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ABSTRACT

This paper presents an automatic segmentation procedure for MRI neuroimages that overcomes part of the problems
involved in multidimensional clustering techniques like partial volume effects (PVE), processing speed and difficulty of
incorporating a priori knowledge. The method is a three-stage procedure: 1) Exclusion of background and skull voxels
using threshold-based region growing techniques with fully automated seed selection. 2) Expectation Maximization
algorithms are used to estimate the probability density function (PDF) of the remaining pixels, which are assumed to be
mixtures of gaussians. These pixels can then be classified into cerebrospinal fluid (CSF), white matter and grey matter.
Using this procedure, our method takes advantage of using the full covariance matrix (instead of the diagonal) for the joint
PDF estimation. On the other hand, logistic discrimination techniques are more robust against violation of multi-gaussian
assumptions. 3) A priori knowledge is added using Markov Random Field techniques. The algorithm has been tested with a
dataset of 30 brain MRI studies (co-registered T1 and T2 MRI). Our method was compared with clustering techniques and
with template-based statistical segmentation, using manual segmentation as a ‘gold-standard’. Our results were more robust
and closer to the gold-standard.

Keywords: MRI segmentation, robust segmentation, EM Algorithm, Markov Random Fields, Partial Volume, logistic
regression.

1. INTRODUCTION

The study of many brain disorders involves tissue segmentation from magnetic resonance (MR) images. The study of
schizophrenia, for instance, pays great attention to the accurate quantification of CSF in the frontal lobes of the brain as an
indirect measure of neurodegeneration1.

Currently, in many clinical studies segmentation is still mainly manual or strongly supervised by a human expert. The
level of operator supervision impacts the performance of the segmentation method in terms of time consumption, leading to
unfeasible procedures for large datasets, and increases observer variability, deteriorating the precision of the analysis of the
segmentation.

Automatic and reliable intensity based segmentation is difficult to achieve due to the overlap of MR intensities of the
different tissue types, the acquisition noise, and by the presence of partial volume effects (PVE). This artefact derives from
the finite resolution of MR scanners, resulting in voxels that contain more than one tissue type. MR images may present
different contrasts –i.e. different intensity levels for the same tissue– depending on the particular sequence selected, thus
being able to provide multispectral datasets. MRI data can also be combined with other modalities, such as PET or CT, in
order to take full profit of their complementary information. Thus, multispectral or multimodality MR segmentation is
becoming more important to maximize tissue differentiation, as well as to map functional metrics.

A review of automatic segmentation methods can be found in 2 3. Recently, great attention is being paid to multispectral
segmentation 4, Expectation-Maximization (EM) algorithm 5, partial volume modelling 6, robust estimators 7, and logistic
regression 8 for MRI segmentation.
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The segmentation method presented in this article models the intensity distributions of multispectral MRI scans as a
mixture of Gaussians. To this end, the Expectation-Maximization (EM) algorithm was modified in order to overcome some
of the main drawbacks in automatic intensity based segmentations. The use of robust estimators, logistic regression
techniques and full covariance matrices shields to some extent the algorithm against model assumption violations and PVE.
Another important feature of this algorithm is the inclusion of a priori knowledge by means of a Markov Random Field
filtering while avoiding the need of anatomical or statistical atlases. The method has been validated on 30 MRI scans of
schizophrenic patients. Results were compared with a manual segmentation used as gold-standard, a clustering technique
and the standard algorithm provided with SPM999.

2. ALGORITHM

The proposed segmentation method has been applied to a multispectral MRI dataset –T1- and T2-weighted–, and involves
the three following steps: 1) automatic background and skull/scalp extraction, 2) tissue segmentation by means of an EM
algorithm employing logistic regression techniques, and 3) application of a Markov Random Field filter.

Background and skull/scalp extraction has several purposes. Scalp tissues show intensity levels that overlap with brain
tissues and, therefore, a correct classification is impossible to achieve only by means of their grey level. Besides,
background and skull present very low signal levels both in T1- and T2-weigthed scans. These regions are dominated by
noise, whose intensity distribution is governed by a Rice distribution and, consequently, cannot be accurately modelled by a
Gaussian 10. Previous removal of these non-interesting voxels prevents against violation of multi-gaussian assumptions and
reduces the number of voxels to classify resulting in a more accurate and faster result.

