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Abstract. MRI is conventionally employed in neonatal brain diagnosis
and research studies. However, the traditional segmentation protocols
omit differentiation between heterogeneous white matter (WM) tissue
zones that rapidly evolve and change during the early brain develop-
ment. There is a reported correlations of characteristics of the tran-
sient WM compartments (including periventricular regions, subplate,
etc.) with brain maturation [23,26] and neurodevelopment scores [22].
However, there are no currently available standards for parcellation of
these regions in MRI scans. Therefore, in this work, we propose the first
deep learning solution for automated 3D segmentation of periventricular
WM (PWM) regions that would be the first step towards tissue-specific
WM analysis. The implemented segmentation method based on UNETR
[13] was then used for assessment of the differences between term and
preterm cohorts (200 subjects) from the developing Human Connectome
Project ({HCP) (dHCP) project [1] in terms of the ROI-specific volume-
try and microstructural diffusion MRI indices.
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1 Introduction

Segmentation of T2w structural neonatal brain MRI is conventionally employed
in neurodevelopment research studies [9] and there are many existing automated
pipelines. These solutions are based on either classical (e.g., label propaga-
tion, intensity classification) [6,18,21,26] or deep neural network [10,12] meth-
ods. In the majority of these methods, the white matter (WM) is classified
as a single tissue component [6,10,18] or subdivided into standard anatomi-
cal regions [5,12,21,24] that follow the adult brain parcellation protocols (e.g.,
temporal lobe, corpus callosum, etc.). However, during the neonatal brain devel-
opment the WM tissue is highly heterogeneous and constantly evolving due to
the different rates of tract maturation and myelination. The example in Fig. 1
shows the regional difference of T2 MRI signal intensities in WM at different
ages: 38 to 44 weeks post-menstrual age (PMA). The hyperintense T2 signal
regions in WM reportedly correspond the higher water content [11] and are also
sometimes referred to as diffuse excessive high signal intensity (DEHSI) ROIs [22]
or transient WM [15,23]. These tissue types are transient by nature and eventu-
ally are expected to disappear by changing properties and evolving into mature
WM tissue. Recently, [23] formalised a new neonatal brain maturation MRI scor-
ing protocol based on the appearance of WM transient compartments including
periventricular crossroads, von Monakow WM segments, subplate and germi-
nal matrix. The higher proportion of transient WM are correlated with lower
degree of brain maturation. However, apart from the works on segmentation of
DEHST [20,22] or high rate change WM regions [26] that are related to transient
WM structures, there has been no reported works on automation of parcella-
tion of specific types of WM tissue defined in [23]. These transient WM ROIs
are characterised by the prolonged coexistence in preterm brain [16,23] while
periventricular WM is vulnerable to injury [17]. There is also no formalised
reference parcellation protocol for transient WM tissue, which is required for
development of new automated methods or even simple manual segmentation
for quantitative studies.

38 weeks PMA 40 weeks PMA 42 weeks PMA 44 weeks PMA

Fig. 1. Examples of WM tissue heterogeneity in transient compartments visible on
T2w neonatal brain MRI at different PMA (the datasets are from dHCP project [1]).

Contributions: In this work, we propose the first deep learning based pipeline
for automated segmentation of periventricular white matter (PWM) in neonatal
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T2w MRI scans. This extends the already existing solutions [12] for volumetry-
based analysis of brain development. The feasibility of the segmentation pipeline
is assessed with respect to analysis of the difference between term and preterm
cohorts for 200 neonatal subjects from the dHCP project. The PWM segmenta-
tions from the proposed pipeline were used for both volumetry and calculation
ROI-average microstructural diffusion tensor imaging (DTI) indices.

2 Methods

2.1 Cohort, Datasets and Preprocessing

The MRI datasets used in this study were acquired as a part of the dHCP
project [1] available via the public release. The selected cohort includes 150
term (37-44 weeks gestational age (GA) at birth) and 50 preterm (<32 weeks
GA at birth) neonates scanned between 38 and 44 weeks PMA (Fig. 2). The
selection criteria was the absence of major anomalies and good image quality.
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Fig. 2. PMA at scan and GA at birth of the investigated neonatal MRI datasets from
the dHCP project: term and preterm cohorts.

