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ABSTRACT  

Optical Coherence Tomography (OCT) has shown a great potential as a complementary imaging tool in the diagnosis of
skin diseases. Speckle noise is the most prominent artifact present in OCT images and could limit the interpretation and
detection capabilities. In this work we propose a new speckle reduction process and compare it with various denoising 
filters with high edge-preserving potential, using several sets of dermatological OCT B-scans. To validate the
performance we used a custom-designed spectral domain OCT and two different data set groups. The first group 
consisted in five datasets of a single B-scan captured N times (with N<20), the second were five 3D volumes of 25 B-
scans. As quality metrics we used signal to noise (SNR), contrast to noise (CNR) and equivalent number of looks (ENL) 
ratios. Our results show that a process based on a combination of a 2D enhanced sigma digital filter and a wavelet
compounding method achieves the best results in terms of the improvement of the quality metrics. In the first group of 
individual B-scans we achieved improvements in SNR, CNR and ENL of 16.87 dB, 2.19 and 328 respectively; for the
3D volume datasets the improvements were 15.65 dB, 3.44 and 1148. Our results suggest that the proposed 
enhancement process may significantly reduce speckle, increasing SNR, CNR and ENL and reducing the number of 
extra acquisitions of the same frame.   
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1. INTRODUCTION  

Optical coherence tomography (OCT) is a non-invasive technique that presents a view of the superficial layers of tissue 
in vivo and in real-time [1]. It is broadly used as a diagnostic tool in ophthalmology since its introduction and has been 
proven as a useful tool in other specialties like dermatology for the diagnosis of skin diseases. In particular OCT has 
shown promising results as a non-invasive alternative to excisional biopsy helping in the detection of tumors, such as 
malignant melanoma and basal cell carcinoma, complementing other imaging tools such as dermatoscopy or confocal
laser scan microscopy [2, 3]. Speckle noise is the most prominent artifact present in OCT images. It limits the
interpretation and diagnosis and reduces the contrast and the signal to noise ratio (SNR) [4]. In images of highly 
scattering biological tissues, speckle has a dual role as a source of noise and a carrier of information on tissue
microstructure. So special care should be taken, because removing the speckle could imply deleting useful information.

Much work has been performed for reducing speckle noise. We can make a first classification of speckle reduction
techniques in software and hardware solutions. The hardware based techniques require the modification in the optical 
setup or change of scanning protocols. The goal is to obtain several tomograms that are averaged to get final images 
with a reduction in speckle contrast. The main challenge of these methods is to acquire images in a way that the speckle 
pattern changes, but produce a minimum alteration of the image structure. We can divide hardware techniques into serial
and parallel [5]. The parallel hardware speckle reduction methods acquire tomograms with different speckle patterns 
used for averaging at the same time. The differentiation of speckle patterns has been achieved applying light with 
different polarizations emitted by two sources [6], by frequency compounding, with the incoherent summation of the 
magnitudes of two incoherent interferometric signals recorded at two different center wavelengths simultaneously [7], 
using a partially spatially coherent source [8]. The serial technique is simpler. It consists in the acquisition of several B-
scans in consecutive time intervals from the same location of the sample, but with a slightly changed ensemble of the
illuminated scattering particles [5, 9]. Another popular approach of differentiating speckle pattern is averaging
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tomographic images acquired from different observation angles. This method is usually known as “angular
compounding” and has been developed in several modalities, using path length encoding and averaging images obtained
at different incident angles with each image encoded by path length [10], through Doppler encoding [11] or using 
multiple backscattering angles encoding [12]. Finally in the last few years several methods have been proposed to 
improve the lateral resolution beyond the diffraction limit using structured interferences in a similar way as in confocal
microscopy [13, 14]. 

