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Texture feature selection
based on clustering quality
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Aim
Development of unsupervised technique
for best texture feature selection

Expected advantages

* Dimensionality reduction
* No need for class labels
* More objective analysis
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Motivation
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Spheres of the same
diameter, the same texture
expected, yet MaZda
classifies them into two
different classes.

Is MaZda classifier
too sensitive?

Call for , invariant” features,
stable for objects of the same
internal structure.
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Supervised classification Fisher coefficient X

Feature name
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Accept Dizcard

10 MaZda features
separating the classes best

Images randomly split into 2 classes
do not demonstrate different textures.

Is partitioning real, or forced by
a priori information (class labels)?

Scatter plot, best two feature space
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Clustering
Method: Similarity-Based Clustering (SCM)
: * Recent (Yang & Wu, 2004)
Maierial * Robust to initial cluster number and
* All 120 images

sample membership
e Different cluster volumes
* Robust to noise and outliers

e Class labels excluded
e 4 features: Thetal - Theta4

Steps

* Estimation of number of clusters
(through peaks in a similarity function)

* Similarity Clustering Algorithm
(relocation of points in the feature space)
* Agglomerative Hierarchical Clustering
(final data grouping, forming a tree)
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Clustering

Distance of the final link is
much bigger than distances of
the links below.

The partitioning can be done at
the top level.

Division based on the tree:

- all ,class 1”samples belong to
one cluster,

- all ,,class 2” samples (except for
two) belong to the second cluster.

Distance, similarity

Labelling is justified. There are
apparently two subsets of data.

Is partitioning real, or forced by
prior feature selection?
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Nowvel feature selection method

Concept
Best features should give best quality clusters.

Algorithm

* Select a variety of different subsets of
texture parameters

* Perform automatic, unsupervised
clustering for each subset

* Evaluate quality of each cluster

* Indicate texture parameters that
provide best clusters
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Cluster quality measures

Compactness

d. - cluster diameter

n; — number of points in custer
n - total number of points

c - number of clusters

Inconsistency

[, - length of link

4, - mean length of links
o, - standard deviation of...

Cophenetic correlation

Y;; - distance in feature space
Zij - distance in tree
Y, z - mean values

Clustering validity

¢,.; — inconstistency of the last link
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Clustering quality for 5-feature subsets

1 [000E 405 _ 1 20000 Subsets

. Thetal: #6,7, 8
T+ oonm Theta2: #7,8,9
9,1
1

, 9,10
10

1 (000E+04 H

0

1EIIIIIIIDE+I33 — _ Theta3: # 8,
- N S I I S R I

| 0 50000 Thetad: # 9, 10

1 0000E+02 HA

1.EI|:I|:IDE+D1-§E§ DEEIEIEIEI Other'eatures

2 0 T A o A S Wavelets
Absolute gradient
Run-length matrix

1,0000E-+10

11 12 13 14 18 16 17 1g 040000

£z
=
i
=
g
=
o
=
T
=
E
]
-
=
&
@
E
2
g
=
=)

1 O000E-01

- 0,20000
1,0000E-02

— Considering all three
1 0000E-03 0,00000

Set number measures and many
feature combinations

are necessary.

— Compactness —k—Cophenetic correlation —m—Relative inconsistency
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Quality-based feature selection algorithm

* Divide feature vector into N-element subsets
(N=10 in our study)

* For every subset create all possible pairs of
features (45 for 10-element vector)

* For each pair perform SCM clustering

* Evaluate clusters quality (compute compactness
and clustering validity)

* From every subset choose a winning pair
(minimal compactness and validity over the
average)

* Eliminate worst features and repeat the
algorithm (best features minimize compactness
and maximize clustering validity)
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Parameter

Clustering quality for Thetal subsets © name
S(3,-3)DifVarnc
WavEnLH_s-1
S(0,3)Contrast
S(1,-1)Correlat
S(1,1)SumOfSqgs

S(4,-4)SumEntrp

S(0,5)SumOfSqgs
S(3,3)SumEntrp
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S(0,2)Entropy
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No Parameter

Clustering quality for Theta2 subsets name

| Teta2

) 45dgr_Fraction
3 S(2,2)Contrast
4 S(1,-1)AngScMom
5  Horzl_ShrtREmp
6 S(0,5)Contrast
7 S(4,0)SumEntrp
8 WavEnLL_s-4

9 S(3,-3)Correlat
10 S(4,0)DifVarnc

Next stage:

24 best parameters
(276 pairs).
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First 23 feature pairs (out of 276 pairs)
Q'sharp' maximum threshold
'soft' maximum thrashold
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Final-stage features

No Parameter name

Teta1

Teta2
S(4,0)AngScMom
S(3,3)AngScMom
S(0,2)AngScMom
S(1,-1)AngScMom
S(1,1)AngScMom
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Supervised classification Differences in texture for images of
5 s B 5 e ,class 1”7 and ,,class 2”7 do exist.
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Conclusion

* Novel unsupervised technique for texture
feature selection

* Gives the same result as supervised one
(e.g. based on Fisher coefficient)

* Straightforward - simple math

* Objective texture discrimination

* Best features selection

* Dimensionality reduction

* Possible technique for texture homogeneity
evaluation of test objects

* Future work: more systematic search
through the feature space