Each dataset includes diffusion and structural T2w MRI volumes. The acqui-
sitions were performed on a 3T Philips scanner with a 32-channel neonatal head
coil and transportation system [14]. The structural T2w volumes were acquired
using a TSE sequence with TR = 12s, TE = 156 ms. The isotropic T2w vol-
umes were reconstructed to 0.5 mm resolution using a combination of motion
correction [8] and super-resolution reconstruction [19]. All volumes were N4
bias corrected and normalised in the Draw-EM pipeline [21] that also produced
brain tissue parcellation maps. The multi-shell high angular resolution dMRI vol-
umes were acquired with four phase-encode directions on four shells (b-values:
0, 400, 1000 and 2600 s/mm?) with TE = 90ms, TR = 3800 ms Hutter2018
with 1.5 x 1.5 X 3mm resolution and 1.5mm slice overlap and reconstructed
to 1.5 mm isotropic resolution using the SHARD pipeline [7] that also includes
slice-wise motion correction, distortion correction, exclusion of corrupted slices
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and essential preprocessing. The extraction of fractional anisotropy (FA) and
mean diffusivity (MD) DTT metrics was performed in MRtrix3 [25] toolbox. The
structural to dMRI volumes were co-aligned using T2 to MD affine registration
in MRtrix3.

2.2 Parcellation Map of Periventricular WM ROIs in the Atlas
Space

In order to provide the basis for the automated segmentation pipeline, we defined
the first parcellation map of PWM in the MRI atlas space based on the guid-
ance from the clinical MRI studies [15,23]. We used the T2w channel of the
4D neonatal MRI atlas from [26] (36 weeks PMA time-point, 0.5 mm isotropic
resolution) as the reference space for segmentation of five periventricular WM
regions. The atlas includes the high rate change WM parcellation map, which we
subdivided and refined based on the definition of the PWM ROIs (also referred
to as “periventricular crossroads”) described and illustrated in [15,23]. Refine-
ment was performed manually in ITK-SNAP [2] based on T2 signal intensity
boundaries by a researcher with experience in neonatal MRI. The PWM regions
were the segmented and named based on the definitions in [23]. This was followed
by separation into left and right resulting in ten label ROIs.

2.3 Automated Segmentation of Periventricular WM ROIs

To our knowledge, there has been no reported works on automated segmentation
of PWM in neonatal brain MRI. The only relevant methods that addressed the
tissue-specific delineation of WM were proposed for segmentation of DEHSI
[20,22] and high rate change [26] WM regions. These solutions are based on
classical intensity thresholding and atlas label propagation, which tend to be
prone to errors and sensitive to image quality and preprocessing. This limits
their large scale application. As an alternative, we propose to use deep learning
for 3D segmentation of multiple PWM regions [23] based on the protocol defined
in Sect. 2.2 and [23]. The proposed solution is summarised in Fig. 3.

Deep Learning Model for Automated PWM Segmentation: In this work, we used
the recently proposed vision transformer based deep neural network segmenta-
tion technique (UNETR) [13], as it has shown to perform well for 3D multi-label
segmentation. The proposed segmentation pipeline was implemented in MONAT
Pytorch-based framework [4]. We selected the default UNETR configuration with
combined Dice and cross entropy Loss, AdamW optimiser, 160 x 160 x 160 input
size and six output channels (3 left and right PWM regions). For this segmenta-
tion network, we selected only the three largest PWM ROIs defined in the atlas
space because of the significantly smaller size and lower visibility of the other
two regions [23].

Generations of Labels for Training: In this case, there were no available manual
parcellations of PWM in subject T2w volumes for training due to the time-
consuming segmentation of these large regions as well as the difficulty in delin-
eation of not well defined tissue boundaries. Therefore, we created the labels for
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Proposed solution or automated segmentation of PWM regions in T2w neonatal brain MRI

UNETR model
(Hatamizadeh et al., 2022)
T2w volume Training Predicted 3D PWM ROls
Inputs: 3 S
T2w volume I. k-means 1l. Propagation of 11l. Combination of IV. Manual
DRAW-Em segmentations of PWM labels from the labels: LPWM = refinement,
WM label WM ROI; Lkmeans(3) the atlas: L2t Lkmeans(3) x | altas when required

Pipeline for semi-automated generation of PWM labels (6 left and right ROIs) for UNETR training

