �FOV�
was 1.5 mm.34 The axial and transaxial distance between the
center of two contiguous crystals is 1.62 mm �including the
gap�. The radius of the system is 80 mm �i.e., the distance
between planar detectors is 160 mm�. The width of the co-
incidence window is 5 ns and the estimated time resolution is

2 ns. The energy window used was 250–650 keV and the
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energy resolution is 22%. The sensitivity of the system cal-
culated by using an axial source placed it the center of the
FOV was 350 cps �counts per second� per �Ci.

II.B. Image reconstruction

For the current work, the statistical iterative reconstruc-
tion algorithm, 3D OS-EM-MRP, was implemented. This
method is based on the OS-EM algorithm but includes a
median root prior �MRP� regularization. MRP regularization
is applied in order to control the noise level in the recon-
structed images.35 The median is used as penalty function
and it is set for a pixel against the local median so that the
penalty is set only if the image is nonmonotonic36 within the
local voxel neighborhood. The reconstructed image is ob-
tained from comparisons between estimated and measured
projection data in such a way that each element qj of the
image at iteration k+1 for a given subset n is updated ac-
cording to the following equation:

qj
k+1,n =

qj
k

sj
n + �U�qk��i=1

In

aij
pi

p̂i
k . �2�

An iteration of OS-EM is thus defined as a single pass
through all the subsets, where aij is an element of the SRM;
i� �1, In� is the projection index �or sinogram bin�, In is the
number of projection elements in the subset n �n� �1,SB�,
SB is the number of subsets�; and j� �1,J� is the image
index, with J being the number of image elements �or vox-
els�;

pi is the measured projection data; p̂i
k �i� �1, In�� is the

estimated projection data for the subset n which is obtained
after forward projection of the estimated image at iteration k
as

p̂i
k � �

j=1

J

aijqj
k. �3�

�U�qk� is the MRP regularization term, and
U�qk�= �qj

k−Mj� /Mj is the penalty function, where Mj is the
median value obtained considering a window of 3�3�3
neighborhood voxels. The MRP regularization term is multi-
plied by a weight factor ��=0.1�.

sj
n is an element of the sensitivity image for the subset n,

which represents the probability that a positron emission oc-
curred in voxel j was detected and can be obtained by adding
only those projection elements within subset n of the SRM
according to

sj
n � �

i=1

In

aij . �4�

Seventeen angular subsets and 170 total iterations were
performed, and an image support made of 64�64�69 vox-
els with a voxel size of 0.74�0.74�0.8 mm3 was used.

II.C. System response matrix calculation

As discussed above, the SRM can be decomposed into

several factors in such a way that the geometrical component
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can be obtained separately. In the present work, the matrix
elements aij were obtained by using two analytical ap-
proaches, S-RT and OD-RT, which mainly accounted for
geometrical effects. These methods are explained in detail in
Secs. II C 1 and II C 2. Figure 1 shows a scheme of the ray-
tracing techniques, S-RT and OD-RT. Voxel contributions are
represented by levels of gray ranging from white to black.
Additionally, the complete SRM was calculated using a
Monte Carlo-based method �MC-SRM� �see Sec. II C 3�.

II.C.1. Siddon ray-tracer

The S-RT method is a very widely used technique for
computing geometrical efficiencies. Given a projection bin i
and a voxel j, the values of aij are computed as the length of
intersection between the LOR related to bin i and voxel j.
Thus, each bin is considered to be pointlike, as shown in
Fig. 1�a�.

II.C.2. Orthogonal-distance ray-tracer

The geometrical OD-RT method calculates each aij as one
minus the normalized orthogonal distance dij between the
voxel center j and the LOR i so that the distance is less than
the full width at half maximum �FWHM� of the system PSF.
The orthogonal distance dij is normalized with respect to the
FWHM �for this particular PET system, it so happens that
the FWHM is equal to the crystal size�,

aij = 1 −
dij

FWHM
. �5�

The number of voxels to be considered is selected by using a
minimum threshold that controls the contribution per voxel.
This number is enlarged as the minimum threshold is low-
ered. Low values of the threshold allow a better modeling of
the VOI between voxels and TORs to be computed, but at
the cost of increasing the computation time. In this work, the
following values for the minimum threshold were studied:
0.5 �OD-RT-5�, 0.1 �OD-RT-1�, 0.01 �OD-RT-01�, and 0.001
�OD-RT-001�. Figure 1�b� shows a 2D schematic description
of the OD-RT technique.

Given a certain projection bin i, a large part of image
voxels will be related to SRM values lower than the thresh-
old. However, the OD-RT method requires the orthogonal
distance from all image voxels to each LOR to be computed
because the condition dij �FWHM has to be checked. In

FIG. 1. S-RT �a� and OD-RT �b�. The grayscale is proportional to the detec-
tion probability of positron emission in various voxels for a given bin. In �a�,
the probability is calculated as the length of intersection between the LOR
and the voxel �S-RT�; in �b�, as one minus the normalized perpendicular
distance from the voxel to the LOR �OD-RT� �see Eq. �5��.
order to speed up the OD-RT method, a more efficient way
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of computing the elements of SRM was implemented so that
the neighbors that can have a weight above the minimum
threshold are deterministically found. First, the Siddon ray-
tracer was used to find those voxels that are crossed by the
LOR. The orthogonal distances are then computed only from
these voxels and from their adjacent voxels. If the weights
obtained are greater than the threshold value, the orthogonal
distances are computed from the voxels adjacent to the pre-
vious voxels. The process continues until the weight ob-
tained for each adjacent voxel is lower than the threshold
value or the orthogonal distance is larger than FWHM.

II.C.3. Monte Carlo-based SRM

For the sake of comparison, we also implemented the cus-
tom MC reconstruction method presented in Refs. 25 and 37,
where the SRM is calculated by using MC techniques to
estimate the probabilities for every sinogram bin. In this
study, this MC-based SRM model was used as a reference
for comparison.

The implemented in-house MC code is based on the gen-
eration of a high number of annihilation events for every
voxel located in the FOV �108 photons per voxel�, excluding
the voxels whose SRM values can be calculated using sym-
metries. The results obtained from the simulation of each
voxel represent a SRM column, or, equivalently, a projection
set, represented as a set of plane and oblique sinograms. In
every event, a pair of simulated gamma rays is generated
uniformly only within the solid angle of coincidence, which
is relatively small in rPET scanner geometry. Gantry rotation
is modeled with uniformly distributed complementary rota-
tion of sources.