Software based speckle reduction techniques have as main advantage that they could be applied to almost all 2D and 3D 
images acquired by an OCT device without changing the acquisition setup. The drawback is that they could need high 
computation needs and could affect the resolution of the image. We can include in this group multiple methods like local
averaging over neighboring A-scans of each tomogram [15], averaging multiple B-scans [16], applying rotation kernel 
transformations to each tomogram [17], wavelet transform [4, 18, 19], image regularization [20],  curvelet transform 
[21, 22], complex diffusion filtering [23], or digital filtering the B-scans [4] which is the approach followed in our study. 

2. METHODS
2.1. Denoising filters 

In this study we define a new process for speckle reduction based on the assessment of several denoising filters and their
potential use in dermatological OCT imaging. We include in the evaluation well known 2D filters previously used in 
speckle reduction, such as versions of Enhanced Sigma (ES) [24], Adaptive Wiener (AW) [25], Median [25], Adaptive
Wavelet Thresholding (AWT) [26] filters and the more recent Stein’s unbiased risk estimate (SURE) method [27].  We
also evaluate the combination of previous 2D filters with B-Scan fusion based on wavelets decomposition (WFS) [28] 
and wavelet denoising considering multiple B-scans (WMF) [29] to prove the improvement of this strategy with respect 
to just filtering 2D B-scans or just compounding multiple B-scans. Finally we propose the best combination of all the
filters assessed in the resulting denoising process.

The Sigma Filter, also known as Lee Filter [30], is based on the two-sigma probability of Gaussian distribution and
incorporates the speckle multiplicative noise model. Besides its simplicity it provides a good balance between filtering 
accuracy and computational complexity. We use an implementation that improves the preservation of small edges 
decomposing the image in several components and applying the sigma filter (ES) to them. Adaptive Wiener filter (AW)
calculates the local mean, the variance and the noise power estimation and uses these local statistics adaptively to
generate a pixelwise Wiener filter. The Adaptive Wavelet Thresholding (AWT) performs a discrete wavelet transform
and estimates the noise standard deviation from the detail coefficients at the first level, defines an adaptive threshold
based on the previous estimation and a penalization method provided by Birgé-Massart, applies a global soft threshold
to the coefficients and finally performs the inverse discrete wavelet transform [5]. The value of the median filter in
suppression of impulsive noise has long been recognized. Median filtering is often effective for speckle reduction. It 
uses the median intensity in a suitable sized and shaped region Wij surrounding the pixel (i,j) of interest; hence it 
eliminates any impulsive artifacts with an area (in pixels) less than half the region size ||Wij ||. The Stein’s unbiased risk
estimate (SURE) method is a new approach to orthonormal wavelet image denoising. The algorithm parametrizes the
denoising process as a sum of elementary nonlinear processes with unknown weights. The method uses a priori 
estimation of the Mean Square Error (MSE) resulting from an arbitrary processing of noisy data. Instead of the usual 
strategy of the wavelet denoising method that involves statistical description of the coefficient distribution, an estimation 
of the statistical parameters and a search of the best denoising algorithm based on them, this filter takes advantage of 
Stein´s MSE estimate and goes directly to the last step, without considering the statistical description or making explicit 
hypotheses on the clean image.  

Finally as we work with 3D volumes (sets of multiple B-scans), we have also evaluated two methods based on 
compounding strategies. The Image Fusion (WFS) based on wavelet decomposition transforms the original images
(adjacent B-scans in our study) combines the coefficients on the transformed space and then applies the inverse
transform to obtain the final result [28].  The Wavelet Multiframe (WMF) algorithm [29] uses wavelet decompositions
of single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are 
weighted, averaged and reconstructed. In both cases we use two consecutive frames (or B-scans) to perform the
calculations.
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The pre-processing step consists in the alignment of the image stack, adjusting each A-line of each image to keep the 
edge between the skin and the air constant in all the images.