This skull/scalp pre-segmentation is achieved using region growing techniques with fully automatic seed and threshold
selection. Voxels are classified as intracranial tissue if a) the sum of intensities in images is above a certain threshold and b)
if they are connected to the central voxels of the image. Similarly, white and grey matter are segmented from the T1-
weighted image and the ventricles are segmented from the T2-weighted image (Fig. 1).

At this point, the mean, variance and the prior probability of every tissue type is computed, using the median as a
suitable robust estimator –trimmed or Winsorized mean could have also been used–.

The second step in the method performs a voxel classification based on the EM algorithm 11 in which a logistic
regression technique has been incorporated. Voxel intensities are assumed to be generated by a mixture of known
distributions –one for each tissue type– whose parameters are not known. The EM algorithm is an iterative method for
finding the maximum-likelihood estimate of an underlying distribution from a given dataset.

The algorithm operates as follows. Let the intensities in the MR images be indicated by an array x = {x11, … , xn1; … ;
x1d, … , xnd} of size N x D where N is the total number of voxels in one image and D is the number of images used –two in
this work–. Let the underlying segmentation be represented by y = {y11, … , yn1; … ; y1d, … , ynd} where yi denotes the tissue
type that voxel i belongs to. The number of distributions is assumed to be K and yi = ek for a given k, 1≤ k ≤ K where ek is a
unit vector whose kth component is equal to one, being all the other components zero. The underlying distribution is
described by a probability density function f(y|Φy) –in this case a Gaussian distribution– that is parameterised by the
parameter set Φy. Then, the Bayes’ rule can be applied to the initial estimation of the mean, variance and prior probability of
each tissue type that were obtained in the first step, allowing to calculate the posterior conditional probability p(yi|xi,Φy), of
the voxel i with intensity level xi belonging to the tissue type yi, given the parameter set Φy,:
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T1-weighted image Intra-cranial mask T2-weighted image
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Figure 1. Rough tissue masks are used to initially estimate the mean and variance of each tissue

In the particular case of a mixture of Gaussians:

(2)

Calculation of p(yi|xi,Φy) is called the Expectation step. These conditional probabilities are then used to re-calculate the
new set of estimates Φy that maximizes the likelihood −the Maximization step−. These new estimates are given by:
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In which p(yk) is the prior probability of the tissue type k, µk is the mean and Σk is the full covariance matrix.

Noise in high signal regions of MR images can be modelled as a random process governed by a Gaussian distribution.
Consequently, noise correlation between two different MR acquisitions is not expected and statistical independence of the
voxels is assumed. Nevertheless, since the signal intensity in partial volume voxels is the weighted mean of the intensities of
the tissue types contained, a correlation between classes is clearly introduced, as can be seen in Fig. 2. Modelling of this
correlation leads to the use of full covariance matrices instead of diagonal ones that cannot take this effect into
consideration. Another consequence of the bias introduced by PVE is the violation of the multi-Gaussian assumption. Due
to this bias, the estimation of the parameters of the distribution mixture may suffer from lack of accuracy if the estimators
are not robust enough. For this purpose, the initial robust estimation of the mean is kept and the EM algorithm is used to
only estimate the prior class probabilities and the covariance matrices. In spite of this, PVE still biases severely the
covariance matrix estimation, and a further correction is needed. To deal with biased estimations an additional step is
introduced into the EM algorithm: the calculation of the posterior probabilities p(yi|xi,Φy) by means of the logistic function12.

(a): Diagonal covariance matrices cannot
accurately model partial volume effect.

(b): Full covariance matrices allow better
modelling of data containing partial volume

effect.