The photon tracking has been modeled using the National
Institute of Standard and Technology �NIST� photon cross-
section tables.38 The total cross section is the sum of the
photoelectric, pair production, coherent, and incoherent
�Compton� scattering, but only Compton and photoelectric
effects are significant at 511 keV. Compton iterations are
modeled by sampling the Klein–Nishina distribution. A
variation in the Kahn double-rejection technique is used for
sampling the scattered photon energy and the scattering
angle.39 The number of allowed scatters and the minimum
energy can be limited to speed up the process. Noncollinear-
ity effects are modeled with a Gaussian distribution of 0.5
degrees. Positron range is modeled with the sum of two
exponentials40 that are sampled in the MC code with the
accept-reject algorithm. Crystal penetration and intercrystal
scatter were also simulated.

Variance reduction techniques are employed in order to
obtain better statistics. These techniques are applied to the
gamma ray tracking in the detector with an auxiliary lookup
table, where probabilities of detection in the neighboring
crystals were stored according to the angle and relative point
of intersection with the detector.

Simulation results were directly processed and stored in
sparse-mode matrix format. Once the simulation is com-

pleted, data are postprocessed to distribute SRM values be-
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tween the selected numbers of subsets. The simulation time
was 18.4 h and 1206 mean coincidences per LOR were de-
tected.

II.D. PET data

II.D.1. Simulated data

In order to simulate PET data, we used MC simulations, a
versatile tool that is considered to be the gold standard to
assess reconstruction algorithms and the quantification out-
puts. This methodology allows us to evaluate the algorithms
in a realistic and well controlled framework in which all the
parameters are known a priori. The rPET system was de-
scribed using SimSET v2.6.41,42 Thus, all phantom simula-
tions were carried out including scatter, absorption, positron
range, and noncollinearity. The positions of the interactions
within the layers of the planar detector were processed to
compute the centroid and the total deposited energy. Photon
interactions including scatter, absorption, and penetration
were simulated, but there are no blocks and hence no gap
effects. Scintillation photons and photomultiplier tubes were
not simulated and the detector was modeled with an ideal
time resolution.

Two cylindrical phantoms �diameter: 25 mm� were simu-
lated: A hot-cylinder phantom �HCP� with six hot axial cyl-
inders placed in water without any activity �radii: 1, 2, 3, 4,
5, and 6 mm; volume: 173, 693, 1560, 2774, 4335, and
6242 mm3�. As a general rule, cold rods on an active back-
ground represent a more challenging reconstruction problem
than hot rods. Therefore, simulations using the same geo-
metrical distribution were also undertaken with cold rods on
an active background �cold-cylinder phantom �CCP��. The
number of acquired counts was 189 million counts for HCP
and 116 million counts for CCP. PET data were histo-
grammed and stored in 3D sinograms characterized by 59
transaxial bins �axial and transaxial bin size: 0.81 mm� and
170 angular positions, with no axial or angular compression
�span=1 and mashing=1� to preserve spatial resolution.

II.D.2. Experimental data

A custom-made micro-Derenzo hot rod phantom was used
for a qualitative study of the spatial resolution. This phantom
had a diameter of 25 mm and contained fillable hot rods of 1
mm in diameter arranged in six circular sectors. The air spac-
ings between rods �center to center distance� in each circular
sector were 2, 3, 4, 5, 6, and 8 mm, respectively. The number
of acquired counts was 93 million counts.

A spiral phantom was used for a quantitative study of the
spatial resolution. This phantom contained fillable capillaries
of 0.3 mm in diameter placed at different distances from the
axial axis of the system �2.8, 9.4, 10.0, 12.2, 14.0, 17.0, and
19.0 mm� and they were arranged in a spiral configuration.
The hot rods and the capillaries were filled with 18F-FDG
and scanned on the rPET system, and 133 million counts
were acquired.

As for the simulated data, the measured data were stored

in 1225 sinograms characterized by 59 transaxial bins �axial
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and transaxial bin size: 0.81 mm� and 170 angular positions.
Axial positions were not added �span=1� and no mashing
was considered �mashing=1�.

II.E. Evaluation

II.E.1. Sensitivity images

The sensitivity images were analyzed to study the ability
of the approach based on the OD-RT method compared to
the conventional S-RT method to model the system response.
To this end, tangential profiles through the center of the cen-
tral slice of these sensitivity images were obtained for the
different geometrical projectors. The theoretical profile was
calculated from the angle subtended at each voxel along the
transaxial direction.

The profiles of the sensitivity images were also obtained
in order to evaluate the performance of the different PSF
models for S-RT and OD-RT. Both the multiray and the
image-space convolution techniques were evaluated in terms
of these sensitivity images.

For comparison, sensitivity profiles for MC-SRM were
also obtained by simulating a high number of events for
every voxel located along the transaxial direction of the
FOV. The voxels whose probability coefficients can be cal-
culated using symmetries were excluded, i.e., only the voxels
placed between the center and the perimeter of the FOV were
considered.

II.E.2. Correlation coefficient

Correlation coefficients �CCs� were calculated between
the reconstructed image and the simulated phantoms �HCP
and CCP� according to Eq. �6�,

CC =
� j=1

J
qjqj

ref − J2�q̄ · q̄ref�

�� j=1

J
qj

2 − J2q̄2�� j=1

J
�qj

ref�2 − J2�q̄ref�2
, �6�

where q̄ represents the mean value of the reconstructed im-
age, J is the number of image voxels, and qj is the image
value in voxel j. The superscript ref refers to the values
obtained from the reference image �simulated phantom�. The
values of CC should be in the interval �0,1�, and ideally,
CC=1. The inter-iteration relative variation ��CC� in CC
values between iteration i and iteration i−1 was also ob-
tained in order to study the convergence of each reconstruc-
tion method in terms of CC.

II.E.3. Contrast

The contrast �C� was obtained for HCP and CCP accord-
ing to the following equation:

C =
q̄ROI − q̄bg

q̄ROI + q̄bg

, �7�

where q̄ROI is the mean value in a region-of-interest �ROI�
drawn within the cylinders and q̄bg is the mean value of the
background. These ROIs, which have volumes of 8.7, 9.0,

3
28.5, 46.0, 70.1, and 102.9 mm , spread over five contigu-
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ous axial slices. The volume of background ROI was
1612 mm3 and was also extended in five contiguous axial
slices. In an ideal reconstruction, C should be 1 for HCP and
�1 for CCP.

