

Multi-modality Medical Image Registration

Peter Rogelj, Ph.D. Faculty of Electrical Engineering, University of Ljubljana, Slovenia

- Introduction
- Image registration process (optimization)
- Similarity metrics
- Geometric models
- Examples

Image registration is a process of finding optimal geometric transformation (T) that puts two images into spatial correspondence.

- Image information analysis

 image comparison
 image fusion

 Image geometry analysis

 analysis of tissue deformation
 analysis of organ activitiy

 Image segmentation
 - Image to atlas registration

Registration is an opimization process of finding such transformation that maximizs image similarity (considering geometric limitations of spatial deformation model).

Global: 3D rigid: 6 parameters 3D affine: 12 parameters

Local: splines...

registered TB

Transformation is given as voxel displacenets. Ext. forces tend to maximize image similarity. Geometric deformation model maps the ext. forces into a new (improved) transformation.

• Obtained as gradients of image similarity with respect to transformation: $F = \frac{\partial S(A, \mathbf{T}B)}{\partial \mathbf{T}}$

Similarity measurement is asymmetric...

...leading to inverse inconsistency of registration! Proposed solution: "Symmetric image registration".

Images are treated equaly.

External forces are computed for both images and act between the images.

Newton's 3^{rd} law of motion (action reaction): $\mathbf{F}^{\mathbf{A}} = -\mathbf{F}^{\mathbf{B}}$ The forces are symmetric!

- Mono-modality:
 - MSD (mean square distance)
 - CC (correlation coefficient)
- Multi-modality
 - MI (mutual information)
 - NMI (normalised mutual information)

Detection of local image discrepancies:

Measuring global similarity:

High computational cost in practice limits the dimensionality and registration precision. Measuring local similarities

Statistical multi-modality similarity measures are limited to large image regions.

Proposed solution: "point similarity measures". PS_MI : point similarity measure based on MI

Point similarity measures

Procedure, MI example: • <u>Global</u> estimation of intensity dependance between images: $f_{MI}(\mathbf{i}) = \log \frac{p(\mathbf{i})}{p(i_A)p(i_B)}$ • <u>Local</u> (point) similarity measurement $S_{MI}(\mathbf{x}_1, \mathbf{x}_2) = f_{MI}(\mathbf{i}(\mathbf{x}_1, \mathbf{x}_2))$

• Eventual averaging (locality dependent)
$$MI = \overline{S_{MI}(\mathbf{x})}$$

MVG - Machine Vision Group: http://vision.fe.uni-lj.si

- Locality

 (also for multi-modality measures)
- Low computational cost (similarity function serves as a LUT)
- Solution to interpolation artefacts (when using interpoaltion of similarity).
- Accuracy and robustness

 (variety of methods for computing similarity functions)
- Ability to use prior knowledge (prior knowledge in intensity domain)

- Geometric models define the space of admissible transformations (deformations).
- I the case of high dimensional registration they define the relationship between external forces and consequent transformation.

 Because image deformation should follow deformation of real objects/tissues, physical deformation properties are often used, e.g., elasticity, viscousity...

Realistic def. models

- Sources of unrealisticity:
 - Simplifications of physical deformation properties and usage of unrealistic models.
 - Usage of homogenious deformation models.
 - External forces (obtained as gradients of image similarity) are not realistic!
- Realistic models may not be optimal!

Implementations:

- Solution of elastic PDE (Broit and Bajcsy, 1981)
- Finite-element method (Gee et al., 1994)
- Elastic convolution kernel (Bro-Nielsen, Gramkow 1996)
- Simplifications: separable kernels, e.g. Gaussian.
- Important physical characteristics may be obtained by additional constraints (e.g., volume preservation...)
- Inhomogeneous models (different tissues modeled differently, with different properties or different models)

CT / PET image fusion:

Breathing motion analysis

MVG - Machine Vision Group: http://vision.fe.uni-lj.si

original

registered

A collaborative work related to the Kidney MRI project at University of Bergen

- Medical image registration can contribute to a broad range of medical procedures ,e.g., to medical diagnostics, treatment planning, surgeries, radiotherapy...
- The interest of medicine is increasing.
- Lots of possibilities for improving registration by integrating prior knowledge, i.e., anatomical knowledge and knowledge related to image formation.

http://vision.fe.uni-lj.si

Symmetric image registration:

• Peter Rogelj, Stanislav Kovačič. "Symmetric Image Registration". *Medical Image Analysis*, 10(3): 484-493, June 2006.

Point similarity measures:

- Peter Rogelj, Stanislav Kovačič, James C. Gee. "Point similarity measures for non-rigid registration of multi-modal data". *Computer Vision and Image Understanding*, 92(1): 112-140, October 2003.
- Peter Rogelj, Stanislav Kovačič."Point similarity measure based on mutual information". In: James C. Gee, J. B. Antoine Maintz, Michael W. Vannier (eds.), *Biomedical Image Registration : revised papers*, (Lecture notes in computer science, vol.2717), pp.112-121. Springer-Verlag, June 2003.
- Peter Rogelj, Stanislav Kovačič."Rigid multi-modality registration of medical images using point similarity measures". In: O. Drbohlav (ed.), Proceedings of the 8th Computer Vision Winter Workshop CVWW'03, pp.159-163. February 2003.

Deformation models:

• Peter Rogelj, Stanislav Kovačič."Spatial deformation models for non-rigid image registration". *CVWW'04*, pp.79-88, February 2004.

http://vision.fe.uni-lj.si