Figure 2. Joint histogram of the T1-weighted (x-axis) and T2-weighted (y-axis). Crosses indicate Gaussian
means and ellipses the standard deviation of the tissue classes, given the covariance matrices.
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In the case that covariance matrices were equal for all the classes, equation (1) could be re-written as follows: 13
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Under this assumption, all βk can be analytically calculated. There are strong arguments in favour of logistic
discrimination over standard estimators under non-normal conditions 13. When the assumption of equal covariance matrices
does not hold, these parameters must be estimated by maximizing a likelihood function, as in the case of a mixture of
Gaussians. The estimation of the posterior probabilities using (6) instead of (1) introduces a risk function that modulates the
probability density functions according to the actual data.

Finally, the third step of the segmentation scheme involves the filtering of the posterior probabilities obtained in the
previous step with a Markov Random Field (MRF)-based technique, in order to include both spatial and a priori
information. In a MRF the probability of a voxel i to belong to a certain tissue yi only depends on the tissue-probabilities of
its neighbours y’∈ Ni. For instance, a voxel surrounded of white matter must have a high probability to belong to the same
class, while it is very unlikely that it belongs to a non-brain tissue. This probability follows a Gibbs distribution 14:
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The expression Umrf(ek|pNi, Φmrf) denotes a potential that increases with disparity between a voxel and its neighbourhood.
This is represented by the vector gi which counts the number of neighbours of i that belong to each class and by the matrix
G which sets the potential between tissue types. The elements of G are the parameters to be estimated at this step. MRF
provides a methodology to smooth homogeneous regions while preserving edges and allowing for introducing a-priori
knowledge by penalizing unlikely tissue transitions.

In its present implementation, our algorithm performs an optimisation of the parameter set of the EM algorithm, keeping
fixed the logistic regression and MRF parameters. The resulting segmentations are presented in the Fig. 3.
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White Matter Grey Matter CSF

(a) (b) (c)

(d) (e) (f)
Figure 3. (a),(b),(c): Posterior probability images for white matter, grey matter and CSF

(d), (e), (f): Same images after EM algorithm with posterior MRF-based filtering

3. VALIDATION

The algorithm has been tested on a dataset of 30 MRI scans of 15 schizophrenic patients, using one slice per case. MRI
studies were obtained on a Philips ACS Gyroscan 1.5 T scanner. Patients underwent two MRI procedures: a gradient echo
T1-weighted 3D sequence and a turbo spin echo T2-weighted 2D sequence. Matrix size ranged from 256 x 256 to 512 x 512
and slice thickness ranged from 1.1 mm to 1.5 mm in T1 studies and from 3.3 mm to 5.5 mm in T2 studies. T1 images were
registered and re-sliced using trilinear interpolation to T2 images by means of a mutual information registration algorithm 15.
Segmentation of multispectral or multimodality datasets is particularly sensitive to registration errors. The mutual
information algorithm used in this work has been developed and previously tested in our group 16 and has proven to yield
more accurate and stable results than other algorithms.9, 17

In order to validate the accuracy and reliability of the logistic EM segmentation, multispectral slices were classified into
white matter, grey matter, CSF and non-brain tissue by four segmentation methods: 1) manual segmentation by an expert,
which was used as a gold standard to establish a ground truth for all comparisons, 2) a supervised clustering technique based
on K-Nearest Neighbours 18 algorithm with K=4 that had been previously tested in our group19, 3) an automatic
segmentation obtained through Bayes’ rule from the prior probabilities calculated with SPM99 20, and 4) the logistic EM
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algorithm. Afterwards, the tissue masks obtained were compared in terms of: a) Overlap, b) False Negatives –type I error–,
and c) False Positives –type II error–. The first two segmentation methods are rigid and unable to model PVE. In order to
obtain comparable results, voxels in the SPM99 and the logistic EM segmentation were uniquely assigned to the most
probable class. Finally, the spatial distribution of the misclassified voxels for a single patient is presented.

