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Abstract. Image registration of structural and microstructural data
allows accurate alignment of anatomical and diffusion channels. However,
existing techniques employ simple fusion-based approaches, which use a
global weight for each modality, or empirically-driven approaches, which
rely on pre-calculated local certainty maps. Here, we present a novel
attention-based deep learning deformable image registration solution for
aligning multi-channel neonatal MRI data. We learn optimal attention
maps to weigh each modality-specific velocity field in a spatially varying
fashion, thus allowing for local fusion of structural and microstructural
images. We evaluate our proposed method on registrations of 30 multi-
channel neonatal MRI to a standard structural and microstructural atlas,
and compare it against models trained without the use of attention maps
on either single or both modalities. We show that by combining the two
channels through attention-driven image registration, we take full advan-
tage of the two complementary modalities, and achieve the best overall
alignment of both structural and microstructural data.

Keywords: multi-channel registration · attention maps · deep
learning registration

1 Introduction

The neonatal brain undergoes dramatic changes during early life, such as cortical
folding and myelination. Non-invasive magnetic resonance imaging (MRI) offers
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snapshots of the evolving morphology and tissue properties in developing brain
across multiple subjects and time-points. As a prerequisite of further analysis,
MRI of various modalities needs to be aligned. Structural and microstructural
MRI modalities offer complementary information about morphology and tis-
sue properties of the developing brain, however inter-subject alignment is most
commonly driven by a single modality (structural [2] or diffusion [23]). Studies
have shown that combining diffusion and structural data to drive the registra-
tion [1,7,8,20] improves the overall alignment. Classic approaches for fusing these
channels are based on simple averaging of the deformation fields from the indi-
vidual channels [1], or weighting the deformation fields based on certainty maps
calculated from normalised gradients correlated to structural content [7,19,20].

In order to establish accurate correspondences between MR images acquired
during the neonatal period, we propose an attention-driven multi-channel deep
learning image registration framework that aims to combine information from T2-
weighted (T2w) neonatal scans with diffusion weighted imaging (DWI)-derived
fractional anisotropy (FA) maps. Our proposed solution selects the most salient
features from these 2 image modalities to improve alignment of individual MRI
images to a common atlas space.

More specifically, we train conditional variational autoencoder (CVAE) image
registration networks to align either structural or microstructural data to 36
weeks neonatal atlas [19] of the same modality. As a second step, we build a
convolutional neural network (CNN) which learns attention maps for weighted
combination of the predicted modality-specific velocity fields to achieve an opti-
mal multi-channel alignment. Throughout this work, we use 3-D MRI brain
scans [6] acquired as part of the developing Human Connectome Project (dHCP1

as the moving images, and 36 weeks neonatal multi-modal atlas2 [19] as the fixed
image.

We evaluate our proposed framework on a test set of 30 neonates scanned
around 40 weeks post-menstrual age (PMA), and we compare the results against
registration networks trained on T2w-only, FA-only, and both modalities at the
same time, either without attention, or with previously proposed attention mech-
anism [9,21]. The quantitative evaluation confirmed that while cortical structures
were better aligned using T2w data and white matter tracts were better aligned
using FA maps, the attention-based multi-channel registration aligned both types
of structures accurately.

2 Method

Image Registration Network. In this study, we employ a CVAE [11] to model
the registration probabilistically as proposed by [12]. In short, a pair of 3D MRI
volumes MT2w and FT2w (or MFA and FFA) are passed through the network to
learn a velocity field vT2w (or vFA). The exponentiation layers (with 4 scaling-
and-squaring [3] steps) transform it into a topology-preserving deformation field
1 developingconnectome.org.
2 gin.g-node.org/alenaullauus/4d multi-channel neonatal brain mri atlas.

http://www.developingconnectome.org/
https://gin.g-node.org/alenaullauus/4d_multi-channel_neonatal_brain_mri_atlas
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φT2w (or φFA). A Spatial Transformer layer [5] is then used to warp (linearly
resample) the moving images MT2w (or MFA) and obtain the moved image
MT2w(φT2w) (or MFA(φFA)). We keep the network architecture similar to the
original paper [12], but use a latent code size of 32 and a Gaussian smoothing
layer with σ = 1 mm (kernel size 33). Throughout this work, we use 36 weeks
old neonatal structural (T2w) and microstructural (FA maps) atlases [19] as the
fixed images. We have chosen this age for the templates due to the lower degree
of gyrification which facilitates a more accurate registration of the cortex across
the cohort.

Attention Image Registration Network. We construct a CNN which uses
pairs of modality-specific velocity fields as an input, and outputs a combined
velocity field which aims to align both structural and microstructural data simul-
taneously. The network learns the attention maps αT2w and αFA, for which
αT2w + αFA = 1 at every voxel. The input velocity fields are weighted with the
attention maps and combined to create a final velocity field v.