Fig. 3. Proposed solution for automated segmentation of PWM in T2w neonatal brain
MRI based on UNETR [13] and semi-automated generation of the labels for training.

training of the UNETR network using a semi-automated approach based on the
combination of classical methods (see Fig. 3) and manual refinement. At first,
kmeans segmentation (from MIRTK toolbox [3]) is used for parcellation of the
T2w image within the WM ROI (from the DRAW-EM labels) into 3 clusters. We
select only the cluster with the highest intensity. Next, we run propagation of
the PWM labels (Sect. 2.2) based on subject-atlas multi-channel registration [26]
in MRtrix3 [25]. The output labels of both methods are combined by multipli-
cation. In summary, the label propagation spatially localises and divides the
hyperintensity regions detected by kmeans. All steps were implemented based
on MIRTK toolbox [3]. We run the label generation pipeline for 80 term and 40
preterm datasets. The output labels were then visually inspected and manually
refined in ITK-SNAP, when required.

Preprocessing and Training of UNETR Segmentation Model: The preprocessing
of the datasets (T2w images and PWM labels) for training included masking
using the DRAW-EM brain mask, cropping of the background and resampling
with padding to 160 x 160 x 160 grid. We used 90 datasets for training and 10 for
validation (including term and preterm). The training was performed for 20000
iterations with the standard MONAI augmentation (random bias field, contrast
adjustment, Gaussian noise and affine rotations +45°).

Evaluation of UNETR Segmentation: The performance was tested on 10 term
and 10 preterm datasets qualitatively in terms of the PWM region detection



Segmentation of Periventricular White Matter 99

status (visual assessment: correct = 100%, partial = 50%, failed = 0%), and
quantitatively by comparison to the ground truth labels in terms of recall, preci-
sion and Dice as well as the relative difference in volume and T2 signal intensity.

2.4 Quantitative Analysis of PWM in Term and Preterm Cohorts

The feasibility of using the proposed segmentation pipeline for quantitative stud-
ies was assessed based on comparison of term and preterm MRI datasets. We
used the trained network to segment 150 term and 50 preterm subjects. The
PWM segmentations were used to compute ROI-specific values including vol-
umetry and mean DTT indices (fractional anisotropy (FA) and mean diffusivity
(MD)). The scripts for all calculations were implemented in MIRTK toolbox [3].

3 Results and Discussion

3.1 Parcellation Map of Periventricular WM ROIs in the Atlas
Space

Figure 4 shows the first formalised 3D parcellation map for five periventricular
WM regions (with left/right separation) along with the original T2w atlas [26].
The segmented regions follow the definitions from [15,23] that call these regions
“periventricular crossroads”: C1, C2, C4, C5 and C6. The C2 and C5 ROIs have
the expected “horn” shape. All PWM ROIs have the pronounced brighter T2
intensity, which is expected to correspond to the higher water content of PWM
tissue [15,26]. The segmentations were inspected and confirmed by two clinicians
with extensive experience in neonatal brain MRI.

PWM ROI description

frontal crossroad area located lateral to the lateral
ventricle

frontal crossroad area located above the tip of lateral
ventricle

C1

Cc2

C4  parietal crossroad area

occipital crossroad area located dorsolateral to the
osterior horn of the lateral ventricle

temporal crossroad area located anterolateral to the

tip of inferior horn of the lateral ventricle

C5

cé6

Fig. 4. The parcellation map of five periventricular WM regions created in the T2w
neonatal brain atlas space [26]. Based on the original definitions in [15,23], these ROIs
are referred to as periventricular “crossroads”: C1, C2, C4, C5 and C6.
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Dice between ground truth labels and UNETR outputs:
term and preterm groups
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PWM C5 100 % 0.88 +£0.02 0.87 £0.04 0.89 +0.04 7.14+5.06% | 0.74+0.98%

Fig. 5. Quantitative assessment of the trained UNETR model for segmentation of three
PWM regions based on the comparison with the ground truth labels on 10 term and 10
preterm test subjects. The metrics (Dice, recall, precision, relative volume and intensity
difference) were calculated for combined left and right PWM ROI labels.