The C recovery was defined as the relation between the
calculated and the theoretical contrast �in %�. The C recov-
ery was obtained by using the abovementioned ROIs, but
drawn in ten blocks of five contiguous slices placed at dif-
ferent axial positions along the image. This procedure al-
lowed us to assess the statistical significance of the results. In
order to compare C values at the optimal number of itera-
tions in each case, the inter-iteration variation ��C� between
C values was obtained at consecutive iterations i and i−1.

II.E.4. Coefficient of variation

To assess the impact of the projector on image noise, the
coefficient of variation �CV� was obtained for CCP. This
parameter was defined as the ratio between the standard de-
viation and the mean value of the voxels in a ROI. CV was
determined as the mean value of the CV computed in ROIs
placed close to the center of CCP �homogeneous region�.

II.E.5. Evaluation of the PSF models

An assessment of different PSF models for S-RT and
OD-RT was also carried out to ensure a more fair head-to-
head comparison between geometrical projectors and the ex-
tensive model of SRM based on MC simulations.

II.E.5.a. Multiray Siddon ray-tracer (S-RT-SS). To include
the detector size in the model, we have modified the conven-
tional S-RT method so that several rays were traced for each
crystal. The crystal was subsampled �SS� into four equal
units in the axial and transaxial directions. In this way, TORs
were considered instead of LORs. Within this subsampling,
we implemented two ray-tracing schemes, one including
only 4 rays �only parallel lines, S-RT-SS4� and another in-
cluding 16 rays �parallel and crossed lines, S-RT-SS16� per
bin. A 2D schematic description is shown in Fig. 2. It should
be noted that for a given i, more voxels are included in the
SRM estimation using the subsampled techniques than the
conventional S-RT. Finer subsampling of the crystal size was

FIG. 2. A 2D description of different multiray schemes and the subsampled
bins for S-RT, the conventional Siddon approach �a�, subsampled 4 parallel
rays, S-RT-SS4 �b�, and subsampled 16 parallel and crossed rays, S-RT-
SS16 �c�.
not performed �for example, into 9 or 16 equal units� due to
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the significant increase in computing time. �Long computa-
tion times are against the rationale behind fast ray-tracing
techniques such as S-RT.�

II.E.5.b. Siddon ray-tracer using PSF image-space convo-
lutions (S-RT-PSF). The conventional S-RT method can also
be implemented, incorporating a PSF model based on image-
space convolutions.11,12 Thus, the projection was modeled as
a 3D Gaussian convolution of the image, followed by the
conventional S-RT, and backprojection as S-RT, followed by
convolution. A shift-invariant Gaussian reconstructed point
response function with FWHM equal to the crystal size was
included �although wider kernels were also tested�. Apart
from the convolution of the sensitivity image, two convolu-
tion operations were implemented, corresponding to the sys-
tem matrix for the forward model and the transpose of the
system matrix.

II.E.5.c. Orthogonal-distance ray-tracer using a Gaussian
kernel (OD-RT-G). The OD-RT method already incorporates
a built-in PSF model based on a linear kernel, which could
be a good approach to the spatial resolution of the system.

FIG. 3. Modeling of the intrinsic detector response by sampling a linear
function �solid line� and a Gaussian blurring �dashed line�.

FIG. 4. Tangential profiles through the sensitivity images obtained by usi

thresholds of 0.5 �filled triangles�, 0.1 �filled circles�, and 0.01 �filled squares�. T
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Nevertheless, we also implemented a kernel based on Gauss-
ian functions �OD-RT-G�, as proposed in Ref. 19. Figure 3
shows the resulting intrinsic detector responses by sampling
a linear function and a Gaussian function. The FWHM for
the implemented Gaussian function was equal to the crystal
size �although wider kernels were also tested�, making it con-
sistent with the previous linear function.

II.E.6. Spatial resolution

Spatial resolution was obtained by using a spiral phantom
including axial capillaries at different distances from the cen-
ter �0, 2.8, 4.8, 9.4, 10.0, 12.2, 14.0, 17.0, and 19.0 mm�.

II.E.7. Time and memory requirements

In list-mode reconstruction, SRM elements are computed
on-the-fly, especially the geometrical component, and there-
fore, a full estimation of the SRM using a Monte Carlo-based
method would result in impractically long computing times
�18.4 h�. Aimed at studying the feasibility of using the imple-
mented ray-tracers �subsample S-RT, S-RT-PS,F and OD-RT�
for list-mode reconstruction, the computational requirements
of these methods were investigated in terms of time and
memory.

III. RESULTS

III.A. Evaluation of the system response matrix
calculation

III.A.1. Sensitivity images

The profiles of the sensitivity images obtained using OD-
RT-5, OD-RT-1, OD-RT-01, and the conventional S-RT
method are shown in Fig. 4. Very jagged profiles were ob-
tained using the conventional S-RT. Nevertheless, it can be
seen that low minimum thresholds in OD-RT lead to a better

RT �hollow triangles�, orthogonal distance-based ray-tracer for minimum
ng S-

he solid line is the theoretically calculated curve.
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modeling �artifact-free�. OD-RT sensitivity maps obtained
for minimum thresholds of 0.5 �OD-RT-5� and 0.1 �OD-
RT-1� were affected by overestimation of the sensitivity at
the center and jagged profiles, both of which are common
artifacts when using ray-tracing techniques such as S-RT. On
the contrary, using a minimum threshold of 0.01 �OD-RT-01�
removed the sensitivity overestimation at the central voxels
and showed the desired smooth profiles, which were similar
to those estimated using theoretical calculations. A tangential
profile was also obtained by using a minimum threshold of
0.001 �OD-RT-001�. This resulted in a profile very similar to
that obtained by using a minimum threshold of 0.01; there-
fore, the latter has been omitted for clarity.

III.A.2. OD-RT versus S-RT and MC-SRM

Figure 5 shows the iteration dependence of CC �see Eq.
�6�� for images of CCP reconstructed using a SRM based on
the S-RT, OD-RT-01, and MC-SRM methods. Given that a
MRP regularization was used, CC reaches a stable value af-
ter a certain number of iterations. Similar behavior was
found for HCP.