The architecture of our proposed attention image registration network is pre-
sented in Fig. 1. For each subject in our dataset, we employ the previously trained
registration-only networks on either pairs of T2w images (MT2w and FT2w) or
FA maps (MFA and FFA) to output modality-specific velocity fields vT2w and
vFA. These two fields are concatenated and put through three 3D convolutional
layers (stride 2) of 16, 32, and 64 filters, respectively, with a kernel size of 33,
followed by Leaky ReLU (α = 0.2) activations [22]. The activation maps of the
final layer are concatenated with the subject’s moving images MT2w and MFA

downsampled to size 163. This is followed by three 3D convolutional layers (stride
1) of 32, 16, and 16 filters, respectively, with a kernel size of 33, Leaky ReLU
(α = 0.2) activations and upsampling. The final two layers are: one 3D convo-
lutional layer (with stride 1, 8 filters, and Leaky ReLU activation), and one 3D
convolutional layer (with stride 1, and 2 filters), followed by a Softmax activa-
tion function which outputs the two modality-specific attention maps αT2w and
αFA. The final velocity field is created as v = vT2w�αT2w+vFA�αFA, where �
represents element-wise multiplication. Similar to the registration network, the
velocity field v is put through an exponentiation layer to create the combined
field φ, which is then used to warp the moving volumes MT2w and MFA.

Channel and Spatial Attention Network. To compare our proposed
attention-driven image registration network with other attention techniques, we
add channel and spatial attention modules throughout the image registration
network. More specifically, after every convolutional layer of the network, we
add a channel attention module (squeeze-and-excitation block [9]), followed by
a spatial attention module [21]. In total, we add 4 channel+spatial attention
modules in the encoder part of the CVAE, and 5 modules in the decoder.

Loss Functions. For this study, we train the registration-only network and the
channel+spatial attention network using the following loss function:

Lreg = LKLD + λ (λT2w LT2w
NCC + λFA LFA

NCC) + λregLBE (1)
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Fig. 1. Our proposed attention-based image registration network architecture, which
uses as input subject- and modality-specific velocity fields (vT2w and vFA). The atten-
tion network outputs two 1-channel maps αT2w and αFA which are used to create a
combined velocity field v. The velocity field v is transformed into a dense displacement
field φ which warps the subject’s moving images (MT2w and MFA) into MT2w(φ) and
MFA(φ). The network is trained to achieve good alignment between the warped images
and the fixed atlases (FT2w and FFA).

and our proposed attention network with:

Lattn = λT2w LT2w
NCC + λFA LFA

NCC (2)

where λ, λreg, λT2w and λFA are hyperparameters, LKLD is the Kullback-
Leibler (KL) divergence, LNCC is the global symmetric normalised cross corre-
lation (NCC) dissimilarity measure, and LBE is a bending energy regularisation
penalty [16]. In this study, we set λreg = 0.01 and λ = 5000 (as proposed in [12]).

Training. First, using the no-attention registration-only network, we train 2
single-modality models on either pairs of T2w-only data (λT2w = 1.0, λFA = 0.0)
or FA-only data (λT2w = 0.0, λFA = 1.0). Then, we train the three networks
(the no-attention registration-only network, the channel+spatial attention net-
work, and our proposed attention network) on both modalities, using the follow-
ing sets of hyperparameters: (λT2w, λFA) = {(1.0, 0.1), (1.0, 0.175), (1.0, 0.25),
(1.0, 0.5), (1.0, 0.75), (1.0, 1.0)}. In total, we have 20 models: 8 using the
registration-only network, 6 using the channel+spatial attention network, and
6 with our proposed attention network.

We train the 20 models until convergence (150 epochs, or 52500 iterations),
using the Adam optimizer with its default parameters (β1 = .9 and β2 = .999),
a decaying cyclical learning rate scheduler [17] with a base learning rate of 10−6
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and a maximum learning rate of 10−3, and an L2 weight decay factor of 10−5. All
networks were implemented in PyTorch (v1.10.2), with TorchIO (v0.18.73) [15]
for data preprocessing (intensity normalisation) and loading, and training was
performed on a 12 GB Titan XP. Average inference times were: 0.16 s/sample for
the registration-only networks, 0.31 s/sample for the attention-based networks,
and 0.63 s/sample for the channel+spatial attention networks.

