
DCE@urLAB methods 

This is a summary of the methodology used in DCE@urLAB application 

Introduction: 

DCE-MRI (Dynamic Contrast Enhancement Magnetic Resonance Imaging) is a biomedical modality that 

involves the serial acquisition of MR images of a tissue of interest before and after an intravenous 

injection of an exogenous contrast agent (CA). As the CA enters into the tissue, the longitudinal ( 1T ) and 

transversal ( 2T ) relaxation times of the MR are modified to an extent that is determined by the 

concentration of the agent. By considering a set of images acquired before and after the CA injection, a 

region of interest (ROI) or individual pixels will exhibit a characteristic signal intensity time course, which 

can be related to CA concentration. By fitting the DCE-MRI data to an appropriate pharmacokinetic (PK) 

model, physiological and quantitative parameters can be extracted (Tofts and Kermode, 1991).  

General Assumptions  

PK models includes in DCE-MRI assume general concepts in tracer kinetics and magnetic resonance 

(Tofts, 1997): 

 There exist certain compartments that contain a well-mixed CA with uniform concentration. 

 The flux between compartments is directly proportional to the difference of concentration of CA 

between the two compartments (i.e., linear inter-compartment flux). 

 Parameters describing the compartments don’t’ change during the experiment (i.e., time 

invariance). 

 The increase in longitudinal relaxation rate (i.e., the inverse of T1) is proportional to the 
concentration of CA by a constant factor, denoted as longitudinal relaxivity. 

Compartments 

PK models applied have two compartments in common: the blood plasma compartment and the 

Extracellular-extra vascular (EES) compartment. In the brain, the two compartments are separated by 

the blood-brain barrier (BBB). As the CA doesn’t enter in the intracellular space, so it is not considered in 

the PK models. The blood plasma compartment is the central compartment, with wash-out to the 

kidneys and intake from the injected contrast, while the EES compartment is the peripheral 

compartment. This scheme is pointed in figure 1. 

In DCE-MRI PK analysis, changes of concentration of CA in tissue over time are modeled as a result of 

first-order exchange of CA molecules between compartments. The general mathematical form of the PK 

model is independent of the CA exchange biological mechanism (i.e., blood flow, permeability, or a 

mixed case). The generalized PK model is expressed as a modified general rate equation (S. S. Kety 

1951),(Tofts, et al., 1999), which describes the rate of accumulation and wash-out of CA in the EES: 
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where pC  is the CA concentration in plasma, eC  is the CA concentration in EES, ev is the fractional 

volume of EES, and transK is the volume transfer constant between plasma and EES. Equation 1 can be 

expressed also as function of the rate constant between EES and plasma ( epk ), which is related through 
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Figure 1:  Two-compartmental model accessed by low molecular weight CA  

 

Biological interpretation of Ktrans 

If the delivery of CA to the tissue is ample (i.e., the rate of extraction of CA via the BBB is small compared 

with the rate of replenishment by perfusion), transK is equivalent to the product of capillary wall 

permeability and capillary wall surface area per unit volume. This is usually expressed as transK PS , 

where PS is the permeability surface area product per unit of mass of tissue (ml g-1min-1) and  is the 

tissue density  (g ml -1). This situation is commonly named as “flow limited” 

On the other hand, if the delivery of CA is insufficient, blood perfusion will be the dominant factor 

determining the CA kinetics, and the behavior of the tissue it will be “permeability limited” with PS F . 

In this case,   1transK F Hct , where F  is the flow or perfusion (ml g-1min-1) and Hct is the hematocrit. 

In a mixed situation, not limited by flow or by permeability,   1transK E F Hct , where E is the CA 

extraction fraction, expressed as: 
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Tofts model 

The Tofts model (Tofts and Kermode, 1991) derives from the  generalized bi-compartmental PK model of 

equation 1. It assumes that the contrast agent is injected as a bolus and instantaneously is distributed in 



the vascular plasma compartment. The general solution to the first order differential equation (1) with 

initial conditions     0 0 0p eC C   is: 
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pC  is modeled with a bi-exponential decay in the original Tofts model {Tofts, 1991 #17}: 
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where D  is the dose (mmole/kg), amplitudes ia are normalized for unit dose in kg/litre, and rate 

constant im have units of min-1. Using Equation 4 to solve Equation 2: 
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where unknowns parameters are transK and epk .  This original Tofts model do not take into account any 

significant vascular signal, so ( ) ( )t e eC t v C t . If the effects of the plasma compartment to the total signal 

is not negligible, (i.e.,  ( ) ( ) ( )t e e p pC t v C t v C t ), and additional term is added to equation 4, leading to the 

modified or extended Tofts model, with the additional unknown parameter pv : 
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Tofts model can be interpreted as a convolution with a residue function    eptrans k tH t K e : 

      t pC Ct t H t  (7) 

where the symbol * is the convolution operator. The vascular component is added in the modified Tofts 

model: 
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The discrete approximation of equation 7 considers that ( )tC t and ( )pC t are measured at a set of equally 

spaced time points   1 2 1, ,..., ;  N i it t t t t t  and over small time intervals ( )H t and ( )pC t are assumed 

constants: 
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As a linear operator, the discrete convolution can be expressed in a matrix form: 
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which is solved iteratively with least-squares minimization methods. 