The improvement of CC lies below 1% after iteration 34
for OD-RT-01, after iteration 64 for S-RT, and after iteration
66 for MC-SRM. Interestingly, the convergence is faster for
OD-RT than for S-RT and MC-SRM �in terms of CC�. Simi-
lar behavior was found for HCP, although in this case stable
CC values were achieved before iteration 17 for all methods.
In order to ensure that the comparison of methods was per-
formed in similar conditions, the number of iterations re-
quired to stabilize CC was used for each method and phan-
tom.

As for OD-RT, our findings show that a lower threshold
results in a higher CC value. Thus, CC increased from 0.91

FIG. 5. Iteration-dependence of CC for images reconstructed using a SRM
MC-SRM �small segment� methods for the CCP reconstructions.
for OD-RT-5 to 0.94 for OD-RT-01 when HCP was used, and
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from 0.76 for OD-RT-5 to 0.84 for OD-RT-01 when CCP was
used. The reason is that, for a given detector pair, more vox-
els are included in the SRM estimation when the minimum
threshold decreases so that a better approximation of the true
volume of intersection is achieved. No differences were
found in terms of CC between OD-RT-01 and OD-RT-001. In
any case, the most significant result was that the OD-RT
technique yielded much higher values of the correlation co-
efficient than the S-RT method, both for HCP �CC increases
by 16%� and CCP �CC increases by 35%�.

Transverse views of the reconstructed images �for HCP
and CCP� obtained by using the conventional S-RT, OD-RT-
01, and MC-SRM are shown in Fig. 6. The number of itera-
tions corresponded to the number of iterations required to
stabilize CC for all method and phantoms �66 for CCP and
17 for HCP�. For HCP, we can observe that the three recon-
structed images are very similar, while notable differences
are appreciable in CCP. In the latter case, the use of OD-
RT-01 proved to be a significant improvement on the S-RT
method. As expected, the MC-SRM yielded the best image.

The contrast �C�, as defined in Eq. �7�, was calculated for
HCP and CCP. The optimal number of iterations for compar-
ing contrast values is usually object-dependent, and there-
fore, convergence is not reached at the same iteration. Thus,
an appropriate number of iterations were determined for each
phantom by comparing the inter-iteration variation in the
contrast ��C� obtained for one of the cold cylinders �radius:
4 mm�. The comparison shows that at least 85 iterations are
required to ensure convergence �beyond 85 iterations, the
differences between consecutive C values were less than 1%
for S-RT and MC-SRM�. It should be noted that a faster
convergence of the OD-RT in terms of contrast was found
�beyond 52 iterations, �C values were less than 1%�. Given

on the Siddon ray-tracer �hollow squares�, OD-RT-01 �filled squares�, and
based
that hot regions �HCP� are easier to reconstruct correctly
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than cold regions �CCP�, the convergence of HCP recon-
struction was already ensured after 34 iterations for all meth-
ods. Therefore, images employed in this contrast analysis
were reconstructed using 85 iterations for CCP and 34 itera-
tions for HCP.

The CV was also obtained in order to make sure that the
comparison between algorithms is performed at an equiva-
lent noise level. CV was obtained from the CCP reconstruc-
tions by using 85 iterations. It was 4.7% for the S-RT
method, 4.9% for the OD-RT-01 method, and 4.4% for the
MC-SRM method. These results ensure that the images used
in the comparison show a similar noise level.

Figures 7�a� and 7�b� show that C recovery increases with
the diameter of cylinder. As for HCP, Fig. 7�a� shows that
higher C recovery values were obtained for the OD-RT-01
and MC-SRM methods than for the S-RT method. This rela-
tive improvement is larger for the small cylinders. A similar

FIG. 6. Transverse views of the reconstructed images from HCP �left� and
CCP �right� using a SRM obtained by using the S-RT �upper row�, OD-
RT-01 �middle row�, and MC-SRM �lower row�.

FIG. 7. Contrast recovery obtained by means of the S-RT �hollow squares�, t

cylinder of HCP �a� and CCP �b�.
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behavior was found in the CCP reconstructions. Figure 7�b�
shows that higher C recovery values were obtained for the
OD-RT-01 and MC-SRM methods. A paired t-test was per-
formed in order to determine if these results were statistically
significant �p�0.05�.

As for HCP, significant differences in C recovery were
found between OD-RT-01 and S-RT �p=2E−5 and the mean
difference observed in C recovery was 6.3%�. Moreover, the
smallest cylinder �radius: 1 mm� could not even be distin-
guished from the background �C recovery around zero� in the
S-RT reconstructions. On the other hand, no significant dif-
ferences between MC-SRM and OD-RT-01 were found.

As for CCP, the comparison between OD-RT-01 and S-RT
resulted in significant differences again �p=1E−24 and the
mean difference observed in C recovery was 9.4%�. Unlike
HCP, significant differences were found between MC-SRM
and OD-RT, although the mean difference was low
�p=6E−3 and the mean difference observed in C recovery
was only 1.2%�.

Concerning OD-RT, the choice of the minimum threshold
is a key issue in order to obtain high C values. Thus, the
obtained C recovery for the smallest rod in HCP was 0.4%
for OD-RT-5, 24% for OD-RT-1, and 55% for OD-RT-01.
Again, no differences were found between OD-RT-01 and
OD-RT-001. It should be noted that higher C recovery values
were obtained from HCP than from CCP.

III.B. Evaluation of the PSF models

Different PSF models for S-RT and OD-RT were also
assessed so as to make a fairer head-to-head comparison be-
tween geometrical and Monte Carlo projectors. This evalua-
tion was carried out by using real data in order to uncouple
the possible mismatch between the simulated data and the
simulation code used to generate the SRM due to the fact
that the physical model in MC-SRM is actually very realistic
and includes more phenomena than the simulated data. An
evaluation of the ability of these approaches to model the
system response in terms of sensitivity images was carried
out. In order to obtain qualitative and quantitative results of
the spatial resolution, real studies of a micro-Derenzo phan-
tom and a spiral phantom �axial capillaries arranged in a
spiral configuration� were also performed.