3 Results

Image Selection and Preprocessing For this study, we use a total of 414
T2w images and FA maps of neonates born between 23–42 weeks gestational
age (GA) and scanned at term-equivalent age (37–45 weeks PMA) [6]. As pre-
processing steps, we first affinely pre-registered the data to a common 36 weeks
gestational age atlas space [19] using the MIRTK software toolbox [16], and then
we resampled both structural and microstructural volumes to be 1 mm isotropic
resolution. To obtain the FA maps, we used the MRtrix3 toolbox [18], and we
performed skull-stripping using the available dHCP brain masks [4]. Finally, we
cropped the resulting images to a 128 × 128 × 128 size.

Out of the 414 subjects in our dataset, we used 350 for training, 34 for
validation and 30 subjects for test, as described in Table 1. We used the validation
set to inform us about our models’ performance during training, and we report
all of our results on the test set.

Table 1. Number of scans in different datasets used for training, validation and testing
the models, together with their mean GA at birth (standard deviation) and mean PMA
at scan (standard deviation).

Dataset #Subjects GA [weeks] PMA [weeks]

Train 350 (164♀ + 186♂) 38.0 (3.8) 40.6 (1.9)

Validate 34 (14♀ + 20♂) 39.7 (1.4) 40.7 (1.7)

Test 30 (12♀ + 18♂) 39.8 (1.5) 40.6 (1.9)

Quantitative Evaluation. To validate which of the 20 models performs best,
we carry out a quantitative evaluation on our test dataset of 30 subjects. Each
subject and the atlas had the following tissue label segmentations obtained from
T2w images using the Draw-EM pipeline [14]: cortical gray matter (cGM), white
matter (WM), ventricles, hippocampi and amygdala. Additionally, a WM struc-
ture called the internal capsule (IC) was manually segmented on FA maps of
all test subjects. These labels were propagated from each subject into the atlas
space using the predicted deformation fields. To evaluate performance of the
registration, Dice scores and average surface distances (SimpleITK v2.1.1 [13])
were calculated between the warped labels and the atlas labels.
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Fig. 2. Line plots showing median Dice scores (first row) and average surface dis-
tances (second row) for cGM and IC structures, with the first column showing their
initial affine alignment. The dark blue lines (original cGM ) and the orange lines (orig-
inal IC ) show the scores for the registration models without attention. The light blue
(attention cGM ) and the red (attention IC ) plots represent the values obtained by our
proposed attention-driven image registration network, while the green (chsp attention
cGM ) and the brown (chsp attention IC ) lines represent the values obtained by the
channel+spatial attention network, for different values of the λT2w and λFA hyperpa-
rameters. The shading around each median line is the IQR. (Color figure online)

First, we looked at how the models performed based on two tissue types (the
cGM and the IC). We chose these structures because the cGM delineation is poor
on the FA maps, while the IC is a white matter structure which is very prominent
in the microstructure data. Both Dice scores and average surface distances are
summarised in Fig. 2, where the first column shows the values for the initial
affine alignment, while the second and last columns show the T2w-only and the
FA-only image registration networks. Columns 3–8 show different multi-channel
models for increasing values of the λFA hyperparameter, while λT2w is kept the
same.

The best overall performance in terms of Dice scores and average surface dis-
tances is obtained by our proposed attention model for λT2w = 1.0 and λFA = 0.1
(third column, Fig. 2), where the cGM is aligned as well as the T2w-only model,
and the IC structure as good as the FA-only model (the differences are not
statistically significant). Using channel+spatial attention with the same hyper-
parameter setup (λT2w = 1.0 and λFA = 0.1) achieves good results for the cGM
structure, but cannot align the IC structure as well as the FA-only model, or the
proposed attention model.
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For the T2w-only model (second column) the IC is poorly aligned, obtaining
scores which are worse than the initial affine alignment, while the cGM label
obtains the best alignment. On the other hand, for the FA-only model (last
column) the IC is well aligned, while the cGM obtains lower scores. In the original
registration networks (dark blue and orange) we see a steady worsening of cGM
scores as λFA increases, while the IC structure varies across the different λFA

values. For the attention-driven networks (light blue and red), the scores in cGM
degrade more gently, while the IC structures remain steady. Finally, the proposed
attention networks always outperform the multi-channel registration networks
with no attention, and this improvement is statistically significant for all values
of λFA.

Table 2 shows the results of 6 of our trained models for all tissue types (cGM,
WM, ventricles, hippocampi and amygdala, and IC). Here, we call the T2w +
wFA, the chsp T2w+wFA, and the attn T2w+wFA models as the ones trained
with the lowest weight on the FA maps (λT2w = 1.0 and λFA = 0.1).

Table 2. Mean (±standard deviation) Dice scores (DS) and average surface distances
(ASD) on test set. Best scores are highlighted in bold (t-test p < 0.05), while the green
shading highlights the model which performed best amongst the ones which use both
T2w and FA modalities (t-test p < 0.05). The multi-modality weighted models shown
here use λT2w = 1.0 and λFA = 0.1.

