TEXTURE ANALYSIS BRAIN Glioblastomas

COST B21 - Slovenia, Bled

March 2007, 29th-31st

Tumor Heterogeneity and Margin

Tumor

Margin (interface between the tumor and the parenchyma)

- Peritumoral White Matter
- Normal region in the cerebral hemisphere with tumor
- Normal region in the contralateral hemisphere

Objectives

Characterization of intra and extra-tumoral regions of Brain Glioblastomas

- Necrosis / Tumor / Oedema / White Matter (Macroscopic Normal tissue)
- Tumor vs Necrosis
- Tumor vs Oedema
- Tumor vs WM
- Peri-tumoral WM / Homo-lateral WM / Contra-lateral WM
- Peri-tumoral WM vs WM (HL + CL)

Method & Data

- Texture Analysis on MR Images of Brain Glioblastomas
 - MaZda software version 4.5
 - 2D TA
- Database
 - 3T MRI from Rennes University Hospital
 - 10 patients
 - 3D T1w
 - 2 series of images for each patient (before and after injection)
- Regions of interest (ROIs)
 - 5 selected slices from non-injected series per patient
 - ROIs drawn on each slice : necrosis, tumor, oedema, peritumoral white matter (WM), far homolateral WM, contralateral WM
 - ROIs size : >100 pixels

Necrosis vs Tumor vs Oedema vs WM

Necrosis / Tumor / Oedema / WM

Dataset : 300 data

	Misclassified (%)								
	Fisher POE+ACC MI								
Raw+kNN	43	42	45	38					
LDA+kNN	21	21	25	10					
PCA+kNN	43	48	48	43					

Misclassified (%)								
	Fisher	POE+ACC	MI	MI+PA+F				
Raw+kNN	7	11	7	7				
LDA+kNN	16	12	24	10				
PCA+kNN	8	11	7	7				

Tab1 - Standardization of feature vector: NO

Tab2 - Standardization of feature vector: YES

- Method of features selection :
 - None better than another (among Fisher, PA or MI)
- Standardization of feature vector
 - gives much better classification with Raw+kNN and PCA+kNN
 - has no such influence with LDA+kNN
- MI+PA+F / LDA returns the best classification results (with F score rather high compared to other methods)

Necrosis / Tumor / Oedema / WM

Misclassified (%)									
Fisher PA MI MI+PA+F								PA+F	
Dataset	Train	Test	Train	Train Test		Test	Train	Test	
NDA-3	4	14	3	17	19	32	0	23	
NDA-4	2	14	3	19	4	21	0	25	

- Dataset : 300 data
 - Training set : 180 data
 - Test set : 120 data

Trials with NDA

- NDA-3 : with 3 neurons in the 1st hidden layer
- NDA-4: with 4 neurons in the 1st hidden layer

- NDA results not much better than LDA
- Data put as training data set or test data set need to be discussed
 - No randomization here

Necrosis(1) / Tumor(2) / Oedema(3) / WM(4)

MI+PA+F

*features 1 Perc.10% 2 Perc.01% 3 Mean 4 Perc.50% 5 Perc.90% 6 Perc.99% 7 WavEnLL_s-2 8 S(2,0)Entropy 9 135dr_RLNonUni 10 Horzl RLNonUni 11 S(5,0)DifEntrp 12 S(4,-4)SumAverg 13 S(5,5)Contrast 14 GrNonZeros 15 Teta3 16 WavEnLL s-1 17 S(1,1)SumOfSqs 18 Skewness 19 S(4,4)InvDfMom 20 Sigma 21 Vertl_RLNonUni 22 45dgr RLNonUni 23 Variance 24 S(1,0)Correlat 25 S(1,0)Contrast 26 WavEnHH_s-1 27 S(1,0)SumAverg 28 S(1,0)DifVarnc 29 S(2,0)SumAverg 30 S(1,0)InvDfMom

• Ability of TA with proper method to highlight tumor heterogeneities

Necrosis vs Tumor

Necrosis
Tumor
Margin (i
Oedema
Peritumo
Normal r hemisph
Normal r

or

in (interface between the tumor and the parenchyma)

umoral White Matter

hal region in the cerebral sphere with tumor

nal region in the contralateral hemisphere

Necrosis vs Tumor

- Differentiation between necrosis and tumoral tissue highlighted with injection of contrast agent
- Observations: irregularities of necrosis

Could we discriminate necrosis from tumor tissue, on non-injected MR images, using MRI-TA method?