-RT-01 �filled squares�, and MC-based SRM �small segment� for each axial
he OD
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III.B.1. Sensitivity images

The profiles of the sensitivity images obtained from S-RT,
S-RT-SS4, S-RT-SS16, OD-RT-01, and the theoretical profile
are shown in Fig. 8. Sensitivity profiles obtained for MC-
SRM and S-RT-PSF resembled the theoretical profiles and so
they are not shown �they are very close to the OD-RT-01
profile and for reason of clarity were not plotted�. It should
be noted that jagged profiles of the sensitivity maps were
obtained using S-RT, and the subsampling of the detectors �4
and 16 rays� improved the results with respect to the original
S-RT. This is due to the fact that multiray schemes approxi-
mate the detector size by subsampling the detector into four
equal units in the axial and transaxial directions.

III.B.2. Micro-Derenzo phantom

Figure 9 compares transverse slices of the reconstructed
image from the home-made micro-Derenzo phantom acqui-
sition using the Siddon approaches �S-RT, S-RT-SS4, S-RT-

FIG. 8. Tangential profiles through the sensitivity images obtained by using S
and hollow squares for 16 rays per detector�, and OD-RT-01 �filled squares
S-RT-PSF resembled the theoretical profiles so are not shown.

FIG. 9. Reconstructed images from experimental home-made micro-
Derenzo phantom using, from left to right, S-RT, S-RT-SS4, S-RT-SS16 and
S-RT-PSF �top�, and OD-RT-01, OD-RT-01-G, and MC-based SRM

�bottom�.
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SS16, and S-RT-PSF�, OD-RT methods �OD-RT-01 and OD-
RT-01-G�, and MC-SRM method. All images were obtained
after 68 iterations. The comparison shows that all the hot
rods spaced at 4, 5, 6, and 8 mm can be clearly identified on
all images; however, the hot rods spaced at 3 mm can only be
clearly distinguished on images reconstructed by the geo-
metrical projectors with PSF models and Monte Carlo pro-
jector. Moreover, a nonzero background is observed in the
central part of the reconstructed images by the conventional
S-RT, which could be due to the artifacts of the sensitivity
image shown in Fig. 4. If they are iterated beyond 68 itera-
tions, these artifacts increase. The comparison also shows
that the hot rods spaced at 2 mm can only be identified on
images reconstructed by S-RT-PSF, OD-RT, OD-RT-GT, and
MC-SRM. This could be due to the fact that these methods
not only take into account the size of the detector but also
include a better approach to the computation of detector re-
sponse.

III.B.3. Spiral phantom: Spatial resolution
measurements

The averaged spatial resolution values �FWHM in mm� at
different distances and the standard deviation were obtained
using the conventional S-RT, S-RT-SS4, S-RT-SS16, and the
S-RT method, incorporating an approximate PSF model �S-
RT-PSF�. Table I shows these results compared to the spatial
resolution values obtained by OD-RT-01, OD-RT-01-G, and
MC-SRM methods. The averaged spatial resolution values
corresponded to the minimum values along the iterations for
each method. The minimum spatial resolution for S-RT,
S-RT-SS4, S-RT-SS16, S-RT-PSF, and OD-RT-01-G was ob-
tained after 102 iterations, and for OD-RT-01 and MC-SRM
after 85 iterations. The low standard deviation values show

�hollow triangles�, subsampled S-RT �hollow circles for 4 rays per detector,
e solid line is the theoretically calculated curve. Profiles for MC-SRM and
-RT
�. Th
that no major differences were found between the different
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distances from the axial axis of the system �0, 2.8, 4.8, 9.4,
10.0, 12.2, 14.0, 17.0, and 19.0 mm with standard deviation
values less than 0.2 mm in all cases�. No differences were
found when wider kernels for the OD-RT and S-RT-PSF
models were used.

It should be mentioned that an assessment of the spatial
resolution from point source measurements in air is challeng-
ing and it can lead to unreal results when broader-than-real
PSF and small pixels are used.43 These spatial resolution
values can be considered as useful relative measurements for
the comparison, but the limitation of this metric should be
taken into account if these values are considered as measure-
ments of the spatial resolution of the system.

Table I shows that spatial resolution was enhanced when
using OD-RT-01 and S-RT-PSF compared to conventional
and multiray geometrical projectors �S-RT-SS16: p�0.05�.
Similar averaged spatial resolution values were obtained by
using the Gaussian kernel �OD-RT-01-G� compared to the
values obtained by using OD-RT-01 and the S-RT-PSF meth-
ods.

One explanation as to why spatial resolution is enhanced
when using OD-RT, compared to conventional S-RT, is that
the OD-RT method incorporates a coarse model for the in-
trinsic detector response. As shown in Fig. 3, a triangular
function can result in a good approach for the more realistic
Gaussian-based modeling of the detector response with
FWHM equal to the crystal size. The latter leads to a detector
response function, which has a maximum at the center of the
TOR and decreases linearly to zero at a distance 2BS, and
this triangular function or linear kernel models the intrinsic
spatial resolution at the midplane for opposed detectors.44 A
similar explanation can be derived for the S-RT-PSF method
because it incorporates a shift-invariant Gaussian recon-
structed point response function with FWHM equal to the
crystal size.

Although multiray Siddon techniques take into account
the size of the detector, our results show that the modeling of
the intrinsic detector response using this method does not
seem a good approach. The multiray techniques apply sub-
sampling within a single detector, but this is not a realistic
model of the PSF. A comparison13 between a ray-tracer
method based on the conventional Siddon ray-tracer and an
analytical calculation of VOIs between TORs and voxels
supported the hypothesis that an analytical calculation of

TABLE I. Averaged spatial resolution and standard deviation.

Projector
FWHM
�mm�

Standard deviation
�mm�

S-RT 1.83 0.02
S-RT-SS4 1.76 0.04
S-RT-SS16 1.62 0.04
S-RT-PSF 1.39 0.17
OD-RT-01-G 1.42 0.05
OD-RT-01 1.40 0.10
MC-SRM 1.21 0.09
VOI systematically provides higher contrast recovery values.
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Thus, the implementation of a very high level of subsam-
pling could improve the performance of S-RT but it would be
too slow and impractical �computation time is approximately
proportional to the number of rays traced�.

Unlike the simulated data, the image of MC-SRM method
was clearly better than the image of S-RT-PSF and OD-RT
methods, and significant differences �p�0.05� were found
between spatial resolution values. At this point, it should be
mentioned that the simulations of the phantoms do not in-
clude either crystal penetration or intercrystal scatter, while
both these two effects are included in the simulations for the
SRM. In any case, both geometrical OD-RT and S-RT-PSF
methods result in a fairly accurate approach when compared
to the conventional S-RT.