Model cGM WM Ventricles Amygdala IC

affine .567±.02 .7±.03 .631±.05 .746±.05 .642±.07

D
S

T2w-only .763±.01 .844±.02 .797±.02 .803±.02 .614±.04

FA-only .621±.02 .756±.02 .676±.04 .769±.03 .686±.03

T2w+FA .653±.01 .766±.01 .742±.03 .782±.02 .655±.03

T2w+wFA .747±.01 .826±.02 .775±.02 .808±.02 .669±.03

chsp T2w+wFA .761±.01 .841±.01 .791±.01 .814±.02 .656±.03

attn T2w+wFA .763±.01 .842±.01 .793±.02 .816±.02 .683±.03

affine .582±.04 .409±.04 .508±.1 .31±.08 .479±.1

A
S
D

T2w-only .259±.02 .193±.02 .242±.05 .233±.04 .498±.09

FA-only .477±.04 .319±.02 .433±.09 .276±.05 .374±.05

T2w+FA .419±.02 .317±.02 .324±.06 .266±.04 .417±.06

T2w+wFA .279±.01 .218±.02 .264±.04 .223±.04 .383±.05

chsp T2w+wFA .262±.01 .198±.01 .248±.04 .209±.03 .39±.05

attn T2w+wFA .260±.02 .197±.01 .248±.04 .212±.03 .37±.05

Our proposed attn T2w + wFA model has the best overall performance. For
structures which were delineated in T2w images, the proposed attention model
performed better (hippocampi and amygdala), equally well (cGM), or very close
(WM, ventricles) to the T2w-only model, showing that thanks to attention we
are able to keep advantages of structural only registration. For IC, which was
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derived from FA maps, the proposed attention model performed equally well
to the FA-only model, showing that the attention also allows us to keep the
advantages of the microstructural only registration model.

Using channel+spatial attention helped with the alignment of the structural
labels (cGM, WM, ventricles, hippocampi and amygdala), but had significantly
lower performance for IC (lower than the no-attention T2w+wFA model).

The T2w-only model performed slightly worse for the hippocampi and amyg-
dala, while the scores for the IC structure were worse than the initial affine align-
ment. The FA-only model obtains poor scores in all structures except the IC.
Finally, the multi-channel models trained without attention always performed
worse than the attention-driven models. In fact, the T2w+FA network, where
λT2w = λFA = 1.0, obtained the lowest performance amongst the multi-channel
models, showing that besides attention, the global weighting (λFA = 0.1) was
an important factor towards the network’s performance.

Fig. 3. Mid-brain axial and coronal slices of both T2w and FA fixed images (first
two columns), together with average αT2w attention maps for the attn T2w+FA with
λFA = λT2w = 1.0, and the attn T2w + wFA with λT2w = 1.0, λFA = 0.1 models on
the last two columns. Contour lines of the boundaries between cGM (dark blue), WM
(cyan), ventricles (yellow) and hippocampi and amygdala (red) are overlaid on top,
while the pink arrow points to the IC structure. (Color figure online)

Visualisation of Attention Maps. Figure 3 shows average attention maps
from 10 neonatal subjects scanned around 40 weeks PMA for two of our
attention-driven models: attn T2w+FA (λFA = λT2w = 1.0) and attn T2w+wFA
(λT2w = 1.0, λFA = 0.1). The first two columns show the middle axial and coro-
nal slices of the T2w and FA atlases which were used for training, together with
segmentation of the investigated brain structures. The last two columns show
the average αT2w attention maps (in atlas space) for the 2 models. We can
observe that the αT2w attention maps cover the cGM region, and this is more
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pronounced when λFA is decreased from 1.0 to 0.1. On the other hand, αT2w is
close to zero in the area of the main white matter tracts in both cases.

4 Conclusion

This paper presents a novel solution for multi-channel registration, which com-
bines structural and microstructural MRI data based on learned spatially vary-
ing attention maps that optimise the multi-channel alignment. Our quantitative
evaluation showed that the proposed attention-driven image registration network
improves overall alignment when compared to models trained on multi-channel
data, while maintaining the performance of the single-channel registration for
the structures delineated on that channel. Moreover, using attention helps drive
the registration to better alignment of tissue structures, but only our proposed
model obtains results on par to using microstructural data only in terms of
aligning white matter labels.

The main limitations of this work are: the use of a single latent code size and
smoothing kernel, no comparison with classic multi-channel image registration
tools [10,19], and a limited number of labels used for validation. Future work
will focus on evaluating the effect of the latent code size and smoothing kernel
on the predicted velocity fields, and exploring the use of older neonate atlases.
Moreover, we aim to extend our attention-driven image registration network to
incorporate higher-order data, such as diffusion tensor (DT) images [8].
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