The next step is the digital filtering of each B-scan before the B-scan compounding operation. For each individual B-
scan the four digital filters described were applied: the ES filter with a window size of 5 pixels, the AW filter with 
window size of 5 pixels and a noise estimation based in the mode, the AWT filter with the wavelet family Coiflet 2, a 
level of decomposition of 3, and an estimation of the noise based on the detail coefficients of the first level. The Median 
filter considered the median value in a 3-by-3 neighborhood around the corresponding pixel. Finally for the SURE
method we used the wavelet family Coiflet 2. The detail description of the previous parameters is beyond the scope of 
this paper. A complete description of these methods can be found in [24-29]. 

In the third step we apply the two proposed compounding filters (WFS and WMF) with groups of two adjacent B-scans 
previously filtered. For WFS we use the wavelet family Coiflet 1, the maximum fusion method for the approximation 
coefficients, the minimum for the details component and a level of decomposition equal to 6. For WMF we use 5 as 
decomposition levels, the Haar basis family, p controlling the noise reduction of 1.1 and as weight mode a combination 
of significance and correlation weights.

Finally we calculate the quality metrics (SNR, CNR, ENL and EEI) and display the results. The original raw B-scans
quality metrics are shown in Table 1. Tables 2 show the subsequent improvement of the quality metrics with respect to 
these values except EEI which always compares the filtered and the original values (see (4)).  

SNR(dB) CNR ENL EEI
Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 

21.96±0.76 23.47±0.17 1.21±0.17 1.45±0.12 60±7 42±11 20.92±2.43

Table 1. Mean ± Standard Deviation of the initial values of the quality metrics of the five 3D datasets (Set 1) and the five 2D
datasets (Set 2) used for the evaluation of the speckle reduction process.  

The results show that all the denoising filters improve the image quality metrics (SNR, CNR, ENL and EEI). The best 
results are accomplished using the combination of digital filtering individual B-scans with the Enhanced Sigma Filter
followed by the image compounding of two consecutive B-scans using the WMF algorithm (Table 2).

Filter Name SNR(dB) CNR ENL EEI
Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 

ES/WMF  15.65±3.44 16.87±2.66 3.44±0.68 2.19±0.12 1148±239 328±98 2.25±0.2 
AWT/WMF 15.91±4.15 13.27±1.5 3.04±0.53 2.14±0.17 980±331 255±117 1.88±0.15 
AW/WMF 15.37±3.84 13.27±1.73 2.97±3.84 2.28±0.15 916±322 280±100 2.09±0.16 
AWT/WFS 14.74±2.72 12.46±1.13 2.86±0.59 1.97±0.15 813±241 207±89 1.62±0.15 
ES/WFS 13.1±1.77 15.27±2.38 2.9±0.67 1.93±0.23 769±94 247±62 1.72±0.16
MD/WMF 13.47±2.74 10.81±2.38 2.39±0.54 1.46±0.14 612±214 139±48 2.04±0.14 
AW/WFS 12.83±2.08 11.56±1.27 2.97±0.64 1.97±0.22 633±153 218±65 1.72±0.16 
SURE/WMF 10.84±1.76 8.71±1.46 1.85±0.37 0.92±0.08 377±130 72±29 1.72±0.16 
MD/WFS 10.15±0.87 8.70±1.38 1.84±0.38 1.25±0.08 363±64 119±38 1.61±0.13 
SURE/WFS 6.98±0.45 6.04±0.56 1.19±0.25 0.74±0..07 180±32 65±25 1.39±0.11 

Table 2. Mean ± Standard Deviation of the improvement of the Enhancement metrics of the five 3D datasets used for the evaluation
(Set 1) and the five 2D datasets (Set 2). The filters are ordered according to their FOM ratio values. 

With this strategy the quality metrics increase for all the filters and reduce the speckle noise, improving the possible
study of details in the image. In figures 1 and 2 we can appreciate an example of the effect of the application of the 
complete speckle reduction process in two B-scans. As we can notice in the detail white boxes of figure 2, one of the
advantages of this process is that it is possible to appreciate more clearly the different layers of the skin.  
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