III.C. Time and memory requirements

Table II presents the number of events per second that
could be projected in a list-mode reconstruction scheme for
different S-RT and OD-RT methods on an Intel�R� Xe-
on�TM� CPU 3.20 GHz dual processor. Table II also shows
the size of the SRM per subset �in Mb�.

As seen in Table II, multiray Siddon techniques �S-RT-
SS4 and S-RT-SS16� resulted in an increase in the computa-
tion time compared to the conventional S-RT �by factors of
4.5 and 20, respectively�. In a list-mode reconstruction
scheme, where SRM is computed on-the-fly, a typical acqui-
sition of 70 million events would lead to computation times
of 25, 110, and 488 min when using S-RT, S-RT-SS4, and
S-RT-SS16, respectively. Multiray-based schemes based on
more than 16 rays were also studied, but they resulted in
computation times much longer than those required for
OD-RT.

Table II also shows that the choice of minimum threshold
in OD-RT also affected computation time. It should be noted
that fewer events per second can be projected when the mini-
mum threshold is increased. Additionally, minimum thresh-
olds lower than 0.01 only increased the computation time
without adding new information; this can be seen in the size
of the SRM size per subset, which is 1065 Mb for OD-RT-
001 and OD-RT-01. In a list-mode reconstruction scheme,
the processing of 70 million acquired events required 192,
212, and 234 min using OD-RT-5, OD-RT-1, and OD-RT-01,

TABLE II. Computation time on an Intel�R� Xeon�TM� CPU 3.20 GHz dual-
processor and SRM size per subset �Mb�.

Projector Events per second
Size per subset

�Mb�

S-RT 47 200 355
S-RT-SS4 10 634 936
S-RT-SS16 2 389 945
S-RT-PSF 47 200 355
OD-RT-5 6 045 832
OD-RT-1 5 480 953
OD-RT-01 4 980 1065
OD-RT-01-G 4 681 1067
respectively. Furthermore, including the Gaussian modeling



5701 Aguiar et al.: OD-RT 5701
resulted in a minor increase in the computation time with
respect to the OD-RT based on linear functions.

The S-RT-PSF method is very fast in comparison to OD-
RT-01 and the number of projected events per second is
equal to those projected using S-RT. It constitutes only a
small increase in the computation time compared to S-RT
because only image convolutions per iteration are added dur-
ing the reconstruction process. We can therefore conclude
that both OD-RT-01 and S-RT-PSF can be considered to be
satisfactory alternatives to conventional ray-tracers for list-
mode reconstruction.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have assessed the effect on the final
reconstructed image of different geometrical and Monte
Carlo projectors and PSF models used during the reconstruc-
tion process. We have compared the conventional Siddon
ray-tracer, new subsample techniques for the Siddon ray-
tracer, Siddon ray-tracer using PSF image-space convolu-
tions, the recently proposed orthogonal distance-based ray-
tracer �using linear and Gaussian kernels�, and the Monte
Carlo-based method.

Our findings show that the subsample techniques em-
ployed, together with the Siddon ray-tracer method, resulted
in a behavior similar to that of the conventional Siddon ray-
tracer, and only slight improvements were found. The imple-
mentation of a very high level of subsampling could improve
the performance of S-RT, but it has been shown that it would
be impractical because the computation time is approxi-
mately proportional to the number of rays traced.

The orthogonal distance-based ray-tracer method yielded
better images than those obtained by using the conventional
Siddon ray-tracer. An evidence for this is the higher correla-
tion with the original distribution and a significant improve-
ment in contrast and spatial resolution. Furthermore, it has
been shown that the correct choice of minimum threshold in
the orthogonal distance-based ray-tracer method is crucial
for obtaining high quality images.

We also compared the orthogonal distance-based ray-
tracer method to the Siddon ray-tracer including PSF image-
space convolutions. Our results showed that the built-in res-
olution model included in the orthogonal distance-based ray-
tracer method is equivalent to the conventional S-RT
incorporating a PSF model in the image space.

These geometrical projectors were also compared to a
more extensive modeling based on Monte Carlo simulations.
The latter, as expected, provided superior results �although
the quality of the images reconstructed using OD-RT and
S-RT-PSF was not significantly poorer�. No significant dif-
ferences were found when kernels wider than FWHM were
used to include the nonmodeled effects into the OD-RT and
S-RT-PSF methods. This could be due to the fact that these
nonmodeled effects can elicit a spatially variant response or
even a non-Gaussian response function. However, both the
linear kernel and the shift-invariant Gaussian function used
in OD-RT and S-RT-PSF model only the intrinsic response

function at the midplane for opposing detectors, but do not
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model the other components of the intrinsic detector re-
sponse, such as crystal penetration �parallax error�, the posi-
tioning error due to light spreading, and the intrinsic reso-
lution of the photodetectors.

Multiray-based schemes and the orthogonal distance-
based ray-tracer method resulted in an increase in computa-
tion time with respect to the conventional Siddon ray-tracer.
In this regard, Siddon ray-tracer using a PSF image-space
convolution is a better option to include an approximate PSF
model because these operations constitute only a small in-
crease in the computation time.

Finally, owing to the improvement in image quality, both
orthogonal distance-based ray-tracer and Siddon ray-tracer
using PSF image-space convolutions represent satisfactory
alternatives to factorizing the system matrix or to the con-
ventional on-the-fly ray-tracing methods for list-mode recon-
struction, where an extensive modeling based on MC simu-
lations is unfeasible.

ACKNOWLEDGMENTS

This work was supported in part by Fondo de Investiga-
ciones Sanitarias del Instituto de Salud Carlos III �Project
Nos. PI041017, PS09/01206, and CB06/01/1039�, by the
Ministerio de Ciencia e Innovacion �Grant No. TEC2007-
61047�, by the Generalitat Valenciana �Grant No. GV06/
246�, by the Generalitat de Catalunya �Grant No. SGR1049�,
Ministerio de Ciencia e Innovacion �Project No. SAF2009-
08076�, and by Ministerio de Ciencia e Innovacion �CDTI-
CENIT� AMIT project and Comunidad de Madrid �project
ARTEMIS P2009/DPI-1802�. P. Aguiar was awarded a “Sara
Borrell“ fellowship by Fondo de Investigaciones Sanitarias
del Instituto de Salud Carlos III.

a�Electronic mail: pablo.aguiar.fernandez@sergas.es
1A. Chatziioannou, “Molecular imaging of small animals with dedicated
pet tomographs,” Eur. J. Nucl. Med. Mol. Imaging 29�1�, 98–114 �2002�.