BOU

Necrosis vs Tumor

Misclassified (%)									
	Fis	Fisher PA MI MI+PA+							
Standardization	No	Yes	No	Yes	No	Yes	No	Yes	
Raw+kNN	28	19	33	12	28	7	28	7	
LDA+kNN	27	21	21	21	31	31 (10	10	
PCA+kNN	28	21	33	13	28	8	28	8	

- Dataset : 100 data
- Features selected with Fisher, PA, MI and MI+PA+F
 - COM parameters
- Standardization of feature vector
 - gives better classification with Raw+kNN and PCA+kNN
 - has no influence with LDA+kNN

- Dataset : 100 data
 - Training set : 60 data
 - Test set : 40 data
- Trials with NDA
 - NDA-1 : with 1 neuron in the 1st hidden layer
 - NDA-2: with 2 neurons in the 1st hidden layer

Misclassified (%)									
Fisher PA MI MI+PA+F									
Dataset	Train	Test	Train	Test	Train	Test	Train	Test	
NDA-1	10	28	10	15	12	28	0	13	
NDA-2	10	23	23 0 18 12 28 0						

Necrosis (1) / Tumor (2)

MI+PA+F/LDA

MI+PA+F

1 WavEnLL s-2 2 S(0.1)DifEntrp 3 S(5,0)SumEntrp 4 S(3,3)SumEntrp 5 S(1,0)Entropy 6 S(1,0)DifEntrp 7 S(2,2)SumEntrp 8 WavEnLL_s-1 9 S(2,0)Entropy 10 Perc.10% 11 S(4,-4)SumAverg 12 S(0,5)DifVarnc 13 S(5,-5)AngScMom 14 Perc.01% 15 S(4,4)InvDfMom 16 S(5,5)AngScMom 17 S(0,3)AngScMom 18 S(0,5)AngScMom 19 S(1,-1)SumOfSqs 20 S(0,5)SumEntrp 21 S(1,0)SumAverg 22 S(1,1)SumAverg 23 WavEnHH s-1 24 S(4,-4)SumOfSqs 25 S(0,5)SumOfSqs 26 S(0,5)SumVarnc 27 S(5,-5)SumVarnc 28 S(0,4)SumVarnc 29 S(0,4)SumOfSqs 30 S(3,-3)DifEntrp

🎫 "" - Linear Discriminant Analysis	
Save Close	
2 2222 227222722722722722722722722722722	111 111
-0.11 MDF 1	0.12

- With MI+PA+F/LDA : 10% misclassified (F score=8)
- Overlapping between regions
 - Due to irregularities of necrosis
 - Tumoral cells in necrosis regions?

Tumor vs Oedema

Tumor

Margin (interface between the tumor and the parenchyma)

Oedema

Peritumoral White Matter

Normal region in the cerebral hemisphere with tumor

Normal region in the contralateral hemisphere

Tumor(1) / Oedema(2)

Misclassified (%)									
	Fisher PA			MI MI+PA			PA+F		
Standardization	No	Yes	No	Yes	No	Yes	No	Yes	
Raw+kNN	38	18	26	11	25	8	31	11	
LDA+kNN	23	23	18	18	17	17 <mark>(</mark>	12	12	
PCA+kNN	39	18	39	11	39(6	39	13	

- Dataset : 100 data
- Fisher coefficient F:
 - Raw+kNN : between 0,8 and 1,4
 - LDA+kNN : between 3,4 and 8
 - PCA+kNN: between 0,8 and 1,2
 - Better classification with MI/PA method
 - However, F score is higher with LDA method
 - Results more reliable with LDA?

Fisher coefficient = 8

Misclassified : 6% Fisher coefficient = 1,2

Tumor vs Extratumoral White Matter

Tumor / WM

Misclassified (%)									
	Fis	Fisher PA				11	MI+F	PA+F	
Standardization	No	Yes	No	Yes	No	Yes	No	Yes	
Raw+kNN	1	1	8	1	0	1	3	1	
LDA+kNN	3	3	5	5	1	1	0	0	
PCA+kNN	1	1	28	1	1	1	2	1	

- Dataset : 200 data (50 ZT, 150 WM)
- WM includes PT, HL and CL ROIs
- Fisher coefficient F:

- Raw+kNN : between 1,5 and 4
- LDA+kNN : between 16 and 62
- PCA+kNN: between 1,5 and 4

- Dataset : 200 data
 - Training set : 120 data
 - Test set : 80 data
- Trials with NDA
 - NDA-1 : with 1 neuron in the 1st hidden layer
 - NDA-2: with 2 neurons in the 1st hidden layer

Misclassified (%)										
	Fisher PA MI MI+PA+F									
Dataset	Train	Test	Train	Test	Train	Test	Train	Test		
NDA-1	0	3	0	10	8	9	0	5		
NDA-2	0	0 1 0 4 0 1 0 1								

Tumor(1) / WM(2)

MI+PA+F/LDA

- (1) Tumor
- (2) White Matter WM (PT+HL+CL)

🚥 🚥 - Linear Discriminant A	nalysis	
Save Close		
111 1 1111 1111 111 11 11 11 1	72 (1117) 1	2012 2
-4.2E-003	MDF 1	2.1E-003

MI+PA+F/LDA

- (1) Tumor
- (2) Peritumoral White Matter
- (3) White Matter WM (HL+CL)