The overlap rate is defined as 21 2·Vk
ov/(V

k
g + Vk

s), where Vk
ov represents the number of voxels that overlap for class k,

and Vk
g and Vk

s denotes the total number of voxels in each segmentation. This metric is able to quantify the goodness of the
segmentation but does not provide any information about the error type of the misclassified voxels. For this reason, the
metric was complemented to detect the direction of the error –type I or type II–. Voxels in a given segmentation not present
in the gold standard are called false positives and increase the type I error. Alternatively, voxels in the gold standard that do
not appear in the given segmentation are called false negatives and increase type II error. Consequently, false positive and
false negatives rates are defined as Vk

fp/(V
k
g + Vk

s) and Vk
fn/(V

k
g + Vk

s). It should be stressed that in medical applications a
type of error is usually more important than the other. Overlap and error rates are presented in Fig. 4.

(a) (b)

(c)

Figure 4. Comparison of the segmentation procedures. Figures represent the average values (N=15) of the
False Negative, False Positive and Overlap rates for every tissue.
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The spatial distribution of the misclassifications is presented in Fig. 5 with data from a single patient.

(a): White matter segmented by
Clustering.

(b): White matter segmented by the
logistic EM algorithm.

(c): White matter segmented by
SPM99.

(d): Grey matter segmented by
Clustering.

(e): Grey matter segmented by the
logistic EM algorithm.

(f): Grey matter segmented by
SPM99.

(g): CSF segmented by Clustering. (h): CSF segmented by logistic EM. (i): CSF segmented by SPM99.

Figure 5. Example of the spatial distribution of the error, using manual segmentation used as gold-standard.
Overlapping voxels are showed in grey and misclassified voxels in white.
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4. DISCUSSION

Logistic EM algorithm showed the best overall performance, except in the case of white matter segmentation. This tissue
was better segmented by the clustering method with manual seed selection and editing. Fig. 5b illustrates that the
misclassification was mainly localized in the basal ganglia and the occipital lobe. Segmentation of sub-cortical structures is
very complicated since their limits are not clearly defined in the image –especially in the thalamus– and their intensity level
is not equal to that of cortical grey matter. Consequently, the clustering technique takes advantage of the human expert
knowledge of brain morphology. SPM segmentation also failed to detect these regions. Misclassification in occipital lobe
probably derives from the presence of an inhomogeneity artefact. This effect, inherent to MRI 22, is not always visible for a
human observer but can cause serious misclassifications on intensity-based segmentations 23. Inclusion in the model of the
bias field could theoretically improve our logistic EM segmentation.

In the segmentation of CSF, logistic EM showed its best performance in comparison to the other methods (Fig. 4c). This
superior performance can be explained by the use of robust estimators and logistic regression, especially useful when a high
percentage of partial volume voxels biases its distribution from a Gaussian.

The SPM99 method showed a poor performance when segmenting CSF, with higher false positive rate (Fig. 4c). This is
caused by the misclassification of many scalp voxels as CSF. Intensity based methods cannot accurately segment the scalp,
which presents intensities that overlap brain tissue voxels. The probability template used by this algorithm does not exclude
scalp voxels. Besides, this method may suffer from a lack of accuracy when registering the MRI to an average template,
especially in the case of severely distorted brains. This effect may be accentuated in this work because of the use of MRI
scans of schizophrenic patients for the validation.

The MRF-based filter implemented could not significantly improve the logistic EM in the white and grey matter cases,
and even decreased the overlap of the CSF segmentation. This behaviour suggests wrong MRF parameters selection, and
thus pointing to the need to include their proper estimation in the algorithm.

These considerations suggest that the logistic EM algorithm is particularly indicated for the quantification of CSF. Since
the presence of non-Gaussian distributions is not critical, other medical images different from MR could be used. For
instance, the joint use of anatomical MRI with some functional imaging method, such as PET, could result in a more
accurate characterization of the functional behaviour of the different tissues. Moreover, the use of full covariance matrices
makes it applicable to any imaging technique prone to show correlated noise, such as parametric or perfusion images.

The logistic EM algorithm is open to several improvements. The inclusion in the algorithm of the bias field correction
and optimisation of the logistic and MRF parameters should result in an increase of its accuracy. The implementation of
these refinements together with the excellent results reported in this work make the logistic EM algorithm a very promising
technique.
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