2A. Jacobs, H. Li, A. Winkeler, R. Hilker, C. Knoess, A. Rueger, N.
Galldiks, B. Schaller, J. Sobesky, and L. Kracht, “PET-based molecular
imaging in neuroscience,” Eur. J. Nucl. Med. Mol. Imaging 30�7�, 1051–
1065 �2003�.

3J. Lewis, S. Achilefu, J. Garbow, R. Laforest, and M. Welch, “Small
animal imaging: Current technology and perspectives for oncological im-
aging,” Eur. J. Cancer 38�16�, 2173–2188 �2002�.

4R. Myers, “The biological application of small animal PET imaging,”
Nucl. Med. Biol. 28�5�, 585–593 �2001�.

5T. Frese, N. Rouze, C. Bouman, K. Sauer, and G. Hutchins, “Quantitative
comparison of FBP, EM and Bayesian reconstruction algorithms for the
IndyPET scanner,” IEEE Trans. Med. Imaging 22�2�, 258–276 �2003�.

6L. A. Shepp and Y. Vardi, “Maximum-likelihood reconstruction for emis-
sion tomography,” IEEE Trans. Med. Imaging 1, 113–122 �1982�.

7H. Hudson and R. Larkin, “Accelerated image reconstruction using or-
dered subsets of projection data,” IEEE Trans. Med. Imaging 13�4�, 601–
609 �1994�.

8J. Qi, R. Leahy, A. Chatziioannou, S. Cherry, and F. Farquhar, “High-
resolution 3D Bayesian image reconstruction using the microPET small
animal scanner,” Phys. Med. Biol. 43�7�, 1001–1013 �1998�.

9H. Zaidi and B. Hasegawa, “Determination of the attenuation map in
emission tomography,” J. Nucl. Med. 44, 291–315 �2003�.

10X. Wu, “An efficient anti-aliasing technique,” ACM Computer Graphics
Siggraph 25�4�, 143–152 �1991�.

11A. J. Reader, P. J. Julyan, H. Williams, D. L. Hastings, and J. Zweit, “EM
algorithm system modeling by image-space techniques for PET recon-
struction,” IEEE Trans. Nucl. Sci. 50, 1392–1397 �2003�.

12
F. C. Sureau, A. J. Reader, C. Comtat, C. Leroy, M. J. Ribeiro, I. Buvat,

http://dx.doi.org/10.1007/s00259-001-0683-3
http://dx.doi.org/10.1007/s00259-003-1202-5
http://dx.doi.org/10.1016/S0959-8049(02)00394-5
http://dx.doi.org/10.1016/S0969-8051(01)00213-X
http://dx.doi.org/10.1109/TMI.2002.808353
http://dx.doi.org/10.1109/TMI.1982.4307558
http://dx.doi.org/10.1109/42.363108
http://dx.doi.org/10.1088/0031-9155/43/4/027
http://dx.doi.org/10.1145/127719.122734
http://dx.doi.org/10.1145/127719.122734
http://dx.doi.org/10.1109/TNS.2003.817327


5702 Aguiar et al.: OD-RT 5702
and R. Trebossen, “Impact of image-space resolution modeling for studies
with the high-resolution research tomograph,” J. Nucl. Med. 49�6�, 1000–
1008 �2008�.

13J. Scheins, F. Boschen, and H. Herzog, “Analytical calculation of VOI for
iterative fully 3D PET reconstruction,” IEEE Trans. Med. Imaging
25�10�, 1363–1368 �2006�.

14C. Schretter, “A fast tube of response ray-tracer,” Med. Phys. 33�12�,
4744–4748 �2006�.

15S. Vandenberghe, S. Staelens, C. Byrne, E. Soares, I. Lemahieu, and S.
Glick, “Reconstruction of 2D PET data with Monte Carlo generated sys-
tem matrix for generalized natural pixels,” Phys. Med. Biol. 51, 3105–
3125 �2006�.

16P. Aguiar, M. Rafecas, C. Falcon, J. Pavia, and D. Ros, “Fully 3D PET
iterative reconstruction using a pseudo-Wu ray-tracer,” International
Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear
Medicine Conference Record, pp. 402–405, 2007 �unpublished�.

17R. Lewitt, “Multidimensional digital image representations using gener-
alized Kaiser-Bessel window functions,” J. Opt. Soc. Am. A 7�10�, 1834–
1846 �1990�.

18R. Lewitt, “Alternatives to voxels for image representation in iterative
reconstruction algorithms,” Phys. Med. Biol. 37�3�, 705–716 �1992�.

19G. Pratx, G. Chinn, P. Olcott, and C. Levin, “Fast, accurate and shift-
varying line projections for iterative reconstruction using the GPU,” IEEE
Trans. Med. Imaging 28�3�, 435–445 �2009�.

20V. Y. Panin, F. Kehren, C. Michel, and M. Casey, “Fully 3-D PET recon-
struction with system matrix derived from point source measurements,”
IEEE Trans. Med. Imaging 25�7�, 907–921 �2006�.

21A. Alessio, P. Kinahan, and T. Lewellen, “Modeling and incorporation of
system response functions in 3D whole body PET,” IEEE Trans. Med.
Imaging 25�7�, 828–837 �2006�.

22M. Rafecas, B. Mosler, M. Dietz, M. Pogl, A. Stamatakis, D. McElroy,
and S. Ziegler, “Use of Monte Carlo-based probability matrix for 3D
iterative reconstruction of MADPET-II data,” IEEE Trans. Nucl. Sci.
51�5�, 2597–2605 �2004�.

23F. R. Rannou and A. F. Chatziioannou, “Fully 3D system model estima-
tion of OPET by Monte Carlo simulation,” 2004 IEEE Nuclear Science
Symposium Conference Record, Vol. 6, pp. 3433–3436, 2004 �unpub-
lished�.

24S. Shokouhi et al., “Statistical 3D image reconstruction for the RatCAP
PET tomograph using a physically accurate, Monte Carlo based system
matrix,” 2004 IEEE Nuclear Science Symposium Conference Record,
Vol. 6, pp. 3901–3905, 2004 �unpublished�.