Tofts model not should be applied without a 10T  map and a reliable adjust of pC to the bi-exponential 

function. If TR >> 1T , MR signal values are reasonable linear with respect to tC except for an unknown 

constant, and the PK model can be useful for semi-quantitative measurements. In this case units transK

are not related to tC , and even can give results greater than the unit.  

Note that tC  must be calibrated from the MRI data. With T1-weighted DCE-MRI studies, the process is 

divided detailed in the MRI model section. 

Hoffmann model 

It consist of a two-compartment model proposed by (Hoffmann, et al., 1995) based on that of (Brix, et 

al., 1991), which incorporates rate constants  of CA between the lesion to plasma compartments( epk ), 

and the clearance rate ( elk ). The plasma concentration not need to be directly measured because elk

can be estimated from the measured tissue curve. After a bolus injection of duration , if It is assumed 

that   1epk  and  1elk . CA transfer between blood plasma to EES is supposed to be a slow process. 

i.e., ,ep el pek k k . Hoffmann model reduces to equation 11 (Tofts, 1997): 
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where  S t  is the MR signal of the sequence from tissue and 0S is the initial signal before CA injection. 

The fitting parameters are: HA (normalized amplitude, which approximately corresponds to the size of 

the EES), epk  and elk . The model deals with the situation in which the arterial concentration is unknown, 

and pC cannot be correctly estimated. Instead, the blood compartment is assumed to have a constant elk

. pC is assumed to be the result of a constant infusion of CA with known duration. Also tissues have a 

negligible vascular component in this model. 

At short times after injection, the right side of (9) reduces to 1 epAk ; thus, the initial slope of the curve 

is proportional to epAk . 

Larsson model 

Larsson model (Larsson, et al., 1990) simplifies the Tofts model assuming a known blood plasma CA 

course, either measured from blood samples or estimated from MRI. This model is mono-

compartmental. The application tool assumes that the MR signal is linearly related to the CA 

concentration. In that case, the signal is modeled as: 
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where  S t  is the initial slope of the MR signal, and pC is modeled as a sum of N exponentials with 

amplitudes ia  and time constant im . Although the original model proposed three exponentials (N=3) 

DCE@URLAB implements a two-exponential model for pC (as in Tofts model). 

Reference region model 

An alternative to a populations based or estimated is the reference region (RR) approach {Yankeelov, 

2005 #256}. The modeling by the RR approach uses a well-characterized tissue to combine two copies of 

equation (1), one for the tumor and other for the reference region: 
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where t RRC   is  the concentration of CC in the RR tissue and trans RRK  and ,e RRv  are the quantitative 

parameters for the RR. The pair of equations allows for elimination of pC , and the solution is given by:  
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MRI model 

Tofts and RR models require the calibration of CA concentration from measured MRI parameters. If the 

bulk magnetic susceptibility (BMS) shift is negligible, the relationship between 1T  and CA concentration 

is determined by the Solomon-Bloembergen equation (Haase et al. 1986).  
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where 10T  is the 1T  value before CA injection and 1r  is the longitudinal relaxivity (assumed constant).The 

relationship between CA concentration and the relative increase in signal intensity can be derived from 

the Bloch equations for any imaging sequence, e. g., the signal for a T1-weighted spin-echo pulse 

sequence (at short echo time) with repetition time (TR) is: 
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Where 0S  is the MR signal prior to CA injection and TR is the MR repetition time. From Equations 13) 

and known values of 10T  prior to the CA injection it is possible to calibrate  1T t .  

Equations (13) and (14) are joined in the equation 15 that gives tissue concentration from MR signal:  
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For spoiled gradient-echo pulse sequences with flip angle  , MR signal is equal to:  
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Signal intensity is converted to CA concentration in tissue using the equation from (Li et al. 2000)) to get 

the longitudinal relaxation rate 1( )R t  : 
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and CA concentration is calculated as     1 1 1( ) (0) /C t R t R r  . Note that  1r  and 10T   must be known to 

quantify the tissue concentration from the MR signal. 10T  may be estimated using the ratio of two spin-

echo images collected with different TR. Estimation error can be reduced with a higher number of 

images with a least-squares minimization algorithm. 

Curve fitting 

uses the Levenberg-Marquardt algorithm (LMA) (Marquardt, 1963) to perform a least squares curve 

fitting of equations (4),(5),(9) and (10). LMA has demonstrated to be robust in pharmacokinetic 

modeling of DCE-MRI (Ahearn, et al., 2005). 
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