MI+PA+F

*features 1 Perc.01% 2 Perc.10% 3 Perc.50% 4 Mean 5 Horzl RLNonUni 6 S(1,0)Entropy 7 135dr_RLNonUni 8 Vertl_RLNonUni 9 45dgr_RLNonUni 10 Perc.90% 11 135dr GLevNonU 12 Sigma 13 S(0,1)AngScMom 14 S(5,5)AngScMom 15 S(4,4)AngScMom 16 Perc.99% 17 45dgr_GLevNonU 18 Teta1 19 S(5,5)SumOfSqs 20 S(1,0)AngScMom 21 S(0,1)Entropy 22 S(1,-1)Entropy 23 S(2,0)Entropy 24 S(1,1)Entropy 25 S(0,2)Entropy 26 Variance 27 S(3,0)Entropy 28 S(2,-2)Entropy 29 S(4,0)Entropy 30 S(2,2)Entropy

Peritumoral WM vs Far extratumoral WM

Peri-tumoral WM / Far extra-tumoral WM

Misclassified (%)									
	Fisher PA			Ν	11	MI+PA+F			
Standardization	No	Yes	No	Yes	No	Yes	No	Yes	
Raw+kNN	39	23	34	23	29	22	30	16	
LDA+kNN	17	17	21	21	25	25	5	5	
PCA+kNN	39	21	35	23	29	23	34	17	

MI+PA+F

*features	
1 S(2.0)SumEntrp	10
2 S(1,-1)SumAverg	1
3 S(2,0)SumAverg	18
4 S(1,0)SumAverg	19
5 S(5,0)Entropy	20
6 S(4,0)SumEntrp	2
7 S(5,-5)DifEntrp	22
8 S(5,0)AngScMom	23
9 Teta2	24
10 S(4,-4)SumEntrp	2
11 S(5,-5)Contrast	20
12 S(2,-2)SumAverg	2
13 S(5,0)DifVarnc	28
14 S(1,0)InvDfMom	29
15 S(5,5)AngScMom	30

16	S(1,1)InvDfMom
17	S(0,3)SumOfSqs
18	GrNonZeros
19	S(2,2)SumAverg
20	S(5,0)SumEntrp
21	Variance
22	S(5,-5)Entropy
23	S(5,-5)SumEntrp
24	S(4,-4)Entropy
25	S(4,0)Entropy
26	S(5,0)Correlat
27	Teta4
28	S(3,-3)Entropy
29	S(4,-4)AngScMom
30	S(3,0)Entropy

Dataset : 150 data (50 PT, 100 Far-WM)

- Far WM includes HL and CL ROIs
- Fisher coefficient F:
 - Raw+kNN : between 0,2 and 1,1
 - LDA+kNN : between 3,5 and 12,7
 - PCA+kNN: between 0,2 and 1,1

PT-WM(1) / HL-WM(2) / CL-WM(3)

Dataset : 150 data

Misclassified (%)								
	Fisher		PA		MI		MI+PA+F	
Standardization	No	Yes	No	Yes	No	Yes	No	Yes
Raw+kNN	52	36	59	50	53	41	69	37
LDA+kNN	46	46	47	43	40	43 (27	26
PCA+kNN	46	37	59	50	53	42	67	37

MI+PA+F/LDA

- Most of misclassified data are between far-homolateral and contralateral WM
 - Overlapping of homolateral and contralateral WM regions
- Peritumoral White Matter (1), rather well-differentiated from far extratumoral (Homolateral and Contralateral) White Matter

Synthesis of results

	MI+PA+F/ LDA method		
Classes	% of misclassified data	Comments / Hypothesis	
Necrosis / Tumor / Oedema / WM	10%	Highlight heterogeneities of brain glioblastoma	
Tumor vs Necrosis	10%	Potential tumoral cells in necrosis?	
Tumor vs Oedema	12%	Potential tumoral cells in oedema?	
Tumor vs WM	0%	Strong discrimination	
Peritumoral WM / Far extratumoral WM	5%	Moderate differentiation	
Peritumoral WM / HL-WM / CL-WM	26%	Overclass : HL-WM and CL-WM data are similar	

Conclusion

- Methods
 - The best classification is obtained with MI+PA+F / LDA methods
 - Most selected parameters from Cooccurrence Matrix
 - Fisher coefficient
 - very low (between 0 and 2) with other methods (Raw, PCA)
 - the highest with analysis performed by LDA
 - Standardization of feature vector
 - gives better classification with Raw+kNN and PCA+kNN
 - has no influence with LDA+kNN
- Results
 - on 2D-TA (MaZda), gives rather good or expected results, with a proper method
 - Question : What do misclassified data actually correspond to ?
 - the choice of analysis and classification methods,
 - or does it really have biological significance ?
- Perspectives
 - Comparison between 2D-TA and 3D-TA
 - Correlation with biological data (Grand-Ouest Glioma Project, France)