25J. E. Ortuño, P. Guerra-Gutierrez, J. Rubio, G. Kontaxakis, and A. Santos,
“3D-OSEM iterative image reconstruction for high-resolution PET using
precalculated system matrix,” Nucl. Instrum. Methods Phys. Res. A
571�1–2�, 98–101 �2007�.

26J.-D. Leroux, C. Thibaudeau, R. Lecomte, and R. Fontaine, “Fast, accu-
rate and versatile Monte Carlo method for computing system matrix,”
IEEE Nuclear Science Symposium Conference Record, 2007 �NSS ‘07�,
Vol. 5, pp. 3644–3648, 2007 �unpublished�.

27L. Zhang, S. Staelens, R. Van Holen, and J. De Beenhouwer, “Fast and
Medical Physics, Vol. 37, No. 11, November 2010
memory-efficient Monte Carlo-based image reconstruction for whole-
body PET,” Med. Phys. 37�7�, 3667–3677 �2010�.

28N. Rehfeld and M. Alber, “A parallelizable compression scheme for
Monte Carlo scatter system matrices in PET image reconstruction,” Phys.
Med. Biol. 52, 3421–3437 �2007�.

29C. Watson, D. Newport, and M. Casey, A Single-Scatter Simulation Tech-
nique for Scatter Correction in 3D PET �Kluwer Academic, Dordrecht,
1996�.

30A. Werling, O. Bublitz, J. Doll, L. Adam, and G. Brix, “Fast implemen-
tation of the single scatter simulation algorithm and its use in iterative
image reconstruction of PET data,” Phys. Med. Biol. 47, 2947–2960
�2002�.

31J. Ollinger, “Model-based scatter correction for fully 3D PET,” Phys.
Med. Biol. 41, 153–176 �1996�.

32C. Tsoumpas, P. Aguiar, D. Ros, N. Dikaios, and K. Thielemans, “Scatter
simulation including double scatter,” IEEE Nuclear Science Symposium
Conference Record, pp. 3–5, 2005 �unpublished�.

33A. Rahmim, J. Cheng, S. Blinder, M. Camborde, and V. Sossi, “Statistical
dynamic image reconstruction in state-of-the-art high-resolution PET,”
Phys. Med. Biol. 50�20�, 4887–4912 �2005�.

34J. Vaquero, E. Lage, L. Rincon, M. Abella, E.Vicente, and M. Desco,
“rPET detectors design and data processing,” IEEE Nuclear Science Sym-
posium Conference Record, pp. 1–5, 2005 �unpublished�.

35V. Bettinardi, E. Pagani, M. Gilardi, S. Alenius, K. Thielemans, M. Teras,
and F. Fazio, “Implementation and evaluation of a 3d one-step late recon-
struction algorithm for 3D positron emission tomography brain studies
using median root prior,” Eur. J. Nucl. Med. Mol. Imaging 29�1�, 7–18
�2002�.

36S. Alenius, U. Rutotsalainen, and J. Astola, “Attenuation correction for
PET using count-limited transmission images reconstructed with median
root prior,” IEEE Trans. Nucl. Sci. 46, 646–651 �1999�.

37J. E. Ortuño, G. Kontaxakis, J. L. Rubio, P. Guerra, and A. Santos, “Ef-
ficient methodologies for system matrix modelling in iterative image re-
construction for rotating high-resolution PET,” Phys. Med. Biol. 55�7�,
1833–1861 �2010�.

38http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html.
39X. Hua, “Monte Carlo simulation of Comptonization in inhomogeneous

media,” Comput. Phys. 11�6�, 660–668 �1997�.
40C. Levin and E. Hoffman, “Calculation of positron range and its effect on

the fundamental limit of positron emission tomography system spatial
resolution,” Phys. Med. Biol. 44, 781–799 �1999�.

41depts.washington.edu/simset.
42D. Haynor, R. Harrison, and T. Lewellen, “The use of importance sam-

pling techniques to improve the efficiency of photon tracking in emission
tomography simulations,” Med. Phys. 18�5�, 990–1001 �1991�.

43A. M. Alessio, C. W. Stearns, S. Tong, S. G. Ross, S. Kohlmyer, A.
Ganin, and P. E. Kinahan, “Application and evaluation of a measured
spatially variant system model for PET image reconstruction,” IEEE
Trans. Med. Imaging 29�3�, 938–949 �2010�.

44S. C. Cherry, J. A. Sorenson, and M. E. Phelps, Physics in Nuclear
Medicine �Saunders, Philadelphia, 2003�.

http://dx.doi.org/10.2967/jnumed.107.045351
http://dx.doi.org/10.1109/TMI.2006.880679
http://dx.doi.org/10.1118/1.2369467
http://dx.doi.org/10.1088/0031-9155/51/12/008
http://dx.doi.org/10.1364/JOSAA.7.001834
http://dx.doi.org/10.1088/0031-9155/37/3/015
http://dx.doi.org/10.1109/TMI.2008.2006518
http://dx.doi.org/10.1109/TMI.2008.2006518
http://dx.doi.org/10.1109/TMI.2006.876171
http://dx.doi.org/10.1109/TMI.2006.873222
http://dx.doi.org/10.1109/TMI.2006.873222
http://dx.doi.org/10.1109/TNS.2004.834827
http://dx.doi.org/10.1016/j.nima.2006.10.038
http://dx.doi.org/10.1118/1.3455287
http://dx.doi.org/10.1088/0031-9155/52/12/007
http://dx.doi.org/10.1088/0031-9155/52/12/007
http://dx.doi.org/10.1088/0031-9155/47/16/310
http://dx.doi.org/10.1088/0031-9155/41/1/012
http://dx.doi.org/10.1088/0031-9155/41/1/012
http://dx.doi.org/10.1088/0031-9155/50/20/010
http://dx.doi.org/10.1007/s002590100651
http://dx.doi.org/10.1109/23.775593
http://dx.doi.org/10.1088/0031-9155/55/7/004
http://dx.doi.org/10.1063/1.168615
http://dx.doi.org/10.1088/0031-9155/44/3/019
http://dx.doi.org/10.1118/1.596615
http://dx.doi.org/10.1109/TMI.2010.2040188
http://dx.doi.org/10.1109/TMI.2010.2040188