3.2 Automated Segmentation of Periventricular WM ROIs

The results of testing of the trained UNETR model on 10 term and 10 preterm
subjects are summarised in Fig. 5. The network correctly detected all PWM
regions selected for training (“crossroads” C1, C2 and C5 as defined in Sect. 3.1
and [23]) in all test subjects (100%). This is confirmed by the relatively high
Dice coefficients for all ROIs (around 0.88 for larger PWM ROIs C2 and C5 and
around 0.74 for smaller PWM C1) in agreement with the adequate recall and
precision. The results are comparable between the term and preterm cohorts.
The average relative difference in volume and intensity are 8.42% and 0.87%,
correspondingly.

Visual inspection shows that UNETR notably produces slightly smoother
labels than the classical methods with smaller volume and slightly higher aver-
age intensity with lower standard deviation. However, in this case, we also need
to take into account that the ground truth labels are the manually refined out-
puts of the combined kmeans and label propagation segmentation. Notably, only
minimal manual correction was required in 25.4% of all cases primarily when
the input WM DRAW-EM labels were incorrect in the ventricle regions and
for the late PMA and preterm cases with less pronounced PWM ROIs bound-
aries. At the same time, neither manual or automated segmentations cannot be
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Term subject (40.00 weeks birth GA, Preterm subject (26.43 weeks birth GA,
40.29 weeks scan PMA), Dice (C5) = 0.869 40.14 weeks scan PMA), Dice (C5) = 0.917

Ground truth UNETR Ground truth UNETR

Fig. 6. An example of the difference between the ground truth and UNETR output
labels for test term and preterm subjects.

considered as the absolute ground truth because there is no precise definition of
the correct PWM delineation due to the blurred boundaries, patchy appearance
and the transient nature of this WM compartment. This is potentially the main
cause of the difference between the ground truth and UNETR label volumes.
This is illustrated in Fig. 6 that shows an example of the difference between the
ground truth and UNETR output labels for one of the subjects.

3.3 Quantitative Analysis of PWM in Term and Preterm Cohorts

Figure 7 shows the results of comparison between 150 term and 50 preterm
subjects based on volumetry and diffusion MRI metrics derived from the UNETR
PWM segmentations (the analysis was performed for C2 frontal ROI only). All
automated segmentations were reviewed and confirmed as acceptable. Additional
minor manual refinements were required in 17.5% of cases, which notably did
not affect the trends in any of the metrics.

The term cohort is characterised by the pronounced decrease in both absolute
and relative PWM volume (that correlates with the increasing total WM volume)
along with the decreasing MD and increasing FA, which are the expected changes
in maturing WM. On the other hand, there are no prominent (significant) trends
for the preterm subjects in any of the metrics. The difference between the term
and preterm cohort trends is significant (p < 0.001) only in the intensity metrics.
The group of preterm subjects have the higher MD and T2 values and lower
FA than in the term cohort. This is potentially related to the higher water
content due to the prolonged existence of transient WM in the preterm brain [11,
16,23]. This also is in agreement with the results reported in [26]. However,
taking into account the smaller number of available preterm subjects (50), the
heterogeneity of the cohort and the respective variations in the GA at birth (24—
32 weeks GA, Fig. 2), a more comprehensive investigation on a larger cohort is
required for further analysis of correlations between the age at birth and PWM
characteristics.
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Fig. 7.

Comparison between term (150, blue) and preterm (50, red) cohorts (dHCP

datasets): volumetry and dMRI metrics computed for UNETR PWM segmentations
(C2 ROI). (Color figure online)

4 Conclusions

In summary, we presented the first deep learning solution for automated multi-
label segmentation of periventricular WM regions in neonatal T2w brain MRI.
This included formalisation and definition of the PWM parcellation map in the
standard atlas space. In addition, we demonstrated the feasibility of using semi-
automated combination of kmeans and label propagation for generation of PWM
labels for training the of the networks, which significantly decreases the prepa-
ration time in comparison to manual labels. The practicability of using deep
learning (UNETR) for PWM segmentation was confirmed by quantitative com-
parison of 200 term and preterm subjects from dHCP cohort. The results of
the analysis showed a significant difference in volumetry and mean DTI indices
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withing PWM regions. There are also pronounced trends in PWM-derived met-
rics vs. PMA for the term cohort. Our future work will focus on further automa-
tion of parcellation of the rest of the WM tissue types (e.g., subplate), optimi-
sation for different acquisition protocols and wider PMA range and a large scale
quantitative analysis.
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